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ABSTRACT

An Agent Based Model was used to explore the effects of
spatial social networks and of different means of horizon-
tal information transmission over cooperation when groups
provide protection against predation. We tested two ways to
calculate transition probabilities governing the information
diffusion of the majority’s opinion: using fixed rates and us-
ing a rate proportional to group’ sizes. This exploration was
done by observing three fixed rates for the effectiveness of
information diffusion of the majority’s opinion. Our results
show that spatial structures affect the cooperation dynam-
ics. Particularly in Small World Networks, cooperation is
more sensible to information transmission. The type of hor-
izontal information transmission is less important as long as
over 50% of individuals follow the majority rule.
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1. INTRODUCTION
Biologists, economists, computer scientists and physicists

have all worked to further our understanding of human and
animal cooperation. Yet different premises underlay these
efforts. The main difference among them is the assump-
tion that social behavior arrived through biological evolu-
tion among animals, and that culture and rational decision-
making is a principal driver of the evolution of coopera-
tion and sociality among humans [23]. Human cooperation
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seems to be molded by both, cultural and biological forces
[13]. Using theories for biological evolution has provided a
fertile ground to study the dynamics of processes governed
by cultural evolution, such as human cooperation [8] and
economics [17]

There exist important differences between the dynamics
of cultural evolution [23] and biological evolution [19]. Al-
though both processes are often mixed up and lumped to-
gether when studying the evolution of cooperation, as done
in [20]. One important feature differentiating systems driven
by biological (BE) and cultural evolution (CE) is the di-
rection of information’s transmission. The transmission of
information in BE is vertical (heredity), and that in CE is
horizontal (imitation of behavior). This feature affects the
pattern and the speed of information transmission, and is
sufficient to explain important differences in the dynamics
between both types of evolution [12].

Several mechanisms have been proposed to explain the
emergence and maintenance of cooperation in biological terms.
Hamilton [6] explains cooperation between relatives through
“kin selection”; in wich donor and recipient of a coopera-
tive action are genetic relatives. Between the mechanisms
that have been proposed to explain cooperation between un-
related individuals we have: Direct reciprocity [1, 24], in-
direct reciprocity [18], altruistic punishment [5] and direct
economics forces favoring cooperative groups [14].

The study of the effects of spatiality over cooperation was
introduced by Nowak and May [21]. They showed how co-
operation could emerge in a population of strategies without
memory when individual’s relations conform a spatial struc-
ture. After Nowak and May’s work, cooperation by individ-
uals occupying spatial positions in lattices or networks that
interact with their neighbors has been studied for the pris-
oner dilemma by several authors [9, 10, 16, 22]. They showed
that structured populations help cooperation to evolve and
maintain under certain conditions.

In this work we want to explore the effects of spatiality
and the intensity of the horizontal information transmission
over cooperation dynamics. To do so, we modify a one-
dimensional spatial model proposed by Cipriani and Jaffe
[3] in order to incorporate different spatial structures in the
form of complex networks. Our model is based on the well-
known “selfish herd” concept [7] and assume that cultural
and biological dynamics are driven by natural selection of
the phenotypes. This model allows us to study the differ-
ences between the dynamics of cooperative, group-forming
individuals subject to a selective pressure (predation).
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2. THE MODEL
We construct an agent-based model for the study of coop-

eration dynamics based on Hamilton’s “selfish herd”[7]. The
model simulates a population of interacting individuals with
different social roles and different information transmission
directions in environments with different spatial structure.

This model was initially proposed by Cipriani and Jaffe [3]
using a cellular automaton. In this formulation, the “selfish
herd” is implemented by means of the importance of group
formation. In particular, group formation provides protec-
tion against predation.

Spatial structures (that represent spatial relations or con-
tact between individuals) are modeled using graphs. The
vertexes of these graphs can be occupied by individuals of
any species or be empty. The phenotype of an individual
determines its role: cooperators and non-cooperators. The
neighbors of an individual in the graph form the group of
this individual. These graphs are initially empty and are
created at the beginning of the simulations, through the
createWorld() function, as shown in Algorithm 1. The
structure of the graph remains fixed throughout the sim-
ulation execution.

Algorithm 1 Main simulation cycle

1: createWorld(worldSize)
2: populateWorld()
3: for t = 0 to numIterations do
4: for each agent do
5: agentStep()
6: end for
7: reapDeadAgents()
8: repopulateWorld()
9: end for

Initial population is created using populateWorld(). This
function fills each vertex with an agent, and the probability
for each agent to belongs to each specie, cooperators or non-
cooperators is given by the parameters pcoIni y pnCoIni
respectively.

The procedure agentStep(), see Algorithm 2, implements
the main activities of the agents: horizontal information
transmission (in the form of imitation), and selective pres-
sures (in the form of predation). We will detailed this pro-
cedure on the next paragraphs.

The reapAgents() procedure is in charge of removing dead
agents from the world. Re-population, detailed in Algorithm
3, is done filling empty world’ spaces (graph’s vertexes) using
the initial proportion of each individual’s kind.

Algorithm 2 agentStep

1: neigh← getMyNeighbors()
2: nNeighs← count(neights)
3: nNeighCoops← countCooperators(neigh)
4: dead← predate(nNeigCoops)
5: if not dead then
6: naturalMortality()
7: end if
8: if not dead and CT then
9: applyMajorityRule()

10: end if

Now we will describe the agentStep(), Algorithm 2 pro-
cedure in more detail. The function getMyNeighbors() ob-
tains the direct neighbors of the agent, then we count the
cooperators. When a cooperator agent is inside a group of
cooperators (two or more of their neighbors are cooperators)
it receive a protection against predations, i.e., its predation
probability is set to pCo, while the predation probability
for “isolated”cooperator agents (pCo0n) and no-cooperators
agents (pNCo) are bigger.

Then, if the agent is still alive we checked if it should not
be dead by natural reasons, as aging. This check is done for
all kinds of agents but the mortalityRate could be different
between cooperators and non-cooperators. This difference
allows establishing the “cooperation cost”, by making the
mortalityRate of non-cooperators zero, and the giving to
cooperators a mortalityRate equals to the desired coopera-
tion cost.

The majority rule is implemented here to simulate the hor-
izontal information transmission (H). It assumes that indi-
viduals had a given probability pT of imitating the behavior
of their neighbors. The majority rule used in our model
uses the simple majority concept. If strictly more than half
of the neighbors of an agent are of a different kind, this agent
changes its behavior (cooperate or not) with probability pT .

Algorithm 3 World Repopulate

1: pco ← pcoIni //initial proportion of cooperators
2: pnCo ← pnCoIni // initial proportion of non cooperators
3: for each empty node do
4: create a new agent on node, cooperator with proba-

bility pco or non cooperator with probability pnCo

5: end for

3. EXPERIMENTS
We made the implementation of the proposed model in

C++. This implementation allows structured environment
for populations, in the form of complex networks, imple-
mented as bi-bidirectional graphs. Simulations were done
over populations of 104 individuals during 102 iterations.

At the beginning of simulations the graphs’ vertexes were
populated by cooperators and non-cooperator, using a prob-
ability of 0.5 for each. For non-cooperators and alone co-
operators the rates for predation were pNCo = 0.8 and
pCo0n = 0.8. For cooperators in groups the predation rate
was pGCo = 0.2 . The mortality rate, used modeling the
cost of cooperation was 0 for non-cooperators and variable
(into each experiment series) for cooperators. For all simula-
tions the “fitness differential”was 0.6. The “Fitness differen-
tial” is the difference between the predation rate of isolated
individuals and that for cooperators being part of a group
of cooperators.

For each one of the spatial structures studied (Grids 2D,
Random Graphs[4], Small-World Networks[25] and Scale Free
Networks[2]) we considered two modes of horizontal informa-
tion transmission: one using fixed rates (using three different
rates: pT ∈ {0, 0.5, 1}) and one where transmission rate is
proportional to the amount of neighbors of different kind.
The three fixed rates plus the proportional rate gave us four
scenarios of horizontal transmission.

In all scenarios production of new agents for was uni-
form (50/50), and the rate pT determined the probability
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an agent would imitate the behavior (cooperate or not) of
the majority of its neighbors.

Our experiments consisted in 4 series of simulations, cor-
responding to the described scenarios, over each specific spa-
tial structure. In each series (21 simulations) we varied the
cost of cooperation (mortality rate of cooperators) in steps
of 0.05, to cover the interval between 0 and 1. Each experi-
ment was run 20 times to get the average of data.

For each network we set its parameters to get the same
mean degree. We choose mean degree 4 in order to make
a “fair” comparison between networks and with 2D grids.
These parameters are presented in Table 1.

Graph Parameter’s names and values

Random Graph
size = 10000
edge probabilty = 0.0002

Small World Graph
size = 10000
connections by direction = 2
rewiring probability = 0.01

Scale Free Network
size = 10000
m = 2

Table 1: Networks’ parameters.

Each network structure possess a set of statistical prop-
erties that allow explain their behavior. Even though sig-
nificant properties are still been developed, the most stud-
ied are: the mean geodesic path, the clustering coefficient,
the degree distribution, the network resilience, the mixing
patterns, the degree correlations and the community struc-
ture[15].

Graph mean de-
gree

degree’ SD average
path
length

2D Grid 4 0 50
Random
Graph

3.99 1.99 6.64

Small World
Graph

4 0 1250

Scale Free
Network

3.99 6.88 30615

Table 2: Grids and network properties’ values.

In table 2 we present the values of some of these properties
for studied networks. Degree related values were taken from
our networks, while the average path length for complex
networks was calculated using equations from [15]. We also
checked that degree distributions correspond to theoretical
predictions.

4. RESULTS
The results of our experiments are shown in Figure 1 and

Figure 2, where each sub-figure summarizes the results from
simulations of a particular complex network structure: Grid
2D (Fig.1), Random Graphs (Fig.2(a)), Small World Net-
works (Fig. 2(b)) and Scale Free Networks (figure 2(c)).
These figures show the final proportion of cooperators for
each scenario under various cooperation costs. In all the

spatial structures and all the scenarios the proportion of co-
operators decreases monotonically as cooperation cost (cc)
increments. Also, cooperators are the majority of the pop-
ulation in most circumstances.

In Grids 2D (Fig. 1, used as control spatial structures,
there is an small difference between pT = 0 ,pT = 0.5, and
pT = proportional. In populations with pT = 1, with indi-
viduals that always change their behavior by imitation of the
behavior of the majority of their neighbors, the final frac-
tion of cooperators is up to 20% less than the proportion
of cooperators for the other scenarios. As the cooperation
cost increases, this tendency is reduced, changing to the op-
posite at the point cc = 0.8. This point is the predation
rate for non-cooperators and isolated cooperators. In this
spatial structure the pT = proportional curve is stick to the
pT = 0.5 curve for cooperation costs below 0.8, and it is
stick to pT = 1 for cooperation costs above 0.8.

In Random Graphs (Fig. 2(a)) curves for pT = 0.5 and
pT = 0 have the same shape that pT = 0, but there is a
difference of at most 15% between pT = 0 and pT = 1,
being pT = 1 below pT = 0. The pT = 0.5 curve have
separation from the pT = 0 curve is less than a 3%.

For Small World Graphs (Fig. 2(b)) all curves have the
same shape, but pT = 1 is up to 50% below the pT = 0
curve; and the pT = 0.5 curve up to 15% below the pT = 0
curve. This network shows the biggest differences between
the different information transmission rates.

The Scale Free Networks curves follow the same shapes
than the 2-D grids, with smaller differences between pT s
values.

Is interesting to note that when pT = 0, the curves show
no differences between all the spatial structures studied; and
that when pT = 0.5 is very similar to pT = proportional.
Large values of pT (pT = 1) provide the largest reduction
of cooperators, especially in Small World Graphs.

5. DISCUSSION
The first feature that strikes us is that horizontal trans-

mission of information has a negative effect on the amount of
cooperators that survive the evolutionary dynamics unless
the cost for cooperation is very high. This result is due to
the fact that the cooperative strategy is more susceptible to
invasion by the opposite strategy than the non-cooperative
one. A lack of communication or horizontal transmission
of information favors groups of cooperators, benefiting from
each others neighborhood, who are then less likely to be
disrupted by non-cooperators

The results show that some spatial networks but not all
affect the effect of information transmission on coopera-
tion dynamics. The largest effect was seen in Small World
Graphs, which happen to be the networks with the lowest
variance in the degree of connectivity of the nodes. The ef-
fect on the evolutionary dynamics of Random Graphs and
Scale Free Networks was similar. This result makes us won-
der what characteristic of Small World Graph produces this
difference. As with the result discussed above, a more homo-
geneous network makes it less likely that isolated groups of
cooperators benefit from each other neighborhood. Thus the
low variance in connectivity of Small World Graphs makes
them less prone to nurture groups of cooperators.

These results confirm that the spatial structure affects the
cooperation dynamics under horizontal information trans-
mission. Despite this susceptibility, however, it is curious
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Figure 1: Effects of horizontal information transmission is stabilizing cooperation on grids 2D. Final fraction
of cooperators in simulations with different costs for cooperation (x axis) and with different kinds of horizontal
transmission of information (pT ). On the left side of each sub-figure we present a graphical representation of
the subjacent spatial structure.

to note that the type of transmission of information mod-
eled did not seem to affect the outcome. That is, simula-
tions with pT = 0.5 were undistinguishable from those with
pT = proportional. This indicates that flexibility, or the
lack of it, in implementing the majority rule has no effect
on the evolutionary dynamics of cooperation. This result
unveils an additional resilience for the evolution of coopera-
tion.
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(a) Random Graph. Erdös-Renyi Model (G(10000, 0.0002)).
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(b) Small World Graph. Newman-Watts model (G(10000, 2, 0.01)).
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(c) Scale Free Networks. Barabasi-Albert model (G(10000,2)).

Figure 2: Effects of horizontal information transmission is stabilizing cooperation on complex networks spatial
structures. Final fraction of cooperators in simulations with different costs for cooperation (x axis) and with
different kinds of horizontal transmission of information (pT ). On the left side of each sub-figure we present
a graphical representation of the subjacent spatial structure.
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