
Towards Incremental Social Learning in Optimization and
Multiagent Systems

Marco A. Montes de Oca
IRIDIA, CoDE, Université Libre de Bruxelles

Brussels, Belgium
mmontes@ulb.ac.be

Thomas Stützle
IRIDIA, CoDE, Université Libre de Bruxelles

Brussels, Belgium
stuetzle@ulb.ac.be

ABSTRACT
Social learning is a mechanism that allows individuals to
acquire knowledge from others without incurring the costs of
acquiring it individually. Individuals that learn socially can
thus spend their time and energy exploiting their knowledge
or learning new things. In this paper, we adapt these ideas
for their application to both optimization and multiagent
learning. The approach consists of a growing population of
agents that learn socially as they become part of the main
population. We find that learning socially in an incremental
way can speed up the optimization and learning processes,
as well as improve the quality of the solutions and strategies
found.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial Intel-
ligence – Multiagent systems; G.1.6 [Numerical Analysis]:
Optimization – Global Optimization

General Terms
Algorithms

Keywords
Social Learning, Particle Swarm Optimization, Multiagent
systems

1. INTRODUCTION
The design of systems composed of numerous autonomous

entities that exhibit, at a collective level, some desired be-
haviors remains an outstanding problem in various fields in-
cluding multiagent systems and population-based stochastic
optimization algorithms.

Broadly speaking, there are two alternative approaches
to tackle this problem. The first one consists in using a
traditional top-down approach whereby behaviors at the in-
dividual level are carefully crafted. The main issue with this

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO’08, July 12–16, 2008, Atlanta, Georgia, USA.
Copyright 2008 ACM 978-1-60558-131-6/08/07 ...$5.00.

approach is that its effectiveness depends ultimately on the
designer’s ingenuity and his/her application-specific experi-
ence. In some cases, it is possible to resort to the obser-
vation of some collective behavior of interest exhibited by
a natural system in order to identify the individual behav-
iors that make it possible. Examples of systems that have
been designed using this approach are ant colony optimiza-
tion [6] and particle swarm optimization [12,7]. The second
approach consists in using automatic learning techniques in
order to find an appropriate mapping from the agents’ states
to their actions that leads to the observation of the desired
collective level behaviors; however, learning in a multiagent
environment is usually a difficult task. The first difficulty
comes from the exponential growth of the search space (de-
fined as the space of the combined sensor-action mappings
of all the participating agents) as a function of the num-
ber of agents [10]. To overcome this problem, agents can
be equipped with their own learning algorithm, but in this
situation, the main difficulties stem from the interference
caused by the co-existence of multiple learning agents whose
rewards depend on the group’s performance [18].

In this paper, we look at the effects of taking an incremen-
tal approach to the multiagent learning problem in which
agents are added to the system one at a time. Starting
with a small number of agents provides two advantages: (i)
it enables fast learning for the initial population of agents
due to the reduced interference effect that a large popula-
tion provokes, and (ii) it may allow the optimal allocation
of agents to solve a particular task. This incremental ap-
proach is complemented by the implementation of a social
learning strategy whereby the newly added agents acquire
knowledge about their environment from more experienced
agents. The resulting mechanism, that we call incremen-
tal social learning, is aimed at facilitating scalability in the
number of agents as well as at accelerating and improving
learning.

This paper is organized in two parts. In the first part, we
present a study on the effects of applying incremental so-
cial learning on a population-based optimization algorithm.
The results are compared with those obtained with the stan-
dalone algorithm. In the second part, we present a simi-
lar study but this time using a multiagent system in which
agents are capable of learning individually by means of em-
bedded Q-learning algorithms. Different implementations of
the incremental social learning framework are explored.

1939

2. INCREMENTAL SOCIAL LEARNING
The term social learning is used to identify a class of mech-

anisms for knowledge transmission between agents without
the use of genetic material [15, 5]. Social learning is attrac-
tive for the design of large multiagent systems because it
allows individuals to acquire knowledge from other more ex-
perienced agents without incurring the costs of acquiring it
individually [14]. However, theoretical models and empiri-
cal studies conclude that relying only on socially acquired
knowledge is not always advantageous [9]. For social learn-
ing to be useful to a group, individuals must devote some
of their time and energy to learn individually or to inno-
vate [14].

The approach, that we call incremental social learning,
consists of a growing population of agents which learn so-
cially when they become part of the main group and learn
individually when they are already part of it. The growing
population strategy is based on the observation that, in na-
ture, newborn individuals are particularly favored by social
learning because it allows them to learn many skills very
rapidly from the adult individuals that surround them [8].
The algorithmic structure of the incremental social learning
framework is outlined below.

Algorithm 1 Incremental social learning.

/* Initialization */
t ← 0
Initialize environment Et

Initialize primogenial population of agents Xt

/* Main loop */
while Stopping criteria not met do

if Agent addition schedule or criterion is not met then

Xt+1 ← ilearn(Xt,Et) /* Individual learning */
else

Create new agent anew

slearn(anew,Xt) /* Social learning */
Xt+1 ← Xt ∪ {anew}

end if

Et+1 ← update(Et) /* Update environment */
t ← t + 1

end while

After initializing the environment and the initial popula-
tion of agents (that we call primogenial), the main learn-
ing loop begins. If no agents are to be added, the agents
in the current population learn individually. An agent ad-
dition schedule or criterion is used to control the rate at
which agents are added to the main group. When a new
agent is created and before it becomes part of the popu-
lation, it learns socially from a subset of the already ex-
perienced agents. In Algorithm 1 above, the environment
update state is made explicit in order to note the fact that
the environment may be dynamic. In a real implementation,
the environment can change at any time and not necessarily
at the end of a training round.

A small number of agents at the beginning of the learn-
ing process should reduce the interference caused by the
co-existence of many learning agents. The agent addition
schedule is used to create time delays that allow agents to
learn individually from the interaction with the environment
and with other agents. To make a parallel with natural sys-
tems, this time delays can correspond, for example, to the

time that exists between the birth of an individual and the
birth of its offspring. When a new agent is created, the
agents that are part of the main population already acquired
some updated knowledge of the world. Much of the effort
spent by these agents in learning by themselves can be saved
for the new agents by means of social learning. Incremen-
tally growing the population size may also serve to allocate
the minimum number of agents required to solve a particular
problem.

The actual implementations of the individual and social
learning mechanisms are independent from the incremental
social learning framework outlined above. Both generic or
application-specific mechanisms may be used. In the two
case studies presented in the following sections, we explore
different implementations of the incremental social learning
framework.

3. INCREMENTAL SOCIAL LEARNING
IN OPTIMIZATION

In this section we evaluate the effectiveness of the incre-
mental social learning strategy when applied to a population-
based optimization algorithm. We first describe the opti-
mization algorithm employed and the implementation de-
tails of the incremental social learning framework. Finally,
we present the results of a series of experiments run on a
number of benchmark optimization problems.

3.1 Particle Swarm Optimization
The optimization algorithm we use is the particle swarm

optimization (PSO) algorithm. It was inspired by the be-
havior of birds while flocking [12,7]. In a PSO algorithm, a
population of agents (called particles), whose positions in a
multidimensional space represent potential solutions to an
optimization problem, move by updating their velocity ac-
cording to the information gathered by the group (called
swarm). Every iteration, each particle is attracted toward
its own previous best position (with respect to an objec-
tive function) and toward the best position found by the
particles in its neighborhood. Neighborhood relations are
usually defined in advance through a population topology
which can be defined by a graph G = {V, E}, where each
vertex in V corresponds to a particle in the swarm and each
edge in E establishes a neighbor relation between a pair of
particles. The velocity and position updates of a particle i
over dimension j are as follows

vt+1
i,j = χ · [vt

i,j + ϕ1 ·U1 · (pt
i,j − xt

i,j) + ϕ2 ·U2 · (lti,j − xt
i,j)] ,

and

xt+1
i,j = xt

i,j + vt+1
i,j ,

where vt
i,j and xt

i,j are the particle’s velocity and position at
time step t respectively, pt

i,j is the particle’s best position so
far, lti,j is the best position found by the particle’s neighbors,
ϕ1 and ϕ2 are two parameters, U1 and U2 are two uniformly
distributed random numbers in the range [0, 1), and χ is a
constriction factor that is used in order to avoid an “explo-
sion” of the particles’ velocity. Clerc and Kennedy [4] found

the relation χ = 2k/
˛

˛

˛
2 − ϕ −

p

ϕ2 − 4ϕ
˛

˛

˛
, where k ∈ [0, 1],

and ϕ = ϕ1 + ϕ2 > 4, to compute it.
Rather than learning individually, particles engage in some

form of horizontal social learning whereby particles learn
from the individuals in the main group. Indeed, the PSO

1940

Table 1: Benchmark optimization problems

Name Definition Range

Ackley −20e−0.2
√

1

n

P

n
i=1

x2

i − e
1

n

Pn
i=1

cos(2πxi) + 20 + e [-32,32]n

Rastrigin 10n +
Pn

i=1 (x2
i − 10 cos(2πxi)) [-5.12,5.12]n

Rosenbrock
Pn−1

i=1 [100(xi+1 − x2
i)

2 + (xi − 1)2] [-30,30]n

Schwefel 418.9829n +
Pn

i=1 −xi sin(
p

|xi|) [-500,500]n

Step 6n +
Pn

i=1 ⌊xi⌋ [-5.12,5.12]n

algorithm can be seen as a simple model of social learn-
ing where agents try to imitate the “behaviors” of the indi-
viduals in their neighborhood that receive the greatest re-
wards [11,13].

3.2 Experimental Setup
The particle addition criterion used in our experiments

is solution quality stagnation. Whenever the solution im-
provement stagnates for a certain number of consecutive it-
erations k, a new particle is added. In our experiments,
k ∈ {1, 5, 10}. Social learning is implemented using a sim-
ple rule that moves the new particle’s previous best position
from its initial random location in the search space to a loca-
tion that is closer to the previous best position of a particle
that serves as a “model” to imitate. The rule is applied in a
component-wise fashion and is defined as

p′

new,j = pnew,j + U · (pmodel,j − pnew,j), (1)

where p′

new,j is the new particle’s updated previous best
position, pnew,j is the new particle’s original previous best
position, pmodel,j is the model’s previous best position and
U is a uniformly distributed random number in the range
[0, 1). Two strategies are used in order to select the model
particle: (i) at random, or (ii) the best particle of the swarm.
Note that the new particle does not copy the model particle
but only moves closer to it. The new particle’s velocity is
randomly initialized.

The parameter settings for the PSO algorithm are the
most commonly found in the literature, that is, the constric-
tion factor χ is set to 0.729 and the acceleration coefficients
ϕ1 and ϕ2 are both set to 2.05. Two population topolo-
gies are used: A fully connected one in which each particle
is neighbor to all other particles in the swarm, and a ring
topology, in which each particle is neighbor to two other
particles.

The benchmark problems that are used to evaluate the
effectiveness of using an incremental social learning strategy
over a PSO algorithm are listed in Table 1. In all cases, their
100-dimensional form is used (i.e., n = 100). The location
of the problems’ global optimum is randomly shifted within
the search range (except for Schwefel’s function) in each of
the 100 independent runs that were used.

3.3 Results
The results obtained with the two strategies for selecting

the model particle (i.e., one particle at random or the best
one) do not show a significant difference in most of the stud-
ied cases1. This result may come from the fact that selecting
the best particle or a random one from a group of particles

1Due to space constraints, we refer the interested reader to
http://iridia.ulb.ac.be/supp/IridiaSupp2008-009/ for
access to all supporting data.

that are close to each other in the search space is, in effect,
the same.

The relative difference between the results obtained with
the fully connected and ring topologies is dependent on the
problem being solved. The solution improvement during the
first hundreds of function evaluations is usually faster with
a fully connected topology, while the final best solutions are
found with a ring topology. The factor that produces the
most significant differences is the use of the incremental so-
cial learning approach. As an example, consider the results
shown in Figure 1. These results correspond to the median
solution quality development over time obtained with the
constant population PSO algorithm and the incremental so-
cial learning PSO algorithm, both using a fully connected
topology, on the five benchmark problems used in our ex-
periments. In the case of the incremental social learning
PSO algorithm, the best particle of the swarm is used as
model.

The results show that with a constant population PSO al-
gorithm there is usually a trade-off between solution quality
and speed. The incremental social learning PSO algorithm
does not have this problem as it seems to benefit from start-
ing with a minimal population size. It finds solutions of the
same, or even better, quality than a constant population
PSO algorithm without the need of setting the population
size in advance (although there is another parameter: the
particle addition rate). There are cases (e.g., with Schwefel’s
and the Step functions) in which starting with one particle
seems not to be the best strategy. However, the behavior of
the algorithm in these cases is as if it waited for the right
population size to then proceed with the optimization pro-
cess. In spite of this “waiting time”, the incremental social
learning PSO algorithm obtained the best results at the end
of the allocated number of function evaluations. The results
also show that the role of the stagnation threshold which
controls the rate at which particles are added to the main
swarm is that of an exploration-exploitation control param-
eter. Faster rates encourage exploration while slower rates
encourage exploitation. This is clearer when the results ob-
tained with a ring topology (which encourages exploration)
are compared with those obtained with a fully connected
topology (which encourages exploitation). With a fully con-
nected topology, the fastest particle addition rate (k = 1)
produced the best results while with a ring topology, the
slowest rates (k = {10, 5}) did.

4. INCREMENTAL SOCIAL LEARNING
IN MULTIAGENT SYSTEMS

In this section we present the effects of using the incre-
mental social learning framework on a multiagent system
composed of learning agents. We describe the algorithms
used, the experimental setup and the results obtained.

1941

http://iridia.ulb.ac.be/supp/IridiaSupp2008-009/

Function evaluations

So
lut

ion
 va

lue

100 101 102 103 104 105 106

0
5

10
15

20

ISL−fc−best−10
ISL−fc−best−5
ISL−fc−best−1
PSO−fc−1000
PSO−fc−100
PSO−fc−10
PSO−fc−1

(a) Ackley

Function evaluations

So
lut

ion
 va

lue

100 101 102 103 104 105 106

50
0

10
00

15
00

20
00

25
00

ISL−fc−best−10
ISL−fc−best−5
ISL−fc−best−1
PSO−fc−1000
PSO−fc−100
PSO−fc−10
PSO−fc−1

(b) Rastrigin

Function evaluations

So
lut

ion
 va

lue

100 101 102 103 104 105 106

0e
+0

0
2e

+0
9

4e
+0

9
6e

+0
9

8e
+0

9

ISL−fc−best−10
ISL−fc−best−5
ISL−fc−best−1
PSO−fc−1000
PSO−fc−100
PSO−fc−10
PSO−fc−1

(c) Rosenbrock

Function evaluations

So
lut

ion
 va

lue

100 101 102 103 104 105 106

10
00

0
15

00
0

20
00

0
25

00
0

30
00

0
35

00
0

40
00

0

ISL−fc−best−10
ISL−fc−best−5
ISL−fc−best−1
PSO−fc−1000
PSO−fc−100
PSO−fc−10
PSO−fc−1

(d) Schwefel

Function evaluations

So
lut

ion
 va

lue

100 101 102 103 104 105 106

10
0

20
0

30
0

40
0

50
0

ISL−fc−best−10
ISL−fc−best−5
ISL−fc−best−1
PSO−fc−1000
PSO−fc−100
PSO−fc−10
PSO−fc−1

(e) Step

Figure 1: Median solution quality development over

time. Different population sizes are used for the

traditional PSO algorithm and different stagnation

thresholds are used for the incremental social learn-

ing approach. In all cases a fully connected topology

is used.

4.1 Individual Learners in a Multiagent
System

By letting agents learn by themselves, the computational
complexity of the multiagent learning problem can be re-
duced [2]. In this paper we consider a multiagent system
composed of individually learning agents each of which uses
a Q-learning algorithm for that purpose.

Q-learning allows an agent i to learn an action-value func-
tion Qi(a, s) that represents the value of taking a particular
action a in a particular state s. The goal is to find a policy
that maximizes the rewards received for executing a series of
actions starting from an initial state. The so-called Q-values
are updated using the rule

Qi(a, s) = Qi(a, s)+α · (ri(s)+γ ·max
a′

Qi(a
′, s′)−Qi(a, s)),

which is applied whenever action a is taken in state s leading
to state s′. ri(s) is the reward received by the agent in state
s, α is parameter known as the learning rate and γ is another
parameter known as the discount factor.

The effectiveness of this approach depends on the con-
straints imposed by the problem being tackled. If agents
can act more or less independently from others, this method
can provide good results in a reasonable amount of time [1].

4.2 Experimental Setup
We use the multiagent grid world problem as described

by Agogino and Tumer [1]. In this problem, a square grid
populated by agents that can move, one patch at a time, in
any of four directions (up, down, left and right). An agent’s
state is its location on the grid. Each grid patch can contain
a token with a value within the range [0, 1] that represents
the reward given to the agent that first moves to that patch.
If no token is present, the reward is zero. The agents’ aim is
to maximize the total reward received after a fixed number
of time steps. In our experiments, 100 agents are used. The
whole learning process lasts for 1000 rounds. In each one of
these rounds agents start from an initial state, move for 50
time steps, and then are moved back to their initial state.

Two configurations of a 20× 20 environment are used. In
the first one, only one fourth of the world is populated with
tokens with values that decrease inversely with the distance
to the center of the world. In this configuration, the token-
value landscape resembles a cliff. In the second configuration
tokens are clustered. The location of the clusters is selected
uniformly at random. In our experiments, 33 clusters are
used. Their width and the values associated with their to-
kens are set according to a Gaussian function with standard
deviation σ = 1. In both configurations, all token values are
normalized so that the maximum collective reward is equal
to one.

In these experiments, agents are added according to a
predefined schedule. We experiment with three schedules,
adding agents every 1, 5, and 10 rounds until the maximum
number of agents is reached. Social learning is implemented
using a subset of the system’s current population of agents.
Three different agents are selected at random to update the
new agent’s Q-values using the rule

Q′

new(a, s) = Qnew(a, s)

+ U1 · (Qmodel1(a, s) − Qnew(a, s))

+ U2 · (Qmodel2(a, s) − Qmodel3(a, s)), (2)

where Q′

new(a, s) is the new agent’s new Q-value, Qnew(a, s)

1942

is the new agent’s original Q-value, and Qmodel1,2,3
(a, s) are

the models’ Q-values. The random numbers U1 and U2 are
drawn from a uniform distribution in the range [0, 1). In
order to use this rule, at least three agents must compose the
primogenial population. The rule is inspired by the update
rule used in differential evolution [19].

In all the experiments, the learning rate α is set to 0.5
and the discount factor γ is set to 0.9. The action selection
is controlled by an ǫ-greedy strategy with ǫ set to 0.2. The
results are based on 100 independent runs.

4.3 Results
The median of the collective reward (i.e., the sum of the

agents’ accumulated rewards) distribution over time is shown
in Figure 2.

Learning rounds

Co
llec

tive
 re

wa
rd

0 200 400 600 800 1000

0.0
0.2

0.4
0.6

0.8
1.0

Constant population
Schedule − 1
Schedule − 5
Schedule − 10

(a) Cliff environment

Learning rounds

Co
llec

tive
 re

wa
rd

0 200 400 600 800 1000

0.0
0.2

0.4
0.6

0.8
1.0

Constant population
Schedule − 1
Schedule − 5
Schedule − 10

(b) Clustered environment

Figure 2: Median of the collective reward distribu-

tion over time. Different agent addition schedules

are used for the implementation of the incremental

social learning framework.

In the cliff environment, several learning rounds are needed
before a sustained improvement of the collective reward is
observed. This contrasts with the results obtained in the
clustered environment, in which even random movements
make the system obtain a collective reward greater than
zero. This result is expected given the greater difficulty of
the cliff environment in which the highest rewards are lo-
cated at the center of the environment. Since rewards are
given only to the agent that first visits a given patch, there
is some competition among the agents to arrive first to the
patches where the highest-valued tokens are located. The
effects of the incremental social learning approach are more
evident in the results obtained in the cliff environment. The
improvement of the collective reward is faster if an incremen-
tal social learning approach is used. This suggests that the
competition for rewards among 100 agents plays an impor-
tant role in this problem. The incremental approach seems
to benefit from the faster learning that happens when no ma-

jor interference among agents occurs, which is the case at the
beginning when just a few agents populate the environment.
The social learning rule allows agents to avoid conflict and
to use their time in exploiting the acquired knowledge and to
contribute to the collective reward. Different agent addition
schedules influence differently the results obtained. With
the fastest schedule, the improvement is faster but the final
reward is slightly lower that the one obtained with slower
schedules.

In the clustered environment, the benefits of using an in-
cremental social learning approach are less evident. In fact,
the approach delays the improvement of the collective re-
ward. This might be the result of the reduced competition
among agents as a result of the token distribution in this
environment.

5. RELATED WORK AND DISCUSSION
In Section 1 we mentioned that one of the main problems

that arises when applying learning techniques in a multia-
gent scenario is that there is some interference due to the
co-existence of agents that are learning at the same time.
From an agent’s perspective, the problem is that the appro-
priate behavior is difficult to learn because the consequences
of its actions depend on what other agents are doing, which
in turn depends on what others are doing and so on. A
further complication comes from the fact that, while learn-
ing, agents change their behavior which may render other
agents’ learned behaviors obsolete [18]. A common way to
deal with this problem is to reduce the number of learning
agents in the system. For example, Guestrin et al. [10] use
coordination graphs in order to reduce the complexity of
the multiagent coordination problem. The idea comes from
the observation that not all agents’ actions must be tightly
coupled in order to solve a problem. The incremental social
learning framework tackles this problem by actually reduc-
ing the number of agents in the system; however, the size
of the primogenial population should be aligned with the
complexity of the problem at hand.

The idea of letting the size of the population grow over
time has been applied by Noble and Franks [16], who already
pointed out the fact that newborn animals may benefit from
the observation of elder individuals and implemented a sim-
ulation where the population of agents grows over time. In
their work, they study the effects of using different social
learning mechanisms and not on the utility of learning so-
cially in an incremental way as we do.

A possible alternative to the individual learners approach
is to try to control the learning process from a global level
through a performance measure, common to all agents. Ob-
taining results with this approach, though possible in the-
ory, is very difficult in practice because small changes in the
agents’ behavior can lead to very different collective level
behaviors [3]. In fact, designing performance measures that
allow agents to learn appropriate behaviors is a field of study
on its own [17].

We believe that the independence of the incremental so-
cial learning framework from the actual social and individual
learning algorithms makes it attractive for its application to
a wide range of situations. However, the problem must have
certain features if the incremental social learning approach
is to provide any advantage over other approaches. One
such feature is that it should be possible for an individual
to know how well it is performing at any given time. This is

1943

very important because it is the basis for individual learn-
ing. Moreover, the agents must be capable of communicating
relatively complex messages, a capability that is not always
available, for example, in small robots.

6. CONCLUSIONS AND FUTURE WORK
Social learning allows agents to acquire knowledge from

others without incurring the costs of acquiring it individ-
ually. For naive individuals, it is particularly useful as it
effectively provides them a shortcut to knowledge that oth-
erwise may take them a long time to acquire.

In this paper we have defined an incremental social learn-
ing framework that consists of a growing population of agents
that learn socially as they become part of the main popu-
lation and learn individually once they are already part of
it. The framework is independent of the underlying social
and individual learning algorithms. By increasing gradually
the size of the population, it is possible to accelerate the
first learning phase in domains where inter-agent conflicts
exist. Furthermore, it enables the possibility of allocating
the minimum number of agents required to solve a particular
problem.

To evaluate the framework’s potential, we applied it on
a population-based optimization algorithm as well as on a
multiagent learning system. The results show that by us-
ing an incremental social learning approach we can acceler-
ate the optimization/learning process as well as improve the
quality of the solutions found.

Future work should be focused on determining the best
suited implementation of the framework for particular learn-
ing/optimization algorithms and problems. Another line of
research is the application of the framework in online learn-
ing scenarios.

7. ACKNOWLEDGMENTS
Marco A. Montes de Oca is funded by the Programme

Alβan, the European Union Programme of High Level Schol-
arships for Latin America, scholarship No. E05D054889MX,
and by the SWARMANOID project funded by the Future
and Emerging Technologies programme (IST-FET) of the
European Commission (grant IST-022888). Thomas Stützle
acknowledges support from the F.R.S-FNRS of the French
Community of Belgium of which he is a Research Associate.

8. REFERENCES
[1] A. Agogino and K. Tumer. Reinforcement learning in

large multi-agent systems. In AAMAS’05 Workshop
on Coordination of Large Scale Multi-agent Systems.
ACM Press, 2005.

[2] A. Agogino and K. Tumer. QUICR-learning for
multi-agent coordination. In Proceedings of the 21st
National Conference on Artificial Intelligence, 2006.

[3] S. Camazine, J.-L. Deneubourg, N. R. Franks,
J. Sneyd, G. Theraulaz, and E. Bonabeau.
Self-Organization in Biological Systems. Princeton
University Press, Princeton, NJ, USA, 2001.

[4] M. Clerc and J. Kennedy. The particle
swarm–explosion, stability, and convergence in a
multidimensional complex space. IEEE Transactions
on Evolutionary Computation, 6(1):58–73, 2002.

[5] D. Curran and C. O’Riordan. Increasing population
diversity through cultural learning. Adaptive Behavior,
14(4):315–338, 2006.

[6] M. Dorigo and T. Stützle. Ant Colony Optimization.
Bradford Books. MIT Press, Cambridge, MA, USA,
2004.

[7] R. Eberhart and J. Kennedy. A new optimizer using
particle swarm theory. In Proceedings of the 6th
International Symposium on Micro Machine and
Human Science, pages 39–43, Piscataway, NJ, USA,
1995. IEEE Press.

[8] B. G. Galef Jr. and K. N. Laland. Social learning in
animals: Empirical studies and theoretical models.
BioScience, 55(6):489–499, 2005.

[9] L.-A. Giraldeau, T. J. Valone, and J. J. Templeton.
Potential disadvantages of using socially acquired
information. Philosophical Transactions of the Royal
Society of London. Series B: Biological Sciences,
357:1559–1566, 2002.

[10] C. Guestrin, D. Koller, and R. Parr. Multiagent
planning with factored MDPs. In T. G. Dietterich,
S. Becker, and Z. Ghahramani, editors, Advances in
Neural Information Processing Systems 14.
Proceedings of the 2001 Neural Information Processing
Systems (NIPS) Conference, pages 1523–1530,
Cambridge, MA, USA, 2001. MIT Press.

[11] J. Kennedy. The particle swarm: Social adaptation of
knowledge. In Proceedings of the 1997 IEEE
International Conference on Evolutionary
Computation, pages 303–308, Piscataway, NJ, USA,
1997. IEEE Press.

[12] J. Kennedy and R. Eberhart. Particle swarm
optimization. In Proceedings of IEEE International
Conference on Neural Networks, pages 1942–1948,
Piscataway, NJ, USA, 1995. IEEE Press.

[13] J. Kennedy, R. Eberhart, and Y. Shi. Swarm
Intelligence. Morgan Kaufmann, San Francisco, CA,
USA, 2001.

[14] K. N. Laland. Social learning strategies. Learning &
Behavior, 32(1):4–14, 2004.

[15] C. L. Nehaniv and K. Dautenhahn, editors. Imitation
and Social Learning in Robots, Humans and Animals:
Behavioral, Social and Communicative Dimensions.
Cambridge University Press, Cambridge, United
Kingdom, 2007.

[16] J. Noble and D. W. Franks. Social learning in a
multi-agent system. Computers and Informatics,
22(6):561–574, 2003.

[17] S. Nolfi and D. Floreano. Evolutionary Robotics: The
Biology, Intelligence, and Technology of
Self-Organizing Machines. Bradford Books. MIT
Press, Cambridge, MA, USA, 2000.

[18] L. Panait and S. Luke. Cooperative multi-agent
learning: The state of the art. Autonomous Agents
and Multi-Agent Systems, 11:387–434, 2005.

[19] K. V. Price, R. M. Storn, and J. A. Lampinen.
Differential Evolution: A Practical Approach to Global
Optimization. Natural Computing Series.
Springer-Verlag, Berlin, Germany, 2005.

1944

	Introduction
	Incremental social learning
	Incremental social learning in optimization
	Particle Swarm Optimization
	Experimental Setup
	Results

	Incremental social learning in multiagent systems
	Individual Learners in a Multiagent System
	Experimental Setup
	Results

	Related work and discussion
	Conclusions and Future Work
	Acknowledgments
	References

