
Autonomous Agent Behavior Generation Using
Multiobjective Evolutionary Optimization

Dustin J. Nowak and Gary B. Lamont
Dept. of Electrical and Computer Engineering, Graduate School of Engineering and Management,

Air Force Institute of Technology
WPAFB, Dayton, Ohio, USA

dustin.nowak@afit.edu, gary.lamont@afit.edu

ABSTRACT
An agent system that develops and evolves its own structure
can facilitate more accurate responses to complex environ-
ments. The purpose of the paper then is to explore this
idea built upon our unmanned aerial vehicle (UAV) swarm
model and simulation that uses autonomous self-organized
concepts. The specific objective is to re-engineer this UAV
foundation based upon a formal design model with focus on
bio-inspired agent attack through emergent control struc-
tures. The overall design approach should give UAVs or
generic agents the ability to not only react to dynamic en-
vironments but develop the controls in order to change be-
haviors spontaneously. To allow these behaviors to properly
evolve, a multi-objective evolutionary algorithm generates a
self-organized rule-based agent swarm. Heterogeneous UAV
swarms are tested against difficult targeting scenarios that
evolve specific attack behaviorial techniques. Statistical ob-
servations indicate that bio-inspired techniques integrated
with the emerging entangled (non-hierarchical) framework
provide desired complex UAV swarming behaviors in dy-
namic environments.

Categories and Subject Descriptors
I.2 [Artificial Intelligence]: Miscellaneous

General Terms
Algorithms

Keywords
Self-Organization, Agents, Autonomous, Swarm Intelligence

1. INTRODUCTION
Embedding desired behaviors in autonomous vehicles or

agents is a difficult problem at best and in general prob-
ably impossible to completely resolve in complex dynamic

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO’08, July 12–16, 2008, Atlanta, Georgia, USA.
Copyright 2008 ACM 978-1-60558-131-6/08/07 ...$5.00.

environments. Nevertheless, the future deployment of au-
tonomous vehicles or agents depends on large-scale decen-
tralized swarming environments with associated behaviors.
Examples include homogeneous and heterogeneous autonomous
robotics and unmanned aerial vehicles (UAVs) for reconnais-
sance and possible action. Biological inspired self-organized1

systems as found in forging insects (ants, bees, ...), flocking
birds and attack activities (bees, wasps, ...), revolve around
control approaches that have simple rule sets that generate
desired emergent behaviors. In employing this approach,
localized agent rules that evolve the requisite swarming be-
haviors are desired. To computationally develop such a sys-
tem, an underlying organizational structure or framework is
required to control agent rule execution. Observe that ex-
isting efforts focus on fixed discrete control structures that
limit the viability in dynamic real-world environments.

Our current framework model for unmanned aerial vehi-
cle (UAV) swarm model and simulation uses self-changing
(self-organized) rules sets and a priori forced control struc-
tures [?]. The new approach is to re-engineer this system
in order to better identify and coalesce autonomous self-
organization (SO) behavioral features and to use better soft-
ware engineering principles. The desired dynamic vehicle
or agent swarm behavior is evolved using a multi-objective
genetic algorithm which successfully generates agents that
perform dynamic reconnaissance and as appropriate attack
en masse targets. This provides the swarm with the evolved
autonomous ability to dynamically react to hostile environ-
ments with low computational complexity and high effec-
tiveness. A self-organizing multi-objective evolutionary al-
gorithmic approach dynamically determines the proper indi-
vidual rule weighting and control parameters without requir-
ing parameter tuning, yet provides highly dynamic swarm-
ing behavior. Also, the new control structure evolves into
an emergent entangled-hierarchical framework instead of a
less effective a priori strict hierarchical structure.

This paper initially summaries the background of self-
organized agent research in Section 2. The specific vehicle
or agent swarm problem domain is developed in Section 3.
The formal system design model as presented in Section 4
provides a non-ambiguous mathematical model for design.
Because of the NP-Complete complexity of this problem do-
main, we proposed a self-organized multi-objective evolu-
tionary algorithm (MOEA) to explore the associated search
space. The concept and design of the self-organized MOEA

1Self-organization is a process where the system structure
spontaneously changes without being externally controlled

1961

is developed in Section 5. The system is extensively eval-
uated in Section 6 with swarms of heterogeneous vehicles
in a simulation system with animated graphics. Section 7
concludes the discussion focusing on the relatively high mea-
sures of success and future work..

2. GENERIC SWARMING APPROACHES
Approaches to control and swarming are quite varied. Some

of the exemplar works are discussed along with our exten-
sions. The first part of this section presents a brief back-
ground on generic agent swarming problem domain. Then
several associated efforts with other solution techniques are
discussed and briefly evaluated.

2.1 Algorithmic Structures/Frameworks
Our problem domain has a resemblance to Nikovski’s [?]

domain of Decision-Theoretic Navigation of mobile robots.
Nikovski’s work does not specify the particulars about the
learning and domain encountered, but autonomous agent
movement and navigation fundamentals are universal. Nikovski
finds a Best First Model Merging (BFMM) in which the ob-
jective is to accurately predict which actual time-state pair
the current Partially Observable Markovian Decision Pro-
cess (POMDP) observed state is modeling. He also endeav-
ors a State Merging (SMTC) searches for the same objective
but includes suboptimal solutions that can be merged in or-
der to solve for an aggregate better solution in the long run.
None of the combinations converge with the optimum but
the systems do show improvement. The cause of this stems
from the systems inability to learn the correct model. There
also exist a bit of concern about mapping vectors leading
into and out of a state given the Markov assumption. These
attempts are all geared toward finding predictable solution
in an extremely large solution space.

Khosla [?] uses evolutionary algorithms for Weapon Allo-
cation and Scheduling (WAS). In this domain two param-
eters are optimized, Threat Kill Maximization (TKM) and
Asset Survival Maximization (ASM) reflecting. Determin-
istic and stochastic (GA) approaches are employed with in-
teresting results. A technique of utilizing a single objective
genetic algorithm (GA) successfully accomplished dynamic
environment reaction in [?]. There are several approaches to
developing SO vehicle swarm controllers using genetic pro-
gramming (GP) [?]. Woolley’s [?] defines a control struc-
ture called the Unified Behavior Framework (UBF) which
constrains the GP, with consistent success in a constrained
problem.

Overall, these research efforts reflect the intractable com-
plexity of the problem domain space and generally heavy
computational demands. Many of the mentioned techniques
simply constrain or approximate the solution space and then
search stochastically. Thus, it is desired to find simple be-
haviors sets and relations between them to allow lighter com-
putational processing.

2.2 Rule Based Behavior Archetypes
In addressing this large and dynamic UAV swarm prob-

lem domain, self-organization (SO) is employed in the de-
velopment of a computational system called Swarmfare [?].
Swarmfare is our initial animated simulation of UAV swarms
using formation control and individual rules sets that gener-
ate desired swarm behaviors. These rules sets are developed
in such a way that all solutions are feasible in sub-domains.

In the case of Swarmfare, the system gathers these rules to-
gether to form behavioral archetypes (BAs). Through these
groupings the rules are weighted and applied to establish
each subsequent action. This is similar to the modes in
Rosenblatt’s architecture [?]. Note that Swarmfare initially
used a set of neural-network perceptrons to form the con-
trol agent and find the appropriate BA to use at a precise
moment; but response to new unknown environments was
limited. The open scheme of BAs allows for more flexibil-
ity and quick response with different variations given the
dynamic environment.

SO Rules Utilized The Swarmfare simulation system cur-
rently combines 10 rules to define each BA:

• Flat Align - vector align with neighbors

• Separation - Cluster Range away

• Cohesion - Cluster range towards

• Obstacle Avoidance

• Evade - a priori collision detection and avoidance

• Target Orbit - orbit target at safe distance

• Attract - towards center of mass of all targets

• Weighted Attract - towards closest target

• Target Repel - repel if with 90% of UAV sensor range

• Weighted Target Repel - repulsion based on proximity

The ten rules are derived from generic swarm and tar-
get interactions. The core five swarm rules, flat align, sep-
aration, cohesion, obstacle avoidance and evade are from
Reynolds work [?,?]. The orbit stems from Lua’s work [?].
The target driven rules, attract (and weighted), repel (and
weighted), and orbit are derived. Attract and repel tries to
form a balance of aggression and respect towards targets.
Each rule is weighted differently depending on the makeup
defined by BAs of the agent.

3. SPECIFIC SWARM PROBLEM DOMAIN
A swarm of vehicles or agents moves through a space gov-

erned by basic physical and communication principles. The
space contains a set of obstacles and targets (physical or ab-
stractions). The targets are stationary but attack. The sen-
sor information and simple self-organization (SO) rules are
given to each individual vehicle or agent. The rule set and
interaction amongst the vehicles creates emergent behav-
iors that allow the agents to swarm and attack the targets
nondeterministically. Our Swarmfare simulation includes a
UAV swarm animated simulation package that presents the
emergent behaviors for visual analysis.

The objectives of UAV swarms are two fold. First the
system must establish a Swarm formation. The intent of
this objective is to increase search effectiveness, safety, and
attack force. The second objective requires the swarm to
provide reconnaissance and successfully engage targets. The
goal is to maximized damage to the target and minimized
causalities in the swarm. All of this must occur while moving
through a hostile terrain environment.

1962

The correct control of the vehicles in this space results
from exacting combinations of the SO behavior set. The
arbitration of the behavior sets and weighings of those be-
haviors form the real solution space. Search through that
extremely large and volatile space requires advanced search-
ing techniques.

Modeling Constraints Many intersecting constraints exist
on the agents traversing a real-world domain. They include:

• Physical dynamics of the vehicles/agents (UAVs, robots)

• Physics constraints of not only the craft but munitions

• Agent sensor’s range constraints and uncertainty

• Comm bandwidth constraints and unreliability

• Geographic environment incursion on movement, sen-
sors, and communications

• Fog of battle (human or sensor blurring of reality)

• Friction of battle (movement in the wrong direction)

All of these real-world constraints if hidden create a sce-
nario where relying on incomplete state details can cause
unknown incompatibility problems. As a result the system
and simulation can only function with a restricted amount
of validity compared to the real world. However in SO de-
composition, the systems are biologically inspired. This cre-
ates juxtaposition between the human need to thoroughly
develop a hierarchical state model that represents exemplar
biological agents. With SO, we tend to steer away from
exact state modeling and allow the system to abstract the
states to the level needed for survival in the given domain.

4. FORMAL SYSTEM MODEL MAPPING
Mapping the meta-level UAV problem domain to a formal

model provides a high-level to low-level design process in
order to direct the unambiguous design of the autonomous
agent operators. The resulting design efforts of the high-
level model are then employed in an informal engineering
process that developments the low-level design and imple-
ments the UAV operators. This low-level model also in-
cludes the innovative integration of an evolutionary algo-
rithm to evolve a dynamic self-organized system with the
desired emergent behavior.

In this section we first discuss the formal high-level aspect
of the design process which requires explanation of several
critical elements. The targets and vehicles or agents have
sensors and interact through basic nearest neighbor commu-
nications, with epidemic transfer of information. As a result,
any agent in the space has only limited knowledge of its cir-
cumstances. As the agents move through the space, engage-
ment with the targets follows stochastic modeling and allows
for aggregation of forces. This creates a scenario where the
domain space changes rapidly and unpredictably. To reduce
the confusion and simplify the space, Markov assumptions
are used. Without global knowledge and the ability to pre-
dict the results of any single action, these assumptions indi-
cate a way to abstract the state.

For these reasons the problem domain falls under the cat-
egory of Partially Observable Markovian Decision Processes

(POMDP). A POMDP is made of the tuple shown in equa-
tion ??, which includes the state set (S), action set (A),
transaction set between states (T), observations (O) and
feedback mechanism (R).

D(S, A, T, O, R) (1)

The expansive problem domain space of POMDPs forces
the reduction of the state into more abstract pseudo states
for the ease of understanding. Thus, we have extended the
mapping of this specific swarming problem (target engage-
ment) to a POMDP model [?]. The complexity is defined
by the size of the swarm of agents or vehicles and targets
and the domain. The complexity of the global problem is
loosely based on the number of agents, n, and the action,
m2 (movement in the map), and transaction possibilities, tp,

resulting in O(ntpm2

); a NPC problem.
Given that no scenario encountered is the same, it is im-

possible to articulate the search space entirety or control
search based on the immense state space created by the
POMDP model. This phenomenon forces the need for a
probabilistic behavior model. Using self-organized behaviors
the system can abstract the state and respond to it appro-
priately in polynomial time. This abstraction forces sets of
abstract states that dictate modes and behavior structures.
As a result the system needs discrete sets of behaviors with
different control weights that allow the flexibility to move in
this abstracted state which is presented in Section ??.

Interactive Partially Observable Markov Decision Process

An extension of POMDP models focuses on the application
of the Markov assumptions to independent agents with inde-
pendent actions. There are three approaches to this subset
of the model. The first defined by Bernstein [?], is the De-
centralized POMDP. It specifically articulates actions and
Observation sets for each individual agent. The second by
Boutilier [?], called the Multiagent MDP, also specifically ar-
ticulates the the set of actions for all agents. The Interactive
POMDP Interactive Partially Observable Markov Decision
Process (I-POMDP) used by Doshi [?] specifically defines
the state transitions of each agent based on the probability
of the interactions with other agents. We selected the Doshi
model. His approach focuses the agent actions based on its
knowledge base and behavior set independent of the entirety
of the domain.

Equation ?? shows the tuple defined by I-POMDP [?].
This approach focuses on decoupling agents acting in the
same environment by adding belief of the effects of interac-
tion to the state.

I − POMDPi = 〈ISi, A, Ti, Ωi, Ri〉 (2)

ISi defines the interactive effect of the agents on each
others state through ISi = S×Θj . The belief state of other
agents Θj derives from Equation ??.

Θj = 〈bj , A, Ωj , Tj , Oj , Rj , OCj〉 (3)

The elements of this belief state derive from the POMDP
but focus on the agent j. The OCj outlines the optimum
criterion for the agents. This representation mirrors the ac-
tuality of the simulation and the stochastic nature of inter-
action and transitions. Through the POMDP the totality
of the domain is represented and the I-POMDP instantiates
the domain model of the individual agent and ties the two
formal models together.

1963

From the problem domain mathematical model (I-POMDP)
stem system decomposition. Figure ?? presents the overall
approach with an innovative ‘U’-decomposition. Engineer-
ing a system starts with the domain understanding provided
by the math model. The problem model decomposes into
simple implementable rule sets. From those rule sets control
structures relating the rules are formed. With that struc-
ture in place the behaviors emerge and the system receives
feedback at the functional level and returns it to the rule
set [?]. Thus in the development process, the abstract for-
mal structure is used to drive the detailed lower-level design
and implementation issues.

Figure 1: ’U’-Decomposition Technique for Devel-
oping Self Organized Systems [?]

5. SWARM BEHAVIORAL CONTROL
The evolutionary algorithm (a genetic algorithm) is dis-

cussed then the decomposition of the new rule sets and re-
sulting control structure are outlined. Figure ?? shows the
data flow, where a genetic algorithm (GA) attempts to op-
timizes control and rule weights. The controller arbitrates
between behavior sets (BAs) and the movement vector re-
sults for the specific BA rules and their associated weights.
In order to find the proper control set for the vehicle or agent
swarm behavioral rules, weights must be applied. Thus, a
search technique must be chosen to attempt to “optimize”
these weighings using a stochastic search technique. The
swarming problem and algorithm domain is expanded into
the multi-objective problem (MOP) realm and thus, employ-
ing a multi-objective genetic algorithm (MOEA). Although
optimal solutions are desired, a stochastic algorithm such as
an evolutionary algorithm of course can not guarantee that
optimal solutions are found.

5.1 GA Chromosome & Operations
Formulation of the chromosome data structure derives

from the objective functions. In order to reach the objective
of target engagement, the system must produce emergent be-
haviors that aggregate the capabilities of the UAV or agent
in a swarm. The EA must control and integrate the SO rule
sets to form this emergent behavior. Therefore, the map-
ping of the chromosomes relates to the control parameters
or weighting of the rule sets.

Control Development Implementing the transactions de-
fined by the behavior set in Section ?? requires synergistic
integration of those behaviors. Behaviors are vector fields
that direct the agent’s movement, similar to that seen in [?].

Figure 2: Data flow in the high-level system [?].

Arbitration in the benchmark work uses a multi-layer per-
ceptron to chose between SO behaviors sets. The control
weighings for this structure are also include with the be-
haviors sets weights in the chromosome shown in Figure ??.
Each control weighing and corresponding behavior weight
set forms an adjacent sub-string in the chromosomes.

Given the multiplicity of states in an environment, mul-
tiple sets of rules or modes direct the swarm, shown in [?].
Therefore a control structure must be used to change the
mode. In this simulation environment a network of precep-
trons senses the current environment and does the arbitra-
tion between modes (BAs). These BAs allow the system to
dynamically develop several sets of weighings in order to re-
act to different situations. For example a chromosome with
three BAs and 9 rules would have 42 alleles. Several of these
sets form the full structure of the chromosome.

Figure 3: There is a connection weight for each sense
for each behavior archetype. These are followed by
12 genes which describe the weights and radii for
the behavior rules for each behavior archetype.

Figure ?? shows the representation used. The chromo-
some values are used to map the weighings of each rule.
Note that the evolutionary operators work on the bit level,
so in order to translate the chromosome values Gray coding
must be exploited. With Gray code the system minimizes
the effects of those operators, because the change of a single

1964

bit (genotype information) only changes the value of that
gene (phenotype information) step as well.

Fitness Function Description In order to define the fitness
function, we must first analyze the objective functions. At-
tack UAV swarms focus on destroying targets. A shortfall
of the previous version of Swarmfare was agent casualties
due to collision with other agents and obstacles were lim-
ited. Thus, in order to increase the effectiveness of attack,
the second objective of casualties was added to the original
damage objective. Equation ?? defines the values based on
successful engagement.

Dt = τdestroyed ∗ 100 + τdestruction ∗ 10 (4)

The second fitness function is the casualty rate, defined
in Equation ??:

Ct = νdamage ∗ 10 (5)

Here the damage received is multiplied by ten to keep
it in scalar concert with the damage inflicted. Complete
destruction of an agent results in a score of 100.

Generate Population Initialization uses a bit wise genera-
tion of each individual.

Evaluation of fitness Evaluation is accomplished through
simulation, which returns an average damage and casualty
score over a predetermined number of runs.

Crossover and Mutation Operators Particular to this GA
implementation are modified operators. In both instances an
entire BA gets modified. The complex form of the chromo-
some is particular to the given problem domain. This forces
the evolutionary operators to specifically address the points
at which changes are made. In mutation changes in alleles
happens in a single (BA) with both the control section and
behavior section of the chromosome. In this implementation
each part of each BA mutates.

Selection for next Generation The algorithm uses Elitist
for generational selection. With the space as diverse as it is
and the population and reproduction operators facilitating
high levels of exploration, elitist approach allows the algo-
rithm to exploit the good genes. Allowing both the ”best”
parents and children to continue to the next generation.

Classical MOEA Approach The Non-Dominated Sorting
Genetic Algorithm-II (NSGA-II) MOEA is chosen because
of its specific operators and structure of available software.
NSGA-II is used because of its fast-nondominated sort which
possesses a balance between exploitation and exploration
properties. [?] shows increasingly effective solutions while
maintaining a wider range, as compared to other MOEAs.

Because we desire that the NSGA-II minimizes the func-
tions, there had to be a slight modification in the objective
functions of Section ??. The system counts the damage in
negative points and the number of survival has been turned
into the number that is dead. This way both functions have
”better” lower values.

5.2 Self-Organized UAVs/Agents
In the natural world many systems develop through self-

organization (SO); emergent properties evolve as a result of
localized agent interaction sans global knowledge. [?, ?, ?]
This is the foundational impetus for a new self-organized
genetic algorithm.

There are three benefits using SO decomposition in com-
putational problems: ease of implementation, lowered com-

putations, and dynamic adaptation. Using SO implies find-

ing some set of behaviors from which a desirable structure

emerges. If done properly each agent’s behaviors can be
coded as simple rule sets (DNA view). Lower computational
cost stems all computations executing localized rule sets at
the agent level. Interaction and communications should also
be very localized. Finally dynamic response happens as an
emergent behavior. The behaviors do not restrict the system
to a script (a hierarchical a priori structure), but instead the
agents are capable of self-organized quick response to unpre-
dictable stimulus (environmental awareness) through those
rules.

What we desire is that the operations of a self-organized
genetic algorithm reflect the agent response in a dynamic
nature enabling more versatility and universality. To do
this we remove some of the restrictions, problem specific
constraint, and niche operators, and parameter tuning com-
monly used. [?] We attempt to finally bag that white rab-
bit by allowing the population to tell the algorithm what it
needs. With higher population commonality the algorithm
senses building blocks/genes with successful values and al-
lows them to thrive while still varying aspects with lower
known probabilities. When the problem space is first being
explored or in a state of high exploration the algorithm re-
sponse by continued exploration. To do this we modify the
highly varied world of recombination operators and add an
operator to sense the current genotype space acting upon
that information. Recombination has been studied exten-
sively spawning many different approaches to satisfy differ-
ent problem constraints [?].

Figure 4: Self Organized Gene and Allele Genetic
Algorithm, the SOGA

The new Self Organized Gene and Allele Genetic Algo-
rithm, SOGA, in Figure ?? shows the added operators and
modified genetic algorithm flow. The calculate step deter-
mines the Genotype Distribution Collection (GDC) in the
population to sense the entropy levels. The levels of en-
tropy define the role of exploitation versus exploration for
the rest of the algorithm. Information from the GDC facili-
tates evolution rate updates. The recombination step is also
modified to include knowledge gathered from the GDC. The
CAA operator also utilizes this information to interpolate
the attraction of each allele in the chromosome. And the
selection operator utilizes a new crowding distance operator
based on SO hierarchical approach.

Genetic Distribution Collection It simply utilizes a data

1965

structure, Γ, the same length of the chromosome to store the
highest likely value for an allele (bit) and the normalized
histogram weight of that value (double). This histogram
gives a reading to the system of overall entropy and also the
location of unstable alleles.

SOGA Crossover and Mutation First application of the
insight gained from the GDC allows the formation of the mu-
tation and crossover rates. By watching the changes in the
GDC from the last generation the system can determine the
amount of entropy in the population. With lower entropy
the system continues to maintain high levels of crossover
and mutation. Of course with the higher entropy the sys-
tem has moved into the exploitation phase of the algorithm
and does not require as much variance in the chromosomes.
Equations ?? and ?? shows the updating function for the
rates of mutation and crossover.

c =

∑chromolen
i=0

(Γi(t − 1) − Γi(t))

Γsize

(6)

m =

∑chromolen
i=0

(Γi(t − 1) − Γi(t))

Γsize

∗min((Γi(t−1)−Γi(t)! = 0)

(7)
Mitosis The second operator change comes in the recom-

bination step. The system recognizes when good building
blocks exist and attempts to perpetuate their existence. The
system analyzes the Γ level to determine the strength of each
allele in the crossover section. From that the system prob-
abilistically chooses between mitosis, which facilitates ex-
ploitation, and meiosis, which enables exploration, recom-
bination based on a SO threshold ̟. If the normalized
summation of the alleles in the crossover section is above
the threshold it chooses mitosis on the higher gene based on
that probability.

Correcting Allele Attraction The CAA utilizes that same
GDC information and exploits it to establish linkages be-
tween pairs or subset of disjoint alleles. As in the modi-
fied crossover, this operator allows the system to focus on
high exploitation when the population is diverse and solu-
tion likely unknown while exploiting known sets, building
blocks, or linkages. Here Γ analyzes every allele, and does a
replacement based upon probability from equation CAA.

Pchange(x|γ) = Γwi
∗ (Wc − Wn) (8)

Here both Wc and Wn are the normalized summation of
correct and incorrect mappings, respectively, between Γv

and ~at.
SOGA Selection Operator Selection in the natural world

stems from environmental pressures. In order to continue
place pressure on the population this algorithm uses a form
of elitism. SOGA utilizes the same fast-nondominated sort

as NSGA-II. However, the crowding operator uses a self-
organized ranking structure. First the neighborhood gets
defined dynamically by the size of the current population
space in all directions of every objective. Then the individ-
uals that qualify as neighbors use a SO ranking structure.
The remaining positions in the child population are filled
based on the ranking structure. This gives a distributed set
of the less fit individuals in a rank. When the higher ranks
become more crowded the algorithm pushes the individu-
als towards the less explored reaches of the front. Equation

Figure 5: Changing the allele is highlighted on the
top chromosome through the weighing of the GDC
shown below with the best known value and percent
certainty below it. The result of the GDC for correct
predictors (Wc) and non-correct predictors (Wn) is
normalized and added. The probability of change
is the product of incorrect prediction of the given
allele and that difference.

?? shows the formula for determining the probability of an
individual winning a hierarchical engagement.

Probiwin
=

1

1 + exp (fsup + (ranki − rankj))
(9)

Here fsup represents the number of fitness functions i
dominates j and ranki and rankj represents the current
rank of the individual. The ranks are all initialized to 1.

Figure 6: SO selection operator example. The inner
circles are the individuals in the population. The
outer circles represent the neighborhood. The Front
row individuals are kept because of their rank, the
others (moving from top left to bottom right in the
back row #: 1, 4, 5, and 7) individuals have the
highest levels in the SO hierarchy and are also kept.

With the selection operator applying pressure, the crossover
and mutation exploring, and the CAA acting as a self cor-
recting gyroscope the system finds a balance in exploitation
and exploration. With the inclusion of both parent and child
in the selection population, the algorithm allows good build-

ing blocks - genes to be carried not only by the new genetic
material but with the old chromosomes as well.

5.3 Advanced SO Swarm Control
This effort also focused on extending the combination of

the basic SO swarm controls outlined by Reynolds [?]. In
order to do this the problem domain must be decomposed
into sections that are implementable as low level rules which
spawn a desired emergent behavior. After simple swarm

1966

formation and reconnaissance capabilities were established
in [?], the next logical step is transitioning to a target area
and optimized target engagement. Two behaviors are de-
veloped to accomplish those: Migration and Bee-Inspired
Attack. These more advanced behaviors required a more
dynamic controller, the DE-Inspired Controller.

Migration The goal with migration is to develop the abil-
ity of the swarm to move fluidly and non-deterministically
through a set of waypoints. Migration happens at an in-
dividual level, feeding into the movement a vector headed
towards the closet waypoint. As a result the swarm moves
together without separating, through a rough environment
to achieve given waypoints.

Advanced Attack Attacking“en masse” is only marginally
effective in [?]. The major failure was the agents found them-
selves in situations where targets sets over powered them.
For this reason target engagement is decomposed into three
phases: target area reconnaissance, target deliberation, and
threshold based attack. In the first step each individual
agent approaches the target area collecting the local state
of the environment. Then the agents do individualized se-
lection of the most opportune target. Finally, the swarm
announces their choices and if the agents choice has enough
votes the attack ensues. The reconnaissance and threshold
voting come from Bee Hive selection as investigated by Viss-
cher [?]. Figure ?? shows the threshold decision process.

Figure 7: Attack is based on the number of agents
in the swarm, the location of the targets and the
number agents ready to engage.

Next Generation Controller In order to arbitrate over the
BAs in dynamic environments the DE-inspired controller is
developed [?]. This arbiter worked on the sensor defined
abstract domain space in order to choose the best BA. The
DE controller works with foci and governs a section of the
domain space through Equation ??, where I defines the foci
vector and BAw the weighings for that BA.

F =

√

∑ I2

k − BA2

k

BAwk

(10)

Given that the controller has the same data structure as

used by Differential Evolution, the DE mutation operator is
added to the GA. This produces a situation where each BA
has a local area of influence on the abstracted state space.
Thus, the ”standard” GA has been extended to the SOGA
which evolves a self-organized agent system.

6. DESIGN OF EXPERIMENTS & RESULTS
A set of experiments is defined with several data collec-

tion techniques to show effectiveness and efficiency of the
various approaches in a UAV problem domain. The ob-
jective of these tests is to compare the newly implemented
aspects to previous results. Specific experimental objectives
are discussed within each set of tests along with statistical
evaluation measures.

The system tests against the bench marks outlined in [?].
For this population of 60 it runs 60 generations, 5 times
with 30 simulations a piece. Every 10 generations it reaches
an epoch. At epochs the system loads sequentially more
difficult scenarios. Scenarios consist of a set of 20 UAVs,
with a group of targets inside a discrete domain 800 by 800.
The predator UAV flight dynamics are used to model the
UAVs in the 2D environment. Engagement happens proba-
bilistically with relative strengths of the targets and UAVs
defined. In each continuing epoch the scenario has more
targets with large engagement and sensor rings. This allows
the swarm time to develop the simple flocking before creat-
ing extremely dangerous situations for one individual agent.
Once the basic swarming behavior are evolved through this
first series of training, another set of attack specific scenarios
are run. This second set of tests gives the new controller and
advanced attack behavior a chance to ”flex” their muscle.

During the tests two sets of data are gathered. First the
system gives the mean and best scores for each generation.
An analysis of this shows the SOGA’s ability to generate
increasingly better solutions over time. Second, the system
outputs the populations for analysis of the Pareto fronts.
Analysis of the first data set indicates any difference through
a Kruskal-Wallis test. Analysis on the second data set uses
the hypervolume and ǫ-indicators on the final Pareto Front
because of the unknown PF true.

NSGA-II is tested through the original configuration de-
scribed in Section ??. Several iterative steps developed the
each aspect of the system, and at every stage improvement
is shown. Finally the system is run in the configuration de-
scribed in Section ??. Final testing includes a run of the
original 6 scenarios and then 8 more scenarios to specifically
design to exploit and compare the new control and attack
configurations.

Table ?? shows the statistical analysis of the fronts and
populations. The p-values leave no room for doubt in the
independence of populations! The hypervolume increase is
approximately 70% as well. The final front also dominates
the previous two fronts with an error of over 100 points. The
54.6 error indicator in the final front represents the previous
tests ability to find a solution that accomplishes nothing
without causalities.

There is a clear statistical difference in the system after
the addition of the new behaviors and controllers. The con-
troller provides more flexibility and more accurate transition
based on the state space. The added behaviors of migration
and bee-inspired attack give the system more effective tar-
get engagement. Thus, the statistical improvement in the
desired emergent agent behavior is achieved.

1967

Type NSGA-II SOGA Advanced
Control &
Behavior

P-value (obj 1) 0.0002 0.0002 -
P-value (obj 2) 0.0002 0.0003 -
Hypervolume 31301.71 34132.44 55061.76
Epsilon 130.6 170 54.6 (both)

Table 1: Statistical Comparison of Original and Ad-
vanced Setups

7. CONCLUSION
The goal of the investigation is to establish an autonomous

self-organized multi-vehicle or multi-agent swarm system with
emergent behavioral control structures that could perform
missions in complex dynamic environments. The initial as-
pect was to utilized a formal structure to model the agent
problem domain so as to develop a non-ambiguous lower
level operational model. The resulting lower level structures
are integrated with multi-objective evolutionary algorithms
to provide individual agent rule sets that are simple but ef-
fective and generate the desired SO emergent behavior. This
design process establishes an entangled hierarchical swarm
control architecture with self-organization. Statistical test-
ing reflected very satisfactory results. Future research is
focusing on using the formal model to prove convergence to
desired behavior characteristics as well as exploiting SO ca-
pabilities in a more generic bio-inspired realm. The intent
is to eventually integrate such a autonomous system model
into ”small” unmanned aerial vehicles in continuing develop-
mental efforts.

Acknowledgment
This effort is in support of the AFIT Advanced Navigation
Technology (Ant) Center. The sponsors of this research are
the Air Force Research Laboratory (AFRL) Information Di-
rectorate (Dr. Robert Ewing) and the Sensors Directorate -
Virtual Computing Laboratory (Mike Foster).

1968

