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ABSTRACT 
Leading polymorphous computing architecture (PCA) efforts 
include the Raw Architecture Workstation (Raw) and the Tera-op 
Reliable and Intelligently Adaptive Processing System (TRIPS), 
both of which are tile-based.  The Raw toolchain places 
responsibility for program decomposition on the programmer, but 
the TRIPS toolchain automatically generates hyperblocks and 
allocates them to processing elements.  This report identifies 
evolutionary computation (EC) techniques that enable and that are 
enabled by PCA technology, focusing on application of EC in 
enhancing the effectiveness of the TRIPS toolchain, including the 
Scale compiler.  In particular, computational experiments are 
described that investigate the application of genetic programming 
to the meta-optimization of the priority function used to increase 
the number of instructions per hyperblock in the in-lining 
optimization phase of Scale.  Results suggest continued 
experimentation with larger population sizes and more 
generations.   

Categories and Subject Descriptors 
D.3.4 [Programming Languages]: Processors – compilers, 
optimization. I.2.8 [Artificial Intelligence]: Problem Solving, 
Control Methods, and Search – heuristic methods.  

General Terms 
Algorithms, Performance, Experimentation. 

Keywords 
Evolutionary computation, polymorphous computing 
architectures, compiler optimization. 

1. INTRODUCTION 
Polymorphous computing architectures (PCAs) represent a 

revolutionary approach to computing systems that seeks to 
provide processing capabilities that are both amenable to dynamic 
optimization as the application load changes and scalable with 
technology advances.  Leading efforts achieve dynamic 
responsiveness and scalability through the use of tile-based 

architectures of some variety.  Two of those efforts have direct 
relevance to this effort:  the Raw Architecture Workstation (Raw) 
and the Tera-op Reliable and Intelligently Adaptive Processing 
System (TRIPS). 

There is considerable potential for even better performance 
through the development of architecture-specific optimizations.  
Evolutionary computation (EC) is a maturing field which centers 
on the study of evolutionary algorithms (EAs) – algorithms that 
are inspired by principles and theories of natural evolution – of 
which genetic algorithms are the best publicized example.  This 
effort began the exploration of the use of EC techniques that 
enable and are enabled by PCA technology.   

Because of their population-based nature, EC techniques are 
amenable to a rich variety of implementations on parallel and 
distributed architectures and scale very well with processor count.  
Much of the research in this area carries over directly to their 
implementation on tile-based PCAs.  As such, EC techniques 
could be distributed spatially across a tile-based architecture to 
provide dynamic performance optimization.  As a preliminary 
step towards this goal, island model and farming model parallel 
EA implementations for both the Raw and TRIPS architectures 
were designed and implemented.   

The primary goal of the effort was to develop versions of 
both the Raw and TRIPS compilers that combine EC techniques 
for robust global search of the schedule space with the compilers’ 
existing algorithms for efficient local search.  However, in the 
process of developing the Raw implementations of the parallel 
EAs, it was determined that the Raw toolchain essentially treats 
each tile independently, thereby requiring the programmer to 
decompose the application and map the components to the tiles.  
Creating an automatic decomposition tool from scratch was not 
possible within the timeframe of this project, so subsequent effort 
was focused on the TRIPS architecture.   

The most important technical accomplishments under this 
effort are as follows: 

• Gained familiarity with Raw and TRIPS toolchains 

• Implemented simple EAs for the Raw and TRIPS 
architectures, and evaluated the implementations using a Raw 
handheld board installed on a Linux workstation and TRIPS 
architecture simulator software 

• Identified several classes of methods for the application 
of EC in enhancing the effectiveness of the Raw and TRIPS 
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toolchains; selected general method for use in enhancing TRIPS 
toolchain 

• Installed the Finch Meta-Optimization Framework, 
which uses “machine learning techniques to automatically search 
for effective compiler heuristics.” 

• Obtained preliminary results in application of Finch to 
optimization of in-lining priority heuristic used by the TRIPS 
compiler (8% reduction in static ratio of hyberblocks to 
instructions per hyberblock) 

• Verified through a single processor computational 
experiment on a nontrivial test case that parallel computation will 
be required in order to obtain meaningful data about the 
effectiveness of EA-based optimization of TRIPS compiler 
heuristics 

• Determined that the Ground Moving Target Indicator 
(GMTI) benchmark provides a suitable test case for EA-based 
optimization of TRIPS compiler heuristics, in that the 
effectiveness of function in-lining varies gradually with the code 
bloat size parameter for this benchmark. 

• Implemented a parallel version of Finch on a Beowulf 
cluster using the Message Passing Interface (MPI). 

• Completed a 17-processor computational experiment 
applying Finch to the optimization of the TRIPS in-lining priority 
heuristic using the GMTI benchmark as the test case. 

The remainder of this section provides background information on 
the most relevant aspects of polymorphous computing 
architectures, compilers, and evolutionary computation.  Section 2 
describes the methods used in this effort, and the results of the 
research are presented and discussed in Section 3.  The remaining 
sections present conclusions (Section 4), recommendations 
(Section 5) and references (Section 6). 

1.1 Polymorphous Computing Architectures 
Current computing systems are designed to support fixed, 
idealized application loads, and their performance inevitably 
suffers when the actual load doesn’t match the idealized load for 
which they were designed.  Also, as manufacturing processes for 
integrated circuits advance and we approach the fundamental 
limitations of silicon technology, wire delays are becoming more 
significant relative to gate delays.  PCAs represent a revolutionary 
approach to computing systems that seeks to provide processing 
capabilities that are both amenable to dynamic optimization as the 
application load changes and scalable with technology advances.  
Leading efforts in PCA research include the Raw microprocessor 
under development at the Massachusetts Institute of Technology 
and the TRIPS architecture project at the University of Texas at 
Austin.  Both of these efforts achieve dynamic responsiveness and 
scalability through the use of tile-based architectures of some 
variety.   

1.1.1 Raw 
MIT researchers argue that we must reconsider our idea of 
machine instructions to include signal routing information along 
with the usual functional unit control information.[1]  The Raw 
microprocessor makes this possible, and has been demonstrated to 
provide two orders of magnitude better performance than 
traditional processors on certain applications.  However, 
optimization of the routing information places an additional 
burden on the compiler.  Compiler enhancements implemented 

just prior to the initiation of this research resulted in code with 
speed and tile usage that typically come close to hand-customized 
code [10], but independent evaluations resulted in only two thirds 
of the theoretically possible efficiency, suggesting that further 
optimization is possible [9]. 

1.1.2 TRIPS 
Researchers at the University of Texas Austin also suggest a new 
paradigm for machine instructions, illustrated by their TRIPS 
architecture [4].  They advocate the adoption of Explicit Data 
Graph Execution (EDGE) architectures, in which “the hardware 
delivers a producer instruction’s output directly as an input to a 
consumer instruction,” thereby eliminating most of the expensive 
logic that has found its way into architecture design over the past 
two decades.  In addition to the usual requirements, such as 
identifying blocks of instructions containing no branches, a 
compiler targeting such an architecture must be able to map each 
such block to a tile for execution, and then map each operation in 
the block to a processing element.  These spatial scheduling 
mappings affect both concurrency and communications delays, 
and thus result in a difficult multicriteria optimization problem.  
The greedy approximation algorithm employed by the TRIPS 
compiler prior to the initiation of this research results in code that 
is highly un-optimized and bloated, which suggests an opportunity 
to improve performance via a variety of optimization techniques 
[3].   

1.2 Compilers 
In theoretical terms, the role of a compiler is to automatically 
translate sentences from one language into sentences in another 
language. By far the most familiar use of compilers, and the one 
usually connoted by the use of that term, is in translating source 
code (sentences in high-level programming languages) into object 
code (sentences written in machine language, annotated to support 
linking and relocation).  Although it is usually hidden from the 
user, it is common for the compiler to emit assembly language 
code and then invoke an assembler to make the final translation to 
object code. 
Often the compilation process occurs on a computing system 
based on the targeted architecture, but that is not always the case. 
Cross compilers execute on one architecture and generate 
executable programs for a different architecture, and are usually 
the only option when targeting new architectures.  
Implementations vary widely, but the translation process may be 
conceived of as performing a sequence of operations including 
lexical analysis, preprocessing, parsing, semantic analysis, 
optimization1, and code emission.  The first four of these result 
implicitly or explicitly in an intermediate representation that is 
independent of the target architecture, and as such are referred to 
as the front end.  The back end generates the object code, usually 
after performing architecture-specific optimizations.  Many 
compilers also perform architecture-independent optimizations, 
which can be thought of as occurring late in the front end, early in 

                                                                 
1 As stated in the classic compiler textbook by Aho, Sethi, and 

Ullman, [2] “the term ‘optimization’ is a misnomer because 
there is rarely a guarantee that the resulting code is the best 
possible.”  In a nutshell, this is the precise reason to consider the 
application of evolutionary algorithms as optimum-seeking 
techniques in the compilation process.  
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In order to address this problem, researchers at MIT have 
developed GP-based Meta-optimization software (a.k.a. Finch) to 
automatically search the space of compiler heuristics [12]. The 
system specifically targets those heuristics that are based on 
priority functions such as the one described above in the context 
of in-lining. 
The flow of execution in an application of Finch to the 
optimization of a compiler as it pertains to this effort is illustrated 
in Figure 2.  At a high level of abstraction, Finch executes a 
standard evolutionary algorithm consisting of the steps labeled GP 
Initialization, Fitness Evaluation, Evolution (application of 
evolutionary operators), and GP Finalization.  The individuals 
being evolved are heuristic functions, and their evaluation is 
performed by invoking a modified version of the compiler.   

 
Figure 2.  Finch Flow of Execution 

During its own Compiler Initialization and Compiler Finalization 
steps, the compiler performs calls back to Finch to initialize and 
finalize its evaluation of the specific heuristic function under 
consideration (Heuristic Initialization and Heuristic Finalization, 
respectively).  The primary purpose of the Heuristic Initialization 
step is to create a configuration file that specifies the signature 
(number and type of parameters) of the heuristic function.  This 
information is required during the Heuristic Execution step.   

Most importantly from a conceptual perspective, the compiler 
invokes Finch to execute the heuristic function.  These steps are 
labeled Compilation and Heuristic Execution in the figure.  
Finally, Finch invokes an application-specific fitness evaluation to 
evaluate the result of the compilation (not shown). 

2. Methods, Assumptions, and Procedures 
The first phase of the program consisted of completing literature 
reviews related to the Raw and TRIPS architectures, obtaining 
existing copies of the compilers and simulators, and verifying 
their correct operation.  The second phase consisted of developing 
parallel EC implementations for both architectures.  This directly 
satisfied one of the objectives of the project.  More importantly, it 
facilitated deeper understanding of the architectures, as well as the 
use of the compilers and the simulators.  Given that 
understanding, the next phase consisted of more completely 
identifying and understanding the opportunities for optimization, 
the algorithms used by the existing compilers, and their 
implementations.  In the fourth phase, we integrated an 
evolutionary algorithm with the in-lining optimization algorithm 
used by the existing TRIPS compiler.  The final phase consisted 
of empirically evaluating programs generated using the enhanced 
compiler. 

2.1 ISI’s Raw Workstation 
Information Science Institute East (ISI-East) maintains the Raw 
toolchain (e.g. compiler, simulator) and a Raw handheld board on 
a LINUX workstation (crudo.east.isi.edu).  With assistance from 
Jinwoo Suh of ISI-East, the Raw toolchain was installed under the 
researcher’s user accounts on crudo, and the correct installation 
was verified by the completion of the tutorials included with the 
Raw starsearch distribution, as well as the installation, 
compilation, and simulation of a suite of benchmarks provide by 
the Raw group.   
Finally, several programs were developed from scratch that use 
various features of the Raw architecture, including an island 
model parallel EA.  Collectively, these programs used both the 
static and dynamic communication features of the devices.  These 
programs were simulated successfully using the Raw simulator 
and executed on the Raw board connected to crudo.   
In the process of implementing these programs it was determined 
that the Raw toolchain places the parallel decomposition and 
mapping responsibilities on the programmer.  As explained above, 
this limitation of the toolchain necessitated the focus of 
subsequent effort entirely on the TRIPS architecture.   

2.2 RHIT’s TRIPS Workstation 
The a02 release of the TRIPS toolchain was installed on a Rose-
Hulman Institute of Technology Linux workstation (clive.cs.rose-
hulman.edu).  A series of steps was taken to develop familiarity 
with the TRIPS toolchain, intermediate language, and assembly 
language: 

• Correct installation of the software was verified by 
compiling and simulating the torture tests that ship with 
the TRIPS installer. 

• The ability to perform edit-compile-simulation cycles 
was verified by compiling and simulating minor 
variations on the torture tests. 

• The ability to develop TRIPS software from scratch was 
verified.  Specifically, two different versions of a simple 
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evolutionary algorithm were compiled and simulated. 
The researchers were pleasantly surprised by the level 
of compatibility between the TRIPS compiler and gcc. 

• The ability to develop and simulate both TRIPS 
Intermediate Language (TIL) and TRIPS Assembly 
Language (TASL) programs from scratch was verified, 
progressing from simple programs to programs that 
included branching, function calls, and text output.    

• Comparisons were made between hand coded and 
compiler generated TRIPS assembly language (TASL), 
along with the TRIPS Intermediate Language (TIL) 
resulting in both cases.  The comparison was performed 
using a pseudorandom number generator based on a 32-
bit linear feedback shift register.  The program was first 
hand-coded in TASL, and then an equivalent program 
was implemented using C.  The TASL and TIL 
generated by the TRIPS toolchain (using various 
optimizations) was compared to the hand-coded 
versions.  

• The ability to generate modified versions of the 
executables in the TRIPS toolchain was verified. 

2.3 Classes of EC in Compilation Methods 
Several classes of methods for the application of EC in enhancing 
compiler effectiveness have been identified.  These methods are 
complementary, rather than mutually exclusive.  They include: 

• Compiler-algorithm-time.  In this method, some 
variation of EC is used to evolve algorithms used within 
the compiler.  This is the approach used by the Finch 
Meta Optimization tool.  Rice University’s technique of 
evolving the order of application of compiler 
optimizations also fits in this category [6].  This method 
has the advantage that the EA executes off-line (in the 
sense that it does not execute during the development of 
an application).  Thus, compilation time will not 
necessarily increase.  Also, the same source code will 
always be compiled to the same executable, which will 
always be scheduled in the same way.  However, this 
method must be trained on some set of applications, and 
may result in a compiler that is less effective on 
applications outside of the training set. 

• Compiler-parameterization-time.  In this method, one or 
more EAs are used to evolve parameters of algorithms 
used within the existing compiler.  An example of this 
approach is the Acovea tool, in which compiler 
optimization flags are chosen by an EA [8].  This 
method shares the advantages and disadvantages of the 
compiler-algorithm-time method.  Relative to that 
method, this one has the advantage that the search 
spaces on which the EAs operate are more structured.  
The disadvantage is that the optimal parameterizations 
of existing algorithms may be less effective than yet-to-
be identified algorithms.   

• Compile-time.  In this method, one or more EAs are 
included in the compiler.  An advantage of this 
approach is that all of the details of the application are 
available to the EA, so there is some probability of 
finding the optimal machine instruction sequence and 
the optimal execution schedule.  However, the same 

source code will produce different executables each 
time it is compiled, which would be a major 
disadvantage in a production environment.   

• Schedule-time.  This idea provided the original 
motivation for this effort. In this method, an EA is 
included in the scheduler.  An advantage of this 
approach is that the execution time of candidate 
schedules can be modeled exactly, so the quality of the 
schedule is determined entirely by the effectiveness of 
the EA.  However, the EA has no influence on the 
effectiveness of the compilation process.    Perhaps 
more importantly, the same executable is scheduled 
differently each time it is executed, which may be a 
major disadvantage in an application development 
environment.   

2.4 Integration of Finch and TRIPS 
Toolchain 
With this groundwork laid, effort was then focused on the 
application of the Finch metaoptimization tool to the TRIPS 
toolchain, and specifically to the Scale compiler targeting the 
TRIPS architecture.  Integration of Finch into any tool requires 
the integration of three library calls into the tool, corresponding to 
the three call backs illustrated in Figure 2.  The directory structure 
of Scale is shown in Figure 3. In order to integrate Finch with 
Scale, the following library calls were implemented:   

 
Figure 3.  Scale Directory Structure (http://www-
ali.cs.umass.edu/Scale) 

• Immediately after parsing the command line arguments, 
the compile() method of test/Scale.java 
invokes Finch.initializeLib().  This call 
initializes Finch’s evaluation of specific heuristic 
functions under consideration.   

• The getPriority() method of 
score/trans/Inlining.java invokes 
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Finch.evaluateReal(doubleArgs, 
boolArgs).  This call causes Finch to evaluate 
candidate heuristic functions. 

• Immediately before terminating the execution of Scale, 
the compile() method invokes 
Finch.finalizeLib().  This call finalizes Finch’s 
evaluation of candidate heuristic functions. 

The arguments passed to Finch.evaluateReal() are 

• the largest allowable size of the executable 

• the current size of the executable 

• the level of purity2 of the routine 

• the size of the routine 

• the number of AST children of this node (which is 
always 1) 

• the number of function pointers in the body of the 
routine 

• the number of routines that call this routine 

An attempt was made to experimentally evaluate the effectiveness 
of Finch for optimizing the in-lining priority function in the 
TRIPS compiler, using an extremely small population size and 
generation count, and a modestly sized program as input to the 
compiler.  However, this experiment did not complete given six 
CPU-days of execution time.  It was thus concluded that 
multiprocessor environments would be required to obtain 
meaningful experimental results. 

2.5 RHIT’s TRIPS Clusters 
The Finch metaoptimization tool was installed on a cluster of 
Windows 2000 workstations (in the Rose-Hulman Institute of 
Technology Department of Computer Science and Software 
Engineering OS/Security laboratory).  This cluster was chosen 
because it provided the Network File System (NFS) and Portable 
Batch System (PBS) services, both of which are required by the 
downloadable version of Finch.  Correct installation of Finch was 
verified using the provided test cases, after which the TRIPS 
toolchain was installed on the cluster and integrated with Finch as 
described above.  A single computational experiment using this 
cluster produced an in-lining priority function that resulted in an 
8% reduction in the static ratio of hyberblocks to instructions per 
hyberblock over the set of test programs employed. 
The workstations that made up the OS/Security laboratory cluster 
are intended for student use and are re-imaged periodically as 
different courses make use of the laboratory.  Therefore, it was 
necessary to port both the TRIPS toolchain and Finch to the Rose-
Hulman Institute of Technology “Beowulf” Linux cluster 
(brain.rose-hulman.edu).  However, the Beowulf cluster does not 
provide NFS and PBS, so it was also necessary to modify Finch’s 
interprocessor communication to make use of the Message 
Passing Interface (MPI) standard, which is supported on the 
cluster.   

                                                                 
2 Scale has seven levels of “purity” associated with various 

combinations of the following characteristics:  side effects, 
global variable references, and modification of memory 
locations referenced by arguments.   

2.6 Metrics 
Hardware execution of TRIPS applications was not an option in 
this effort, so the effectiveness of the techniques developed in this 
effort is evaluated on the basis of proxies for execution time of 
selected applications.  Individual applications developed in the 
process of installing and verifying the TRIPS toolchain were 
evaluated on the basis of both detailed processor timing 
simulation (tsim_proc) and architectural simulation 
(tsim_arch).  The former is cycle-accurate, while the latter 
reports the count of hyperblocks executed (as well as other 
statistics).  Because the TRIPS architecture executes hyperblocks 
atomically, total execution time is closely related to the number of 
hyperblocks executed. 
Neither the detailed processor timing simulation nor the 
architectural simulation is computationally efficient enough for 
repeated use as part of an EA’s fitness evaluation function.  As 
such, further approximations to execution time were made based 
on static evaluations of the executables produced by the EA.  One 
approximation used was the count of hyperblocks in the 
executable, which is roughly proportional to the hyperblock 
execution count for the benchmarks used in this effort.  Another 
was the average number of instructions per hyperblock, which is 
inversely related to hyperblock count for fixed instruction counts.  
This was chosen as the primary metric for this effort, based on 
observations by the TRIPS developers that the key to good 
performance is maximizing the number of instructions per 
hyperblock. 

3. Results and Discussion 
Several established benchmarks were considered, each of which 
contains multiple functions of varying size and invocation 
frequency.  Each of the candidate benchmarks was compiled to 
TRIPS Intermediate Language (TIL) using a range of values for 
the allowable code bloat, and the fitness of the resulting TIL 
evaluated.  Finch seeks to minimize the provided fitness function.  
Thus, for these experiments and the others discussed in this 
section, fitness was computed by subtracting the average number 
of instructions per hyperblock from the number of possible 
instructions per hyperblock (128). 
One of the candidate benchmarks, the “Ground Moving Target 
Indicator (GMTI),” yielded a fitness that varied gradually with 
allowable code bloat (see Figure 4), and thus represents a test case 
against which candidate in-lining priority functions can be ranked.  
None of the SPEC_CPU2000v1.3 benchmarks exhibited this 
property. 
A series of computational experiments applying Finch in the 
generation of in-lining heuristic functions for the Scale compiler 
and using the GMTI benchmark as a test case was executed on the 
RHIT Beowulf cluster using 17 processors.  Experiments 
performed during the development of the software yielded fitness 
values equal to that produced by the unmodified compiler, which 
is assumed to be globally optimal.  However, none of the 
experiments performed on the final version of the software did. 
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Figure 4.  In-lining effectiveness as function of allowable code 
bloat for the unmodified Scale compiler and the GMTI 
benchmark. 
 
For each generation of each experiment, the average number of 
instructions per hyperblock resulting from the use of each 
candidate priority function was calculated.  The maximum, mean, 
and minimum of this value in a representative experiment are 
shown as a function of generation number in Figure 5.   

 
Figure 5.  Representative results of Finch Meta-optimization 
of Scale in-lining, using the GMTI benchmark, a maximum 
allowable code bloat of 10%, a population size of 64, a 
maximum expression height of 4, and a mortality rate of 99%. 
Several small improvements in the best heuristic function occur 
over the course of execution, resulting in an overall increase in 
average instructions per hyperblock of approximately 0.5%.  The 
positive trend in the mean of the average instructions per 
hyperblock is easier to see, indicating that recombining features of 
good candidate priority functions tends to result in the 
construction of better candidate priority functions.   

4. Conclusions 
At the outset of this effort, the primary goal was to enhance the 
scheduling of instructions for both the Raw and TRIPS 
architectures by modifying their compilers to combine 
evolutionary computation (EC) techniques with the existing 
algorithms.  Early on, it became apparent that this goal was not 
feasible with respect to the Raw architecture because the burden 
of program decomposition and mapping currently rests on the 
programmer.  Thus, the remainder of the effort focused on the 
TRIPS architecture.   
Four general techniques were identified for the application of EC 
in enhancing compiler effectiveness.  The Finch Meta-

optimization Framework implementation of the compiler-
algorithm-time technique was adopted for this effort.  Other 
techniques include compiler-parameterization-time, compile-time, 
and schedule-time.  Tradeoff considerations among these 
techniques include their impact on execution time, compilation 
time, compiler construction time, reproducibility of execution, 
reproducibility of compilation, and breadth of application space 
targeted.   
Given the advantages and disadvantages of each of the techniques, 
various combinations are appropriate in specific situations.  One 
of the motivations for PCAs is to achieve near-optimal 
performance on each mission-critical application in a dynamic 
workload.  For such an application, it is reasonable to assume that 
it is worthwhile to invest considerable offline computational effort 
in order to obtain improvements in online performance.  As such, 
the compiler-algorithm time, compiler-parameterization time, and 
compile-time techniques should all be considered.  Furthermore, 
assuming that the set of critical applications in the workload is 
small, the compiler-algorithm time and compiler-parameterization 
time techniques are especially applicable, since their application 
tailors the compiler to the applications in the training set, which 
can be chosen to consist of exactly the applications of interest.  
The schedule-time technique also has potential applicability in the 
context of PCAs, but execution time predictability must be 
addressed before it is practical for use in operational 
environments. 
In order to integrate the Finch Metaoptimization Framework with 
the Scale compiler used in the TRIPS toolchain, several 
modifications to the compiler were implemented.  Immediately 
after parsing its command line arguments, the modified version of 
Scale invokes a Finch method that prepares for the evaluation of a 
candidate priority function generated by the evolutionary 
algorithm.  Also, the method that is normally used to compute the 
priority function that is built into Scale was modified to instead 
invoke a second Finch method that evaluates the candidate 
priority function.  Finally, immediately before terminating, the 
modified version of Scale invokes a third Finch method to finalize 
the evaluation of the candidate priority function. 
Computational experiments were performed to evaluate the 
effectiveness of Finch in evolving in-lining priority functions for 
Scale.  The experiments were executed on the Rose-Hulman 
Institute of Technology Beowulf cluster.  This required porting 
both the TRIPS toolchain and Finch to the cluster, as well as 
modifying Finch’s interprocessor communication to make use of 
the Message Passing Interface (MPI) standard.  The average 
number of instructions per generated hyperblock was used as the 
primary metric for these experiments, based in part on 
observations by the TRIPS developers that maximizing this metric 
is essential to achieving good performance.  A number of 
applications were considered as possible inputs to Scale for the 
experiments.  The “Ground Moving Target Indicator (GMTI),” 
was chosen because for the unmodified version of Scale the 
chosen metric varies gradually with the allowable code bloat 
parameter.  Using small population sizes and small generation 
counts, the software occasionally obtains values of the metric 
equal to that produced by the unmodified compiler, but not 
reliably.  Each experiment requires between three and four hours 
of wall clock time using 17 processors. 
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5. Recommendations 
The limited success of the computational experiments described in 
this report should be interpreted in light of the fact that by genetic 
programming standards, the population size and generation count 
for these experiments are both extremely small.  It is likely that 
larger values of either parameter would result in the identification 
of more effective in-lining priority functions.  Furthermore, each 
experiment required less than four hours to execute, so using 
larger population sizes and generation counts would not result in 
prohibitive execution times. 
This effort has laid the groundwork for the development of hybrid 
evolutionary algorithms that exploit both the global search 
properties of evolutionary computation and the effectiveness of 
the existing compiler optimization algorithms.  Future research is 
needed in a number of areas: 

• Perform additional computational experiments related to 
TRIPS in-lining, as well as similar experiments for 
other compiler optimizations involving priority 
functions (e.g. loop unrolling).  These experiments can 
be completed without further modification of Finch.  
The advantage of those kinds of optimizations is that 
they have relatively direct impact on the formation of 
hyperblocks (which is where the greatest impact on 
performance can be made).  The limitation is that they 
explore relatively small parts of the space of assembly 
language programs.   

• Explore larger areas of the space of TRIPS assembly 
language programs by modifying Scale so that a Finch-
optimized priority function controls the building of 
hyperblocks. This could be done in a few different 
ways. The most promising of these is modifying the 
control flow graph (CFG) creation function so that it 
consults the finch-optimized priority function. This 
would allow Finch to change the CFG so that it will 
make “better” hyperblocks, since the fitness function 
uses a heuristic that only takes into account the average 
number of instructions per hyperblock. 

• The spatial distribution of an EA across a tile-based 
architecture to provide dynamic performance 
optimization still merits investigation.   
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