
Metaoptimization of the In-lining Priority Function for a
Compiler Targeting a Polymorphous Computing

Architecture
 Laurence D. Merkle

Rose-Hulman Institute of Technology
5500 Wabash Ave., CM-103

Terre Haute, IN 47803
(812) 877-8474

l.merkle@ieee.org

ABSTRACT
Leading polymorphous computing architecture (PCA) efforts
include the Raw Architecture Workstation (Raw) and the Tera-op
Reliable and Intelligently Adaptive Processing System (TRIPS),
both of which are tile-based. The Raw toolchain places
responsibility for program decomposition on the programmer, but
the TRIPS toolchain automatically generates hyperblocks and
allocates them to processing elements. This report identifies
evolutionary computation (EC) techniques that enable and that are
enabled by PCA technology, focusing on application of EC in
enhancing the effectiveness of the TRIPS toolchain, including the
Scale compiler. In particular, computational experiments are
described that investigate the application of genetic programming
to the meta-optimization of the priority function used to increase
the number of instructions per hyperblock in the in-lining
optimization phase of Scale. Results suggest continued
experimentation with larger population sizes and more
generations.

Categories and Subject Descriptors
D.3.4 [Programming Languages]: Processors – compilers,
optimization. I.2.8 [Artificial Intelligence]: Problem Solving,
Control Methods, and Search – heuristic methods.

General Terms
Algorithms, Performance, Experimentation.

Keywords
Evolutionary computation, polymorphous computing
architectures, compiler optimization.

1. INTRODUCTION
Polymorphous computing architectures (PCAs) represent a

revolutionary approach to computing systems that seeks to
provide processing capabilities that are both amenable to dynamic
optimization as the application load changes and scalable with
technology advances. Leading efforts achieve dynamic
responsiveness and scalability through the use of tile-based

architectures of some variety. Two of those efforts have direct
relevance to this effort: the Raw Architecture Workstation (Raw)
and the Tera-op Reliable and Intelligently Adaptive Processing
System (TRIPS).

There is considerable potential for even better performance
through the development of architecture-specific optimizations.
Evolutionary computation (EC) is a maturing field which centers
on the study of evolutionary algorithms (EAs) – algorithms that
are inspired by principles and theories of natural evolution – of
which genetic algorithms are the best publicized example. This
effort began the exploration of the use of EC techniques that
enable and are enabled by PCA technology.

Because of their population-based nature, EC techniques are
amenable to a rich variety of implementations on parallel and
distributed architectures and scale very well with processor count.
Much of the research in this area carries over directly to their
implementation on tile-based PCAs. As such, EC techniques
could be distributed spatially across a tile-based architecture to
provide dynamic performance optimization. As a preliminary
step towards this goal, island model and farming model parallel
EA implementations for both the Raw and TRIPS architectures
were designed and implemented.

The primary goal of the effort was to develop versions of
both the Raw and TRIPS compilers that combine EC techniques
for robust global search of the schedule space with the compilers’
existing algorithms for efficient local search. However, in the
process of developing the Raw implementations of the parallel
EAs, it was determined that the Raw toolchain essentially treats
each tile independently, thereby requiring the programmer to
decompose the application and map the components to the tiles.
Creating an automatic decomposition tool from scratch was not
possible within the timeframe of this project, so subsequent effort
was focused on the TRIPS architecture.

The most important technical accomplishments under this
effort are as follows:

• Gained familiarity with Raw and TRIPS toolchains

• Implemented simple EAs for the Raw and TRIPS
architectures, and evaluated the implementations using a Raw
handheld board installed on a Linux workstation and TRIPS
architecture simulator software

• Identified several classes of methods for the application
of EC in enhancing the effectiveness of the Raw and TRIPS

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
GECCO’08, July 12–16, 2008, Atlanta, Georgia, USA.
Copyright 2008 ACM 978-1-60558-131-6/08/07...$5.00.

1921

toolchains; selected general method for use in enhancing TRIPS
toolchain

• Installed the Finch Meta-Optimization Framework,
which uses “machine learning techniques to automatically search
for effective compiler heuristics.”

• Obtained preliminary results in application of Finch to
optimization of in-lining priority heuristic used by the TRIPS
compiler (8% reduction in static ratio of hyberblocks to
instructions per hyberblock)

• Verified through a single processor computational
experiment on a nontrivial test case that parallel computation will
be required in order to obtain meaningful data about the
effectiveness of EA-based optimization of TRIPS compiler
heuristics

• Determined that the Ground Moving Target Indicator
(GMTI) benchmark provides a suitable test case for EA-based
optimization of TRIPS compiler heuristics, in that the
effectiveness of function in-lining varies gradually with the code
bloat size parameter for this benchmark.

• Implemented a parallel version of Finch on a Beowulf
cluster using the Message Passing Interface (MPI).

• Completed a 17-processor computational experiment
applying Finch to the optimization of the TRIPS in-lining priority
heuristic using the GMTI benchmark as the test case.

The remainder of this section provides background information on
the most relevant aspects of polymorphous computing
architectures, compilers, and evolutionary computation. Section 2
describes the methods used in this effort, and the results of the
research are presented and discussed in Section 3. The remaining
sections present conclusions (Section 4), recommendations
(Section 5) and references (Section 6).

1.1 Polymorphous Computing Architectures
Current computing systems are designed to support fixed,
idealized application loads, and their performance inevitably
suffers when the actual load doesn’t match the idealized load for
which they were designed. Also, as manufacturing processes for
integrated circuits advance and we approach the fundamental
limitations of silicon technology, wire delays are becoming more
significant relative to gate delays. PCAs represent a revolutionary
approach to computing systems that seeks to provide processing
capabilities that are both amenable to dynamic optimization as the
application load changes and scalable with technology advances.
Leading efforts in PCA research include the Raw microprocessor
under development at the Massachusetts Institute of Technology
and the TRIPS architecture project at the University of Texas at
Austin. Both of these efforts achieve dynamic responsiveness and
scalability through the use of tile-based architectures of some
variety.

1.1.1 Raw
MIT researchers argue that we must reconsider our idea of
machine instructions to include signal routing information along
with the usual functional unit control information.[1] The Raw
microprocessor makes this possible, and has been demonstrated to
provide two orders of magnitude better performance than
traditional processors on certain applications. However,
optimization of the routing information places an additional
burden on the compiler. Compiler enhancements implemented

just prior to the initiation of this research resulted in code with
speed and tile usage that typically come close to hand-customized
code [10], but independent evaluations resulted in only two thirds
of the theoretically possible efficiency, suggesting that further
optimization is possible [9].

1.1.2 TRIPS
Researchers at the University of Texas Austin also suggest a new
paradigm for machine instructions, illustrated by their TRIPS
architecture [4]. They advocate the adoption of Explicit Data
Graph Execution (EDGE) architectures, in which “the hardware
delivers a producer instruction’s output directly as an input to a
consumer instruction,” thereby eliminating most of the expensive
logic that has found its way into architecture design over the past
two decades. In addition to the usual requirements, such as
identifying blocks of instructions containing no branches, a
compiler targeting such an architecture must be able to map each
such block to a tile for execution, and then map each operation in
the block to a processing element. These spatial scheduling
mappings affect both concurrency and communications delays,
and thus result in a difficult multicriteria optimization problem.
The greedy approximation algorithm employed by the TRIPS
compiler prior to the initiation of this research results in code that
is highly un-optimized and bloated, which suggests an opportunity
to improve performance via a variety of optimization techniques
[3].

1.2 Compilers
In theoretical terms, the role of a compiler is to automatically
translate sentences from one language into sentences in another
language. By far the most familiar use of compilers, and the one
usually connoted by the use of that term, is in translating source
code (sentences in high-level programming languages) into object
code (sentences written in machine language, annotated to support
linking and relocation). Although it is usually hidden from the
user, it is common for the compiler to emit assembly language
code and then invoke an assembler to make the final translation to
object code.
Often the compilation process occurs on a computing system
based on the targeted architecture, but that is not always the case.
Cross compilers execute on one architecture and generate
executable programs for a different architecture, and are usually
the only option when targeting new architectures.
Implementations vary widely, but the translation process may be
conceived of as performing a sequence of operations including
lexical analysis, preprocessing, parsing, semantic analysis,
optimization1, and code emission. The first four of these result
implicitly or explicitly in an intermediate representation that is
independent of the target architecture, and as such are referred to
as the front end. The back end generates the object code, usually
after performing architecture-specific optimizations. Many
compilers also perform architecture-independent optimizations,
which can be thought of as occurring late in the front end, early in

1 As stated in the classic compiler textbook by Aho, Sethi, and

Ullman, [2] “the term ‘optimization’ is a misnomer because
there is rarely a guarantee that the resulting code is the best
possible.” In a nutshell, this is the precise reason to consider the
application of evolutionary algorithms as optimum-seeking
techniques in the compilation process.

1922

th
th

1
T
o
w
e
s
In
e
b
w
f
T
r
m
s
T
a
p
o
a
a
p

1
T
E
r
p
S
p
th
u
S
in
g
th
in
th
F
“
s
o
c
T
a
T
C
li
c
a

1
E
th
E
E
o
b
o

he back end, in
hereof.

1.2.1 In-linin
This research is p
of compilation,
whether or not
experiments so
substitution of th
n-lining can imp

eliminating the o
because it simpli
which is a major
for the TRIPS arc
The advantages
esulting bloat

managing this tr
specifiable fracti
This approach as
a subset of funct
problem is NP-c
or heuristic sol
available functio
and then in-line
possible without

1.2.2 Scale
The TRIPS proj
Experiments (Sc
esearch and inst

powerful, flexibl
Scale project c
performance cod
hrough the use

unrolling techniq
Scale consider
ndependently, a

given routine tog
he execution f
nvocation to the
he block is estim

Features current
“parsers for C, F
single assignm
optimizations, (P
code elimination
The high-level d
are shown in Fig
Tree (AST) expr
Control Flow Gr
ining, are appl

converted to S
additional optimi

1.3 Evolutio
EC is a maturing
hat are inspired

Exploiting the an
EAs have been u
optimization pro
be more scalable
optimization tec

n a separate mid

ng
primarily concer
regardless of th
they are archi
far have focu

he body of a fu
prove the efficie
overhead of the f
ifies control flow
r consideration i
chitecture.

of in-lining m
in the executa

radeoff is to co
ion of the code
ssigns the compi
tions to in-line.

complete, calling
ution. The st

ons on the basis
as many of the
exceeding the c

ject uses the S
cale) compilation
tructional tool to
le, and reusable
currently focuse
de for the TRI
e of advanced

ques.
rs each routi
as opposed to c
gether. The prio
frequency of t
e size of the rou
mated using its n
tly implemented

Fortran, and Java
ment form (SS

PRE, value num
, and constant pr

data flow aspects
gure 1. The par
ressed in Clef [
raph (CFG). Ce
ied to this rep

Static Single A
izations are appl

onary Comp
g field which ce

d by principles a
nalogy to the pri
used in a wide v
oblems. In this
e with respect t
chniques. Mor

ddle end, or in s

rned with the op
he end in which
itecture-specific.

used on in-linin
unction for a fun
ncy of the result
function invocati
w, it results in la
n generating eff

must be traded
able code. O
nstrain the code
size in the abs

iler the responsi
 The underlyin

g for an approxi
tandard solution
s of a heuristic
 most highly ra
ode bloat constr

Scalable Compil
n system, which

o support the dev
compilers [11].

es on the gen
IPS architecture

d in-lining and

ine invocation
considering all
ority function u
the basic block

utine. The execu
esting level.
d by the Scale
a byte-codes, ali
SA), a collec
mbering, copy p
ropagation).”
s of the Scale co
rser generates an
13], which is th
ertain optimizati
presentation. T
Assignment (SS
lied, including lo

putation
enters on the stu
and theories of
inciple of “survi
variety of both s
role, they have

to problem size
re generally, in

some combinatio

ptimization aspec
h they occur an
. Computation
ng, which is th
nction invocatio
ting executable b
ion. Furthermor
arger basic block
ficient executabl

d off against th
One approach f

e bloat to a use
sence of in-linin
ibility of choosin
g subset selectio
imation algorith
n is to rank th
priority functio

anked functions
raint.

ler for Analytic
h is intended as
velopment of mo
. Conversely, th
neration of hig
e, which it do

predicated loo

n for in-linin
invocations of

sed is the ratio
k containing th
ution frequency

e system inclu
ias analyses, stat
ction of scal
propagation, de

ompilation syste
n Abstract Synt

hen converted to
ions, including i
The CFG is th
SA) form befo
oop unrolling.

udy of algorithm
natural evolutio
ival of the fittest
tatic and dynam
been observed
than other glob

n analogy to th

on

cts
nd
nal
he

on.
by
re,
ks,
les

he
for
er-
ng.
ng
on

hm
he

on,
as

cal
s a
ore
he
gh

oes
op

ng
f a
of
he
of

de
tic
lar
ad

em
ax

o a
in-
en

ore

ms
on.
t,”

mic
to

bal
he

process
environ
in the e

Figure
ali.cs.u

1.3.1
Genetic
in whi
represe
represe
operato
efficien
facilitat
The sta
within
nodes.
replacin
generat

1.3.2
Becaus
reasona
architec
effort a
island m
each o
subpop
occasio
EA, ev
evaluat
system

1.4 F
As de
optimiz
calling
develop
applica
have be
compil
target a
decreas

ses by which
nments, EAs ena
execution enviro

e 1. Scale
umass.edu/Scale

Genetic Prog
c programming
ch the individu

entation is Lisp
ented as trees,
or and each lea
nt evaluation o
ting effective se
andard recombi
each individual

Various form
ng a randomly
ted one.

Parallel EAs
se EAs are po
able models for
ctures [5]. Of th
are the island m
model, the popu

of which is all
pulations evolve
onally migrate b
olution takes pla
tions are perfor
.

Finch
escribed above
zations often in
for approximat

pment of heuri
ations requires c
een tuned carefu
er is initially d
architectures evo
sed effectiveness

h whole spec
able software to

onment.

Data Flow
e)

gramming
(GP) is a form o

uals evolved are
p-like [7]. Sp
with each inte

af representing
of each candid
arch of the space
ination operator
and exchanges

ms of mutation
y selected subtr

s
opulation-based,
r the implemen
hese models, the
model and the f
ulation is decom
located to a pr
e independently
between populat
ace on a single p
rmed by the re

in the contex
nvolve underlyi
tion algorithms
istics that are
considerable effo
ully for the archi
developed and th
olve and become
s.

cies adapt to
o adapt to dynam

Diagram (h

of evolutionary c
e algorithms. Th
pecifically, algo
ernal node repr

an operand. T
date algorithm
e of algorithms.
r randomly sele
the subtrees roo

n are possible
ree with a new

 there are a
ntation of EAs
 two that are rele
farming model.

mposed into subp
rocessing eleme
y, except that
tions. In a farm

processor, except
emaining proces

xt of in-lining
ing NP-complet
or heuristic solu
effective acros

ort. Historically
itectures in use a
hen left unmod

e more complex,

o changing
mic changes

http://www-

computation
he standard
orithms are
esenting an
This allows
while still

ects a node
oted at those
, including

w randomly

number of
on parallel

evant to this
 Under the

populations,
ent. The
individuals

ming model
t that fitness
ssors in the

g, compiler
te problems
utions. The
ss a set of
y, heuristics
at the time a

dified as the
 resulting in

1923

In order to address this problem, researchers at MIT have
developed GP-based Meta-optimization software (a.k.a. Finch) to
automatically search the space of compiler heuristics [12]. The
system specifically targets those heuristics that are based on
priority functions such as the one described above in the context
of in-lining.
The flow of execution in an application of Finch to the
optimization of a compiler as it pertains to this effort is illustrated
in Figure 2. At a high level of abstraction, Finch executes a
standard evolutionary algorithm consisting of the steps labeled GP
Initialization, Fitness Evaluation, Evolution (application of
evolutionary operators), and GP Finalization. The individuals
being evolved are heuristic functions, and their evaluation is
performed by invoking a modified version of the compiler.

Figure 2. Finch Flow of Execution

During its own Compiler Initialization and Compiler Finalization
steps, the compiler performs calls back to Finch to initialize and
finalize its evaluation of the specific heuristic function under
consideration (Heuristic Initialization and Heuristic Finalization,
respectively). The primary purpose of the Heuristic Initialization
step is to create a configuration file that specifies the signature
(number and type of parameters) of the heuristic function. This
information is required during the Heuristic Execution step.

Most importantly from a conceptual perspective, the compiler
invokes Finch to execute the heuristic function. These steps are
labeled Compilation and Heuristic Execution in the figure.
Finally, Finch invokes an application-specific fitness evaluation to
evaluate the result of the compilation (not shown).

2. Methods, Assumptions, and Procedures
The first phase of the program consisted of completing literature
reviews related to the Raw and TRIPS architectures, obtaining
existing copies of the compilers and simulators, and verifying
their correct operation. The second phase consisted of developing
parallel EC implementations for both architectures. This directly
satisfied one of the objectives of the project. More importantly, it
facilitated deeper understanding of the architectures, as well as the
use of the compilers and the simulators. Given that
understanding, the next phase consisted of more completely
identifying and understanding the opportunities for optimization,
the algorithms used by the existing compilers, and their
implementations. In the fourth phase, we integrated an
evolutionary algorithm with the in-lining optimization algorithm
used by the existing TRIPS compiler. The final phase consisted
of empirically evaluating programs generated using the enhanced
compiler.

2.1 ISI’s Raw Workstation
Information Science Institute East (ISI-East) maintains the Raw
toolchain (e.g. compiler, simulator) and a Raw handheld board on
a LINUX workstation (crudo.east.isi.edu). With assistance from
Jinwoo Suh of ISI-East, the Raw toolchain was installed under the
researcher’s user accounts on crudo, and the correct installation
was verified by the completion of the tutorials included with the
Raw starsearch distribution, as well as the installation,
compilation, and simulation of a suite of benchmarks provide by
the Raw group.
Finally, several programs were developed from scratch that use
various features of the Raw architecture, including an island
model parallel EA. Collectively, these programs used both the
static and dynamic communication features of the devices. These
programs were simulated successfully using the Raw simulator
and executed on the Raw board connected to crudo.
In the process of implementing these programs it was determined
that the Raw toolchain places the parallel decomposition and
mapping responsibilities on the programmer. As explained above,
this limitation of the toolchain necessitated the focus of
subsequent effort entirely on the TRIPS architecture.

2.2 RHIT’s TRIPS Workstation
The a02 release of the TRIPS toolchain was installed on a Rose-
Hulman Institute of Technology Linux workstation (clive.cs.rose-
hulman.edu). A series of steps was taken to develop familiarity
with the TRIPS toolchain, intermediate language, and assembly
language:

• Correct installation of the software was verified by
compiling and simulating the torture tests that ship with
the TRIPS installer.

• The ability to perform edit-compile-simulation cycles
was verified by compiling and simulating minor
variations on the torture tests.

• The ability to develop TRIPS software from scratch was
verified. Specifically, two different versions of a simple

1924

evolutionary algorithm were compiled and simulated.
The researchers were pleasantly surprised by the level
of compatibility between the TRIPS compiler and gcc.

• The ability to develop and simulate both TRIPS
Intermediate Language (TIL) and TRIPS Assembly
Language (TASL) programs from scratch was verified,
progressing from simple programs to programs that
included branching, function calls, and text output.

• Comparisons were made between hand coded and
compiler generated TRIPS assembly language (TASL),
along with the TRIPS Intermediate Language (TIL)
resulting in both cases. The comparison was performed
using a pseudorandom number generator based on a 32-
bit linear feedback shift register. The program was first
hand-coded in TASL, and then an equivalent program
was implemented using C. The TASL and TIL
generated by the TRIPS toolchain (using various
optimizations) was compared to the hand-coded
versions.

• The ability to generate modified versions of the
executables in the TRIPS toolchain was verified.

2.3 Classes of EC in Compilation Methods
Several classes of methods for the application of EC in enhancing
compiler effectiveness have been identified. These methods are
complementary, rather than mutually exclusive. They include:

• Compiler-algorithm-time. In this method, some
variation of EC is used to evolve algorithms used within
the compiler. This is the approach used by the Finch
Meta Optimization tool. Rice University’s technique of
evolving the order of application of compiler
optimizations also fits in this category [6]. This method
has the advantage that the EA executes off-line (in the
sense that it does not execute during the development of
an application). Thus, compilation time will not
necessarily increase. Also, the same source code will
always be compiled to the same executable, which will
always be scheduled in the same way. However, this
method must be trained on some set of applications, and
may result in a compiler that is less effective on
applications outside of the training set.

• Compiler-parameterization-time. In this method, one or
more EAs are used to evolve parameters of algorithms
used within the existing compiler. An example of this
approach is the Acovea tool, in which compiler
optimization flags are chosen by an EA [8]. This
method shares the advantages and disadvantages of the
compiler-algorithm-time method. Relative to that
method, this one has the advantage that the search
spaces on which the EAs operate are more structured.
The disadvantage is that the optimal parameterizations
of existing algorithms may be less effective than yet-to-
be identified algorithms.

• Compile-time. In this method, one or more EAs are
included in the compiler. An advantage of this
approach is that all of the details of the application are
available to the EA, so there is some probability of
finding the optimal machine instruction sequence and
the optimal execution schedule. However, the same

source code will produce different executables each
time it is compiled, which would be a major
disadvantage in a production environment.

• Schedule-time. This idea provided the original
motivation for this effort. In this method, an EA is
included in the scheduler. An advantage of this
approach is that the execution time of candidate
schedules can be modeled exactly, so the quality of the
schedule is determined entirely by the effectiveness of
the EA. However, the EA has no influence on the
effectiveness of the compilation process. Perhaps
more importantly, the same executable is scheduled
differently each time it is executed, which may be a
major disadvantage in an application development
environment.

2.4 Integration of Finch and TRIPS
Toolchain
With this groundwork laid, effort was then focused on the
application of the Finch metaoptimization tool to the TRIPS
toolchain, and specifically to the Scale compiler targeting the
TRIPS architecture. Integration of Finch into any tool requires
the integration of three library calls into the tool, corresponding to
the three call backs illustrated in Figure 2. The directory structure
of Scale is shown in Figure 3. In order to integrate Finch with
Scale, the following library calls were implemented:

Figure 3. Scale Directory Structure (http://www-
ali.cs.umass.edu/Scale)

• Immediately after parsing the command line arguments,
the compile() method of test/Scale.java
invokes Finch.initializeLib(). This call
initializes Finch’s evaluation of specific heuristic
functions under consideration.

• The getPriority() method of
score/trans/Inlining.java invokes

1925

Finch.evaluateReal(doubleArgs,
boolArgs). This call causes Finch to evaluate
candidate heuristic functions.

• Immediately before terminating the execution of Scale,
the compile() method invokes
Finch.finalizeLib(). This call finalizes Finch’s
evaluation of candidate heuristic functions.

The arguments passed to Finch.evaluateReal() are

• the largest allowable size of the executable

• the current size of the executable

• the level of purity2 of the routine

• the size of the routine

• the number of AST children of this node (which is
always 1)

• the number of function pointers in the body of the
routine

• the number of routines that call this routine

An attempt was made to experimentally evaluate the effectiveness
of Finch for optimizing the in-lining priority function in the
TRIPS compiler, using an extremely small population size and
generation count, and a modestly sized program as input to the
compiler. However, this experiment did not complete given six
CPU-days of execution time. It was thus concluded that
multiprocessor environments would be required to obtain
meaningful experimental results.

2.5 RHIT’s TRIPS Clusters
The Finch metaoptimization tool was installed on a cluster of
Windows 2000 workstations (in the Rose-Hulman Institute of
Technology Department of Computer Science and Software
Engineering OS/Security laboratory). This cluster was chosen
because it provided the Network File System (NFS) and Portable
Batch System (PBS) services, both of which are required by the
downloadable version of Finch. Correct installation of Finch was
verified using the provided test cases, after which the TRIPS
toolchain was installed on the cluster and integrated with Finch as
described above. A single computational experiment using this
cluster produced an in-lining priority function that resulted in an
8% reduction in the static ratio of hyberblocks to instructions per
hyberblock over the set of test programs employed.
The workstations that made up the OS/Security laboratory cluster
are intended for student use and are re-imaged periodically as
different courses make use of the laboratory. Therefore, it was
necessary to port both the TRIPS toolchain and Finch to the Rose-
Hulman Institute of Technology “Beowulf” Linux cluster
(brain.rose-hulman.edu). However, the Beowulf cluster does not
provide NFS and PBS, so it was also necessary to modify Finch’s
interprocessor communication to make use of the Message
Passing Interface (MPI) standard, which is supported on the
cluster.

2 Scale has seven levels of “purity” associated with various

combinations of the following characteristics: side effects,
global variable references, and modification of memory
locations referenced by arguments.

2.6 Metrics
Hardware execution of TRIPS applications was not an option in
this effort, so the effectiveness of the techniques developed in this
effort is evaluated on the basis of proxies for execution time of
selected applications. Individual applications developed in the
process of installing and verifying the TRIPS toolchain were
evaluated on the basis of both detailed processor timing
simulation (tsim_proc) and architectural simulation
(tsim_arch). The former is cycle-accurate, while the latter
reports the count of hyperblocks executed (as well as other
statistics). Because the TRIPS architecture executes hyperblocks
atomically, total execution time is closely related to the number of
hyperblocks executed.
Neither the detailed processor timing simulation nor the
architectural simulation is computationally efficient enough for
repeated use as part of an EA’s fitness evaluation function. As
such, further approximations to execution time were made based
on static evaluations of the executables produced by the EA. One
approximation used was the count of hyperblocks in the
executable, which is roughly proportional to the hyperblock
execution count for the benchmarks used in this effort. Another
was the average number of instructions per hyperblock, which is
inversely related to hyperblock count for fixed instruction counts.
This was chosen as the primary metric for this effort, based on
observations by the TRIPS developers that the key to good
performance is maximizing the number of instructions per
hyperblock.

3. Results and Discussion
Several established benchmarks were considered, each of which
contains multiple functions of varying size and invocation
frequency. Each of the candidate benchmarks was compiled to
TRIPS Intermediate Language (TIL) using a range of values for
the allowable code bloat, and the fitness of the resulting TIL
evaluated. Finch seeks to minimize the provided fitness function.
Thus, for these experiments and the others discussed in this
section, fitness was computed by subtracting the average number
of instructions per hyperblock from the number of possible
instructions per hyperblock (128).
One of the candidate benchmarks, the “Ground Moving Target
Indicator (GMTI),” yielded a fitness that varied gradually with
allowable code bloat (see Figure 4), and thus represents a test case
against which candidate in-lining priority functions can be ranked.
None of the SPEC_CPU2000v1.3 benchmarks exhibited this
property.
A series of computational experiments applying Finch in the
generation of in-lining heuristic functions for the Scale compiler
and using the GMTI benchmark as a test case was executed on the
RHIT Beowulf cluster using 17 processors. Experiments
performed during the development of the software yielded fitness
values equal to that produced by the unmodified compiler, which
is assumed to be globally optimal. However, none of the
experiments performed on the final version of the software did.

1926

Figure 4. In-lining effectiveness as function of allowable code
bloat for the unmodified Scale compiler and the GMTI
benchmark.

For each generation of each experiment, the average number of
instructions per hyperblock resulting from the use of each
candidate priority function was calculated. The maximum, mean,
and minimum of this value in a representative experiment are
shown as a function of generation number in Figure 5.

Figure 5. Representative results of Finch Meta-optimization
of Scale in-lining, using the GMTI benchmark, a maximum
allowable code bloat of 10%, a population size of 64, a
maximum expression height of 4, and a mortality rate of 99%.
Several small improvements in the best heuristic function occur
over the course of execution, resulting in an overall increase in
average instructions per hyperblock of approximately 0.5%. The
positive trend in the mean of the average instructions per
hyperblock is easier to see, indicating that recombining features of
good candidate priority functions tends to result in the
construction of better candidate priority functions.

4. Conclusions
At the outset of this effort, the primary goal was to enhance the
scheduling of instructions for both the Raw and TRIPS
architectures by modifying their compilers to combine
evolutionary computation (EC) techniques with the existing
algorithms. Early on, it became apparent that this goal was not
feasible with respect to the Raw architecture because the burden
of program decomposition and mapping currently rests on the
programmer. Thus, the remainder of the effort focused on the
TRIPS architecture.
Four general techniques were identified for the application of EC
in enhancing compiler effectiveness. The Finch Meta-

optimization Framework implementation of the compiler-
algorithm-time technique was adopted for this effort. Other
techniques include compiler-parameterization-time, compile-time,
and schedule-time. Tradeoff considerations among these
techniques include their impact on execution time, compilation
time, compiler construction time, reproducibility of execution,
reproducibility of compilation, and breadth of application space
targeted.
Given the advantages and disadvantages of each of the techniques,
various combinations are appropriate in specific situations. One
of the motivations for PCAs is to achieve near-optimal
performance on each mission-critical application in a dynamic
workload. For such an application, it is reasonable to assume that
it is worthwhile to invest considerable offline computational effort
in order to obtain improvements in online performance. As such,
the compiler-algorithm time, compiler-parameterization time, and
compile-time techniques should all be considered. Furthermore,
assuming that the set of critical applications in the workload is
small, the compiler-algorithm time and compiler-parameterization
time techniques are especially applicable, since their application
tailors the compiler to the applications in the training set, which
can be chosen to consist of exactly the applications of interest.
The schedule-time technique also has potential applicability in the
context of PCAs, but execution time predictability must be
addressed before it is practical for use in operational
environments.
In order to integrate the Finch Metaoptimization Framework with
the Scale compiler used in the TRIPS toolchain, several
modifications to the compiler were implemented. Immediately
after parsing its command line arguments, the modified version of
Scale invokes a Finch method that prepares for the evaluation of a
candidate priority function generated by the evolutionary
algorithm. Also, the method that is normally used to compute the
priority function that is built into Scale was modified to instead
invoke a second Finch method that evaluates the candidate
priority function. Finally, immediately before terminating, the
modified version of Scale invokes a third Finch method to finalize
the evaluation of the candidate priority function.
Computational experiments were performed to evaluate the
effectiveness of Finch in evolving in-lining priority functions for
Scale. The experiments were executed on the Rose-Hulman
Institute of Technology Beowulf cluster. This required porting
both the TRIPS toolchain and Finch to the cluster, as well as
modifying Finch’s interprocessor communication to make use of
the Message Passing Interface (MPI) standard. The average
number of instructions per generated hyperblock was used as the
primary metric for these experiments, based in part on
observations by the TRIPS developers that maximizing this metric
is essential to achieving good performance. A number of
applications were considered as possible inputs to Scale for the
experiments. The “Ground Moving Target Indicator (GMTI),”
was chosen because for the unmodified version of Scale the
chosen metric varies gradually with the allowable code bloat
parameter. Using small population sizes and small generation
counts, the software occasionally obtains values of the metric
equal to that produced by the unmodified compiler, but not
reliably. Each experiment requires between three and four hours
of wall clock time using 17 processors.

1927

5. Recommendations
The limited success of the computational experiments described in
this report should be interpreted in light of the fact that by genetic
programming standards, the population size and generation count
for these experiments are both extremely small. It is likely that
larger values of either parameter would result in the identification
of more effective in-lining priority functions. Furthermore, each
experiment required less than four hours to execute, so using
larger population sizes and generation counts would not result in
prohibitive execution times.
This effort has laid the groundwork for the development of hybrid
evolutionary algorithms that exploit both the global search
properties of evolutionary computation and the effectiveness of
the existing compiler optimization algorithms. Future research is
needed in a number of areas:

• Perform additional computational experiments related to
TRIPS in-lining, as well as similar experiments for
other compiler optimizations involving priority
functions (e.g. loop unrolling). These experiments can
be completed without further modification of Finch.
The advantage of those kinds of optimizations is that
they have relatively direct impact on the formation of
hyperblocks (which is where the greatest impact on
performance can be made). The limitation is that they
explore relatively small parts of the space of assembly
language programs.

• Explore larger areas of the space of TRIPS assembly
language programs by modifying Scale so that a Finch-
optimized priority function controls the building of
hyperblocks. This could be done in a few different
ways. The most promising of these is modifying the
control flow graph (CFG) creation function so that it
consults the finch-optimized priority function. This
would allow Finch to change the CFG so that it will
make “better” hyperblocks, since the fitness function
uses a heuristic that only takes into account the average
number of instructions per hyperblock.

• The spatial distribution of an EA across a tile-based
architecture to provide dynamic performance
optimization still merits investigation.

6. ACKNOWLEDGMENTS
This work was supported by the Advanced Computing
Architectures Branch, Information Directorate, Air Force
Research Laboratory, Air Force Materiel Command, USAF, under
grant FA8750-05-1-0019. The Principal Investigator was assisted
in this effort by Tyler Hicks-Wright, Matt Ellis, and Mike
McClurg. The team is indebted to several other individuals for
their help in establishing the infrastructure necessary to perform
the work. Jinwoo Suh of Information Sciences Institute East
provided user accounts on ISI-East’s Raw workstation, as well as
guidance and assistance in installing and using the Raw toolchain
and using the Raw handheld board. Doug Burger and Steve
Kecklin of University of Texas Austin provided access to the

TRIPS toolchain and made themselves available for discussions
about the compiler’s optimization algorithms at several meetings
of the Polymorphous Computing Architectures Principal
Investigators. Numerous other individuals within both
organizations answered questions and provided assistance at
various times during the effort.

7. REFERENCES
[1] Agarwal, A. (1999, August). Raw Computation. Scientific

American .
[2] Aho, A. V., Sethi, R., & Ullman, J. D. (1986). Compilers:

Principles, Techniques, and Tools. Addison-Wesley.
[3] Burger, D., Keckler, S., McKinley, K., Dahlin, M., John, L.,

Lin, C., et al. (2004, July). Scaling to the End of Silicon with
EDGE Architectures. IEEE Computer , pp. 44-55.

[4] Burger, D., Keckler, S., McKinley, K., Lin, C., Dahlin, M.,
Nowka, K., et al. (2004). TRIPS: Tera-op Reliable
Intelligently adaptive Processing System. Monterey, CA:
DARPA Polymorphous Computing Architectures Program
PI Meeting.

[5] Cantú-Paz, E. (1998). A Survey of Parallel Genetic
Algorithms. http://citeseer.ist.psu.edu/155991.html.

[6] Cooper, K., Grosul, A., Harvey, T., Reeves, S., Subramanian,
D., Torczon, L., et al. (2004). Exploring the Structure of the
Space of Compilation Sequences Using Randominzed Search
Algorithms. 2004 LACSI Symposium. Santa Fe, NM.

[7] Koza, J. R. (1992). Genetic Programming: On the
Programming of Computers by Means of Natural Selection.
MIT Press.

[8] Ladd, S. R. (1996). Acovea Overview. Retrieved May 14,
2007, from Coyote Gulch Productions:
http://www.coyotegulch.com/products/acovea/

[9] Lebak, J. (2004). Application Analysis, Kernel Benchmarks,
and PCA Testbed Update. Monterey, CA: DARPA
Polymorphous Computing Architectures Program PI
Meeting.

[10] Rabbah, R. M., Agarwal, A., & Amarasinghe, S. (2004).
Update on Raw and StreamIt. Monterey, CA: DARPA
Polymorphous Computing Architectures Program PI
Meeting.

[11] Scale Compiler Group. (n.d.). Retrieved May 14, 2007, from
Scale Home Page: http://www-ali.cs.umass.edu/Scale

[12] Stephenson, M., Martin, M., O'Reilly, U., & Amarasinghe, S.
(2003). Meta Optimization: Improving Compiler Heuristics
with Machine Learning. Proceedings of the SIGPLAN '03
Conference on Programming Language Design and
Implementation. San Diego, CA.

[13] Weaver, G. E., Cahoon, B. D., Moss, J. E., McKinley, K. S.,
Wright, E. J., & Burrill, J. H. (1997). The Common Language
Encoding Form (CLEF) Design Document. Amherst, MA:
University of Massachusetts at Amherst.

1928

