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ABSTRACT 
Evolutionary algorithms require efficient recombination and 
selection mechanisms in order to produce high-quality solutions. 
In order to guide recombination a geometrical structure of the 
population is introduced. The aim of this paper is to explore 
connections between population geometry and individual 
interactions inducing autonomy, communication and reactivity. 
Each individual in the population acts as an autonomous agent 
with the goal of optimizing its fitness. In this process, each 
individual is able to communicate and select a mate for 
recombination. The introduced paradigm is illustrated by an 
evolutionary technique relying on a new population model and 
agent-based selection for recombination strategy. Search 
operators are asynchronously applied making the proposed 
approach more realistic. Numerical experiments indicate the 
potential of the proposed evolutionary agent-driven technique. 

Categories and Subject Descriptors 
I.2.11 [Artificial Intelligence]: Distributed Artificial Intelligence 
– intelligent agents, multiagent systems, G.2.3 [Discrete 
Mathematics]: Applications 

General Terms 
Algorithms 

Keywords 
Evolutionary algorithms, Multi-agent systems, Population 
topology 

1. INTRODUCTION 
Reciprocal influences and cross-fertilizations of multi-agent 
systems (as population of agents) and evolutionary models is a 
promising approach to developing flexible computing techniques 
based on a population that can proactively evolve and emerge. 
Agent properties such as autonomy, communication, pro-
activeness, learning and reactivity can potentially be engaged to 
some extent in the population of individuals used by an 
evolutionary model. Individuals able to act as an agent (even 
characterized or semi-characterized by only a few fundamental 

agent properties) greatly affect the way recombination and 
selection is carried out and therefore the way that population 
evolves. The agent-based behavior in population-based 
evolutionary models can trigger interesting new trends for the 
field of evolutionary computation. 

The aim is to explore connections between population geometry 
and individual interactions inducing autonomy, communication 
and reactivity. The introduced model is called the Geometric 
Collaborative Evolutionary (GCE) model. Individuals are 
arranged according to their fitness using a predefined topological 
structure. Furthermore, each individual in the population acts as 
an autonomous agent with the goal of optimizing the individual 
fitness. In this process, each individual is able to communicate 
and select a mate for recombination. Basic agent properties can 
trigger a dynamic evolution emerging from multi-individual 
interactions similar to those defined in agent-based models.  

The proposed geometric agent-based model facilitates an 
asynchronous search through a gradual propagation of the fittest 
individuals’ genetic material into the population. This is achieved 
by considering a time dimension and a space dimension for the 
algorithm. Selection and recombination take place 
asynchronously allowing an improvement of the individuals 
during the process of selection and recombination within the same 
epoch.  

Numerical experiments prove the efficiency of the proposed 
technique, by comparing it with the results obtained by a standard 
evolutionary algorithm for several difficult unimodal and 
multimodal real-valued functions with many dimensions. 

The paper is organized as follows. The second section describes 
the proposed population geometry and Section 3 presents one way 
of involving agent societies in evolutionary optimization 
processes. Another powerful concept of the proposed technique, 
namely the asynchronous search, is described in Section 4. The 
resulting algorithm is given in Section 5, numerical experiments 
in Section 6 and conclusions and directions for further work in 
Section 7. 

2. POPULATION GEOMETRY 
The main idea of this section is to endow the population with a 
topological structure that can be explored for selection and 
recombination purposes. A new way of understanding the role of 
the selection process emerges and it can yield important results. 
The population topology can be associated to the asynchronous 
action of the search operators. In this way, a better balance 
between search intensification and diversification is hopefully 
obtained. An efficient exploitation of the useful genetic material 
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already obtained in the search process is completed by 
maintaining population diversity. 

Let P(t) be the current population at iteration (epoch) t. The size 
of the population is fixed during all stages of the algorithm and is 
chosen to be a square number in order to allow a certain topology 
of the population. Let n2 be the size of the population, where n is 
an even number. 

All individuals from the population are sorted according to their 
fitness. They are distributed over n/2 concentric circles (layers) 
ordered according to their fitness and starting with the fittest 
individuals on the most inner circle. 

The number of individuals placed on layer i, i=0,.., n/2-2, is 4(n-
2i-1). For simplicity reasons, the concentric circle structure is 
mapped to a two-dimensional grid. Figure 1 describes proposed 
topology using both concentric circles and a two-dimensional 
grid. 

Let us denote the sorted population by 2,...,,)( 21 n
xxxtP = , 

where 1x  is the fittest and 2nx  is the worst individual in the 

population. The most inner layer contains the first four 
individuals ( 4321 ,,, xxxx ). The next layer holds 12 individuals 

( 165 ,..., xx ) having the next best fitness values. The less fit 
individuals from the population lie on the largest circle. Let us 
number the layers on which the individuals are placed. The most 
outer layer is labeled by 0 and the label of the most inner layer 
has the highest value. For a population size of n2, n even, there are 
n/2 layers. The most inner layer is assigned with the label n/2-1 
(see Figure 2). The individuals from the most inner layer (the 
fittest individuals in the population) are copied in the next 
population just as they are.  

Each individual from the population has the chance of being 
improved by getting involved in a recombination process (see 
Section 4). Population diversity is preserved as genetic material of 
both very fit and less fit individuals is considered in 
recombination. Decision about the second parent involved in each 
recombination process is based on agent model (see Section 4), 
and this is the way the exploitation of the search space is pursued. 

Therefore, for each individual except the best four that are copied 
in the next generation, the selection scheme chooses its mate in 
the way described in Section 4.  

A similar idea of placing population on a grid can be found in [1]. 
However, the latter approach does not involve sorting of 

individuals according to the fitness or collaboration between 
individuals in different agent societies. 

3. AGENT SOCIETIES 
In order to ensure a flexible search process in solving very 
difficult problems, population individuals can be considered 
members of a multi-agent system [2, 7, 9].  

An agent can autonomously take decisions, acts on behalf of its 
creator, is situated in an environment and is able to perceive it, 
has a set of objectives and acts accordingly. The agent properties 
with a great potential for our approach refer to autonomy, 
communication, reactivity and learning [3, 5, 6]. 

Exploring agent fundamental properties is a promising approach 
to designing evolutionary heuristics. This approach represents a 
shift in evolutionary paradigm design. The population evolution is 
not entirely controlled by some fixed a-priori known operators. In 
the proposed agent-based approach, individuals can control to a 
certain extent their own evolution. This transfer of control 
towards individuals (that have agent capabilities) can trigger 
interesting behavioral types emerging from multi-individual 
interactions. 

As an agent, each individual has the objective of optimizing its 
fitness. This objective is pursued by communicating with other 
individuals and selecting a mate for recombination based on 
individual strategies.  

In order to ensure a balance between search intensification and 
diversification specialized agent societies are considered. 

The proposed agent evolutionary model implies three agent 
societies as follows: 

1. Local Correlation (LC) society 

2. Far Correlation (FC) society 

3. Global Correlation (GC) society 

Agents from LC society select mates for recombination from their 
local neighborhood (individuals geometrically situated on the 
previous layer).  

Agents from FC society select mates for recombination from 
more distanced layers on the population topology. 

Agents from GC society select mates for recombination on a 
global basis from the entire population. 

Figure 1. Layer topology of the population and the 
corresponding two-dimensional grid. 

Figure 2. Five concentric circles obtained for a 
population of 100 individuals (a 10X10 two-dimensional 

grid). 
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Therefore, LC agent behavior emphasizes local search while FC 
agents are able to guide the search towards unexplored regions. 
The GC society focuses on the global exploration of the search 
space realizing the connection between the LC and FC societies. 
Mate choice of these societies is depicted in Figure 3. 

 Similar to the autonomy in agent-based models, each individual 
invited to be a mate can accept or decline the proposal according 
to its own strategy. Individuals from LC and FC societies accept 
only individuals from the same society as mates. Individuals from 
GC society accept any other individual as mate. Offspring are 
assigned to a certain society according to a dominance concept. If 
LC is the dominant agent society then any combination of a GC 
individual with an LC individual results in an offspring belonging 
to LC.  

Table 1 summarizes these considerations. 

Table 1. The society of generated offspring based on the 
strategies of the parents 

Parent 1  Parent 2  Offspring Society 
LC LC LC 
FC FC FC 

LC LC if LC is dominant 
GC otherwise 

FC FC if FC is dominant 
GC otherwise 

GC 
 

GC GC 
 

4. ASYNCHRONOUS SEARCH 
The search process in the proposed model takes place 
asynchronously. This is a distinctive and strong feature of the 
proposed search scheme.  

The individuals from the most inner layer (the fittest individuals 
of the population) are copied in the next population just as they 
are. 

LC or FC agents from layer (n/2-2) initiate a mating procedure by 
inviting individuals from layer (n/2-1) for recombination.  As the 
search process progresses within an epoch the individual behavior 
is differentiated according to the agent society. Recombination 
relies on both population topology and agent behavior. 

Generally, the recombination scheme can be described as follows: 

• LC agents from layer c address mating invitations to 
individuals from layer (c+1), where c = 0,…,n/2-2. 

• FC agents from layer c address mating invitations to 
individuals from layer (c+i), where c = 0,…,n/2-3 and i ≥ 2 
is randomly selected using an uniform distribution. FC 
individuals from layer (n/2-2) invite individuals from layer 
(n/2-1). 

• agents from the GC society are more explorative. GC 
individuals from layer c may address mating invitations to 
individuals from any layer except layer c. 

Let x be an individual from layer c and y an invited individual for 
mating. If x is from LC or FC and y belongs to the same agent 
society then the invitation is accepted with a given probability p. 
If x is from GC then the invitation is accepted by y with a given 
probability p (independently from the agent society of y). 

Two individuals are recombined if and only if the invited 
individual accepts to be a mate. For each mating pair (x, y) the 
best offspring z obtained after recombination is mutated. The best 
between z and mut(z) is compared to the first parent x and replaces 
x if it has a better quality. The elitist scheme that allows only 
better individuals to replace the first parents is balanced by the 
fact that all individuals from the population are involved in 
recombination. 

Future extensions of the proposed technique can allow mutated 
offspring to replace any parent. If the offspring is not better than 
the first parent then it is compared with the second one and can 
possible replace it. Furthermore, if two offspring are generated 
then both parents can be replaced. 

The proposed model uses an asynchronous search scheme. 
Individuals from a layer are updated through proactive 
recombination and are involved in forthcoming recombination 
processes within the same epoch. For instance, improved 
individuals of layer (n/2-2) are targeted as mates by LC 
individuals belonging to the layer (n/2-3).  

The process that results from the described scheme is a process 
where the useful genetic material collected from the entire 
population is propagated through the layers until it reaches the 
less fit individuals from the population. Furthermore, the co-
existence of FC and GC individuals in the same population 
facilitates a more aggressive search space exploration. 

The selection of a mate from a layer is done by using one of the 
existing selection operators such as proportional selection and 
tournament selection. A tournament selection scheme is 
considered for all the experiments reported in this paper. 

5. PROPOSED GEOMETRIC 
COLLABORATIVE EVOLUTIONARY 
ALGORITHM 
Previous considerations regarding topological structures of the 
population and agent-based interactions in the population are 
summarized in this section by describing the proposed Geometric 
Collaborative Evolutionary (GCE) Algorithm. 

The GCE technique relies on an asynchronous model for 
recombination. This is also an exogenous population model in the 
sense that each individual from a certain layer considers mates 
from a different layer. 

The GCE algorithm (GCEA) is outlined below. 

Figure 3.  Mate choice of the three agent societies 
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Geometric Collaborative Evolutionary Algorithm 
 
begin 
  t:=0 
  Initialize P(t) 
  For each individual in P(t)  
  assign society membership (LC, FC or GC) 
  while (not stop-criterion) do 
  begin 
    Evaluate P(t) 
    GeometricSort P(t) 
    for each layer c, c=n/2-2, 0 
    begin 
 for each individual x from c 
 begin 

  repeat 
   begin 
        if (x in LC) then 
         y=LocalSelection(c+1) 
       if (x in FC) then 
         y=FarSelection 
       if (x in GC) then 
         y=GlobalSelection 
   end 
         until (y accepts invitation) 
   z=Recombination(x,y) 
   mutz=Mutation(z) 
   Replace(x, z, mutz) 
       end 
    end 
    t=t+1 
  end 
end 
 

The GCE algorithm has been implemented and several numerical 
experiments have been performed to test and validate the 
proposed approach. 

6. NUMERICAL EXPERIMENTS 
Numerical experiments are performed on several benchmark 
unimodal and multimodal difficult functions [8] with different 
dimensions (D=10 and D=50): 
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4. Shifted Rastrigin’s Function 
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5. Shifted Griewank’s Function 
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For all considered functions z is given by: 

],...,[, 1
*

Dxxxxxz =−= ,  

where *x  is the shifted global optimum. 

In the current implementation we consider the dominance 
relationship 

LCFCGC pp , 

meaning that LC is the dominant society. Several dominance 
schemes are possible. The considered one favors local search. 

The results obtained using GCEA for all 6 functions are compared 
with the results obtained using a standard evolutionary algorithm 
(SEA) with the same parameters. SEA uses proportional selection 
and the best offspring obtained after recombination and possible 
mutation replaces the worst parent. The populations size for both 
algorithms is 100 and the number of iterations is 100*D, where D 
is the number of dimensions. The recombination and mutation 
processes are also the same for both algorithms. 

The results refer to the best solution, the average solution and the 
standard deviation obtained at several iterations after 25 runs of 
each algorithm, for all considered problems (see Tables 2-5). 

One can see that GCEA outperforms SEA for all considered 
problems, at all considered iterations, regarding both the best 
solution and the average solution obtained in 25 runs of the 
algorithms. We have considered different dimensions for the 
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functions because it is well known that the complexity of the 
problem increases as the number of dimensions increases. GCEA 
algorithm outperforms SEA for high dimensional problems as 
well. Using GCEA, the convergence process is accelerated and 
the search is capable of exploring more promising regions of the 
search space and finding better solutions. Both GCEA and SEA 
algorithms have the same complexity computed as number of 
fitness evaluations and number of performed recombinations/ 
mutations. 

A statistical analysis is performed using the expected utility 
approach [4] to determine the most accurate algorithm. Let x be 
the percentage deviation of the solution given by the algorithm 
used and the best known solution on a given function: 

100×
−

=
olutionbestknowns

olutionbestknownsasolutionx . 

The expected utility function can be: 

ctbeuf −−−= )1(βγ , 

where 500=γ , 100=β  and 000005.0=t .  

The estimated parameters b  and c are calculated using the 
following formulae that take into account the number of test 
functions (i.e. six) used in our numerical experiments: 
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Table 6 presents the results of the statistical analysis performed 
on the best results of the two compared algorithms for the six 
functions with 10 dimensions. The last column in Table 6 

Table 2. GCEA results for functions 31 ff − after 25 runs, for D=10, after 100, 500, 1000, iterations 

1f  2f  3f   

GCEA SEA GCEA SEA GCEA SEA 

Best -448.704 -137.475 -442.763 -435.259 1289.918 322784.5 

Mean -437.229 65.93771 -438.664 -428.308 16512.04 2859401 

 
Iter 
100 Std 8.800344 151.9066 1.800564 3.652689 45249.74 2147391 

Best -449.985 -449.387 -448.281 -446.194 459.4922 889.8491 

Mean -449.828 -447.826 -447.06 -444.219 1022.646 2034.761 

 
Iter 
500 Std 0.155485 0.968246 0.643879 1.132136 490.0473 855.8799 

Best -450 -449.988 -448.943 -448.03 408.0458 575.1024 

Mean -449.965 -449.849 -448.223 -447.056 874.2837 1162.038 

 
Iter 
1000 Std 0.059671 0.126279 0.394464 0.502179 463.5571 326.7314 

Table 3. GCEA results for functions 64 ff − after 25 runs, for D=10, after 100, 500, 1000, iterations 

4f  5f  6f   

GCEA SEA GCEA SEA GCEA SEA 

Best -324.751 -313.048 -179.31 -177.244 -138.408 -134.318 

Mean -320.363 -303.118 -178.921 -175.027 -136.899 -132.867 

 
Iter 
100 Std 2.657532 6.958635 0.188076 1.209354 0.669115 0.87211 

Best -330 -326.76 -179.972 -179.784 -139.956 -139.912 

Mean -329.725 -324.696 -179.822 -179.417 -139.805 -138.396 

 
Iter 
500 Std 0.297313 1.275885 0.086546 0.209644 0.083603 0.860075 

Best -330 -329.978 -179.972 -179.897 -139.989 -139.954 

Mean -329.973 -329.436 -179.899 -179.778 -139.935 -139.824 

 
Iter 
1000 Std 0.040607 0.744477 0.050965 0.065104 0.03796 0.105457 
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provides the rank of the algorithm. It can be noted that the GCEA 
approach obtains Rank 1 for all iterations considered. 

Similar statistical results have been obtained for functions with 50 
dimensions resulting that GCEA is the most accurate algorithm 
for the considered testing set. 

7. CONCLUSIONS AND FURTHER WORK 
A new evolutionary technique combining a geometric population 
model and a multi-agent model is proposed. Individuals are 
considered as agents able to communicate and to make 
autonomous decisions concerning a mating invitation. Three agent 

societies are considered and a dominance concept on these 
societies is introduced. 

Numerical experiments are encouraging. For some well known 
test functions the proposed technique outperforms a standard 
evolutionary technique. 

The proposed GCE algorithm can be furthermore extended by 
allowing individuals to dynamically change their agent society 
based on learning mechanisms that depend on the problem being 
solved. Moreover, an individual can act as an agent with a set of 
rules that are applied depending on the context. The rules of an 
agent can be modified through a learning process. This strategy 

Table 4. GCEA results for functions 31 ff − after 25 runs, for D=50, after 50, 500, 1000, 5000 iterations 

1f  2f  3f   

GCEA SEA GCEA SEA GCEA SEA 

Best 16524.53 77122.09 -380.666 -377.348 9.8E+08 9.61E+09 

Mean 27025.03 91112.06 -372.359 -371.393 2.07E+09 1.63E+10 

 
Iter 
50 Std 3999.502 6470.013 3.43586 3.31062 7.89E+08 2.57E+09 

Best -396.516 3986.054 -416.125 -402.789 37667.78 49507620 

Mean -354.614 5214.711 -409.435 -396.609 139895.9 78037314 

 
Iter 
500 Std 41.97308 577.7886 4.687308 3.500514 310449.1 17878481 

Best -446.67 130.9709 -429.664 -416.903 3367.43 1512343 

Mean -439.492 330.1781 -424.722 -412.028 7907.553 2564382 

 
Iter 
1000 Std 5.712628 118.1188 3.726679 2.53101 2641.899 583705.3 

Best -449.964 -449.288 -444.196 -441.942 652.6909 1239.097 

Mean -449.88 -448.649 -442.723 -440.539 928.8355 1869.286 

 
Iter 
5000 Std 0.070764 0.425314 0.967819 0.830601 137.5611 410.0351 

Table 5. GCEA results for functions 64 ff − after 25 runs, for D=50, after 50, 500, 1000, 5000 iterations 

4f  5f  6f   

GCEA SEA GCEA SEA GCEA SEA 

Best -22.0364 206.0064 6.932391 462.9203 -123.326 -121.025 

Mean 69.56419 320.3557 67.24673 569.9548 -121.588 -120.073 

 
Iter 
50 Std 37.03681 43.52046 36.8724 50.20058 0.665469 0.336128 

Best -284.272 -136.02 -178.624 -146.988 -136.794 -130.47 

Mean -268.014 -78.0663 -178.192 -136.712 -136.236 -127.17 

 
Iter 
500 Std 8.669642 25.29544 0.326283 5.133106 0.41684 1.705756 

Best -309.603 -212.444 -178.966 -174.728 -138.996 -134.725 

Mean -303.773 -188.552 -178.895 -173.281 -138.128 -132.822 

 
Iter 
1000 Std 3.445336 11.94627 0.06896 0.824102 0.388368 0.90976 

Best -329.956 -321.584 -179.954 -179.696 -139.956 -139.889 

Mean -329.874 -318.127 -179.839 -179.289 -139.921 -139.733 

 
Iter 
5000 Std 0.063486 2.040392 0.086006 0.2053 0.024758 0.085427 
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would generalize the proposed model and enhance the autonomy 
of each individual having a great potential particularly for 
dynamic complex problems. 

At any stage, a shaking mechanism changing the membership of 
individuals to a certain society can be engaged if the solution is 
not significantly improved based on the current configuration. 
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Table 6. Statistical analysis for GCEA and SEA on the best results for the set of six functions with D=10 

Iterations Algorithm x  
2s  b  c  euf  Rank 

GCEA 39.2926 7331.329 186.5829 0.21059 399.9803 1 100 

SEA 13791.45 9.5E+08 68790.5 0.20048 391.1818 2 

GCEA 3.0418 43.6881 14.3622 0.21179 399.9985 1 500 

SEA 21.7188 2266.348 104.3492 0.20813 399.9891 2 

GCEA 0.8142 2.9146 3.5794 0.22748 399.9996 1 1000 

SEA 7.9999 311.4768 38.93498 0.20546 399.9960 2 
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