
 On the Effects of Node Duplication
and Connection-Oriented Constructivism in Neural XCSF

Gerard David Howard
Department of Computer Science
University of the West of England

Frenchay, Bristol, UK
+44 (0)117 965 6261

gerard2.howard@uwe.ac.uk

Larry Bull
Department of Computer Science
University of the West of England

Frenchay, Bristol, UK
+44 (0)117 965 6261

larry.bull@uwe.ac.uk

ABSTRACT
For artificial entities to achieve high degrees of autonomy they
will need to display appropriate adaptability. In this sense
adaptability includes representational flexibility guided by the
environment at any given time. This paper presents the use of
constructivism-inspired mechanisms within a neural learning
classifier system which exploits parameter self-adaptation as an
approach to realize such behavior. Various network
growth/regression mechanisms are implemented and their
performances compared. The system uses a rule structure in
which each is represented by an artificial neural network. It is
shown that appropriate internal rule complexity emerges during
learning at a rate controlled by the system.

Categories and Subject Descriptors
I.2.6 [Artificial Intelligence]: Learning – knowledge acquisition,
parameter learning, connectionism and neural nets.

General Terms
Experimentation.

Keywords
Constructivism, Learning Classifier Systems, Neural Networks,
Reinforcement Learning, Self-Adaptation.

1. INTRODUCTION
The neural constructivist (NC) [17] explanation for the emergence
of reasoning within brains postulates that the dynamic interaction
between neural growth mechanisms and the environment drives
the learning process. This is in contrast to related evolutionary
selectionist ideas which emphasize regressive mechanisms
whereby initial neural over-connectivity is pruned based on a
measure of utility [7]. The scenario for constructivist learning is
that, rather than start with a large neural network, development
begins with a small network. Learning then adds appropriate
structure, particularly through growing/pruning dendritic
connectivity, until some satisfactory level of utility is reached.

Suitable specialized neural structures are not specified a priori;
the representation of the problem space is flexible and tailored by
the learner's interaction with it. We are interested in the feasibility
of a constructive approach to realize flexible learning within
Learning Classifier Systems (LCS) [10], exploiting its genetic
algorithm (GA) [9] foundation. In this paper we present a form of
neural LCS [2] based on XCSF [25]. In particular, we explore the
success of extensions to the XCSF-based neural LCS, N-
XCSF[11], including node duplication and a connection-oriented
neural constructivism scheme, on a real-valued version of a well-
known maze task. The main differences between XCSF and N-
XCSF are that, in N-XCSF, a neural network is used in place of
the condition-action pair, and self-adaptive mutation parameters
are included.

We shall refer to the four systems presented using the following
nomenclature: neural constructive XCSF (ncN-XCSF), neural
constructive XCSF with node duplicaton (ncN-XCSFd), and
neural constructive XCSF with duplication and connection
constructivism (ncN-XCSFdc / ncN-XCSFdce / ncN-XCSFdcτ).
To our knowledge, this is the first comparative study of the above
constructivism mechanisms that uses N-XCSF as a basis. The
paper is ordered as follows: the next section provides a brief
overview of related work. Section 3 describes the
implementations of the various systems. Section 4 presents the
results of ncN-XCSF in solving a well-known maze environment,
and compares the results with the same experiments attempted by
ncN-XCSFd, and variants of ncN-XCSFdc. Section 5 draws
conclusions from the results and suggests directions for future
work.

2. RELATED WORK
The use of constructivism within neural learning classifier
systems was first described by Bull [3], using Wilson’s ZCS [23]
as a basis. Hurst and Bull [12] later extended this work to include
parameter self-adaptation and used it for real mobile robot
control. In both cases it is reported that networks of different
structure evolve to handle different areas of the problem space,
thereby identifying the underlying structure of the task. An
overview of the effects of various methods of neural
constructivism applied to the traditional evolution of single neural
networks can be found in [20].

As we are experimenting with rules based on neural networks,
work on alternate representations which compute actions based on
inputs are closely related: fuzzy logic (e.g., see [6] for an

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
GECCO’08, July 12–16, 2008, Atlanta, Georgia, USA.
Copyright 2008 ACM 978-1-60558-131-6/08/07…$5.00.

1977

overview); Lisp S-Expressions [1]; and parameterized functions
[14, 26].

3. IMPLEMENTATION

3.1 Maze environment
The mazes in traditional LCS research are encoded as binary
strings that represent the local topology of the maze. The length
of the string depends upon the number of exclusive object types
represented in the maze. For example, a maze with three
exclusive object types requires each object to be represented by
two bits (e.g. 00 = empty, 01 = obstacle, 11=food) giving a 16-bit
string representing the eight cells surrounding the agent. The
maze environment used in this paper is the benchmark
Maze4[15]. Performance is chiefly gauged by a “Step-to-goal”
count – the number of discrete movements required to reach the
goal state from a random starting position in the maze. In Maze4
the optimal figure is 3.5; Figure 1 shows the layout. Here, “O”
represents an obstacle, “*” an empty space and “G” the goal state.

O O O O O O O O

O * * O * * G O

O O * * O * * O

O O * O * * O O

O * * * * * * O

O O * O * * * O

O * * * * O * O

O O O O O O O O

Figure 1. The Maze4 Environment

3.2 A Neural XCSF
In XCSF [25], a classifier’s prediction (that is, the reward a
classifier expects to gain from executing its’ action based on the
current input state), is computed. This attempts to alleviate a
drawback of XCS (e.g., [24, 5]); that a classifier’s prediction is
constant in the entire problem subspace covered by its condition,
which can limit generalization capabilities. Utilizing XCSF may
lead to the discovery of classifiers within the population that
generalize not only within a payoff level, but also between payoff
levels.

Adapting the work of Bull and O`Hara [2], a number of changes
were made to the standard XCSF algorithm to accommodate the
use of artificial neural network rules. As in [3], we use multi-
layered perceptrons (MLPs) [19] in place of ternary strings.
Firstly, the environmental representation was altered - the binary
string normally used to represent a given state S is replaced with a
real-valued counterpart in the same way as in [3]. That is, each
exclusive object type the agent could encounter is represented by
a random real number within a specified range ([0.0, 0.1] for free

space, [0.4, 0.5] for an obstacle and [0.9, 1.0] for the goal state).
This bounded randomness attempts to loosely emulate the sensory
noise that a real robot invariably encounters whilst also increasing
the difficulty of learning the environment.

The real-valued input vector, S, is processed by each member of
[P] in turn. Each classifier is represented by a vector that
represents the connection weights of an MLP. Each weight is
initialized randomly as a uniform number in the range [-1, 1].
Each network is fully connected, and comprises of 8 input
neurons, representing the environmental state in the 8 directions
surrounding the agent, a number of hidden layer neurons, which
varies between experiments, and 3 output neurons. The first two
output neurons represent the strength of action passed to the left
and right motors of the robot respectively, and the third output
neuron is a “don’t-match” neuron, that excludes the classifier
from the match set if it has the highest activation of the three.
This is necessary as the action of the classifier must be re-
calculated for each state the classifier encounters, so each
classifier “sees” each input. A sigmoid function is used to
constrain the MLP output node values between 0 and 1.

The outputs at the other two neurons (real numbers) are mapped
to a discrete movement in one of eight compass directions. This
takes place similarly to [3], where three ranges of discrete output
are possible: 0.0<x<0.4 (low), 0.4<x<0.6 (medium), and
0.6<x<1.00 (high). The unequal partitioning is used to counteract
the insensitivity of the sigmoid function to values within the
extreme reaches of its range. The combined actions of each
motor translate to a discrete movement according to the two
motor output strengths – (high, high) = north, (high, med) =
northeast, (high, low) = east, and so on. It should be noted that
the final two motor pairings – (low, medium) and (low, low) both
produce a move to the northwest. Covering is achieved by
repeatedly generating random MLPs with a single hidden layer
neuron (unless otherwise stated), until the MLP’s action matches
the desired output for a given input state. After each matching
classifier’s action is determined an action selection policy is
invoked and all classifiers that advocate the chosen action form
[A]. If the goal state is found, reward is distributed as in XCS and
the task is reset.

At the start of each experiment, the classifiers’ prediction
components (linear approximators) are initialized with a weight
vector, w. This vector has one element for each input (8 in this
case), plus an additional element w0 which corresponds to x0, a
constant input that is set as a parameter of XCSF. Each vector
element is initialized as 0. At each time step, XCSF builds a
match set, [M], that consists of all classifiers that match the
current input. An action set is generated via the formation of a
prediction array. Each classifier prediction (cl.p) is calculated as a
product of the environmental input (or state, st) and the weight
vector (w) associated with each classifier, specifically:

These predictions are summed to form the prediction array as a
fitness-weighted average of all classifiers in the match set that
specify a given action. The prediction array is then used to decide
on an action to take (in our version, this is deterministic during an
exploit trial and roulette during an explore trial). The action is

1978

then performed and reward returned from the environment. All
other updating of the vector w is as described in [25].

GA crossover is removed, due to the potential competing
conventions problem and the difficulties associated with crossing
variable-length representations (although it is possible, e.g., see
[8, 13]).

Two further changes are employed to increase the efficiency of
the system. A mechanism known as teletransportation[15] is
enforced on both explore and exploit trials, to ensure that the
agent is exposed more evenly to different areas of the
environment. Teletransportation imposes a timeout on the
system, resetting the trial if the agent has not reached the goal
state after 50 discrete movements. Additionally, as noted, as
explore trial is based on roulette wheel selection rather than
random action selection, to discourage time-wasting movements
by the agent; we envisage using the system on a real robot in the
near future [22].

We apply self-adaptation as in [4], to dynamically control the
amount of genetic search (the frequency of mutation events)
taking place within a given niche. This provides stability to parts
of the problem space that are already “solved” as the mutation
rate for a niche is typically directly proportional to its distance
from the goal state during learning; generalization learning, along
with the value function learning, occurs faster nearer the goal
state. Self-adaptive mutation is here applied as in [12], where the
µ value of each classifier is initialized uniformly randomly in the
range [0,1]. During a GA cycle, a parent’s µ value is modified in
the following way before being copied to its offspring: µ µ * e
N(0,1), with the result being clipped to the range [0,1]. The
offspring then applies its own µ to itself before being inserted into
the population.

In each experiment (unless stated to be otherwise), each classifier
begins with one fully-connected hidden layer neuron; appropriate
complexity is grown through constructivism at a rate determined
by the self-adaptive parameters of the system.

4. EXPERIMENTATION
Each experiment consists of 100,000 trials, each consisting of one
exploration cycle and one exploitation cycle. Parameters used are
(using notation from[25]) N=7000, β=0.2, γ= 0.71, ε0= 10, ν=5,
θGA = 25, σ= 0.1.; additionally the experimentally-determined x0
parameter is set to 10 and the correction rate η to 0.2. Each
experiment is repeated 10 times, and the results are averaged for
all parameters.

4.1 ncN-XCSF
Implementation of NC in this system is based on the work of
Hurst and Bull [12]. Each rule has a varying number of hidden
layer neurons (initially 1, and always > 0), with additional
neurons being added or removed from the hidden layer depending
on the constructivism element of the system. Constructivism
takes place during discovery, after mutation. Two new self-
adaptive parameters, ψ and ω, are added. Here, ψ represents the
probability of performing a constructivism event and ω is the
probability of adding a neuron, with removal occurring with
probability 1- ω. As with self-adaptive mutation, both are initially
randomly generated uniformly in the range [0,1]. Offspring
classifiers have their parents’ ψ and ω values multiplied by eN(0,1)

during reproduction, and are clipped to the range [0,1]. Much like
self-adaptive mutation, this has the potential to give a gradient to
the amount of constructivism that takes place within any given
niche, with the effect of keeping optimal/fit solutions stable whilst
altering non-optimal niches more frequently until they reach
optimality. A constructivism event either adds a randomly created
node or removes the last added node depending upon the
satisfaction of ω. The performance of ncN-XCSF can be seen in
Figure 2(a). Initially, the seen instability was attributed to a
possible difficulty encountered by ncN-XCSF in growing
solutions of sufficient complexity in a noisy maze environment.
To test this hypothesis, we increased the starting number of
hidden layer nodes to 2, so as to reduce the amount of network
growth that would be necessary to reach a solution. Figure 3(a)
shows that this has eliminated the problem to a degree. Figure
3(b) shows how the average number of hidden layer nodes has
decreased from 2 to around 1.5. It is postulated that, if left for a
longer period, the average number of nodes seen in Figures 2(b)
and 3(b) would converge.

(a)

(b)

(c)

Figure 2. ncN-XCSF 1 node (a)performance (b) connected

nodes (c) average self-adaptive values

1979

(a)

(b)

(c)

Figure 3. ncN-XCSF 2 nodes (a) performance, (b) average
hidden layer size and (c) average self-adaptive values

The fact that the system is optimal for large periods of time
suggests that some disruption is causing the divergence from
optimality. One possible explanation is that the addition/removal
of fully-connected neurons due to constructivism, alongside the
prediction computation, creates some interaction of variables that
is detremental to the performance of the system. That is, the
impact of adding or removing a neuron is large enough in some
cases to disrupt the accuracy of the prediction computation. A
recent study undertaken into the evolvabiltiy of various structural
mutations [20] in single networks suggests various methods to
lessen disruption in general caused by constructivism. We base
our implementation of potential solutions on this work.

4.1.1 ncN-XCSF with Duplication
(ncN-XCSFd)
Within the constructivist framework, node duplication refers to
the process of copying of a pre-existing node rather than
randomly generating a new nodes’ connection weights during a

node addition event. The biological plausibility of a duplication-
based approach to constructivism is examined in [16], which
highlights the importance of a cycle of duplication followed by
divergence to evolution in nature. Empirical evidence of the
benefits of duplication can be seen in [21], where a duplication
scheme is used to improve the performance of an Evolutionary
Strategy (ES) [18] to optimise multi-modal fitness functions.

Previously, new neurons were added with random weights in the
range [-1,1], which could create large changes in the functionality
of the network. Now, during a constructivism event, one of the
offsprings’ hidden neurons is selected at random, duplicated,
mutated using the classifiers’ current value of µ, and added back
to its’ genome. In this way, much of the functionality in the new
neuron is comparable to that of the old neuron; exploration of the
solution space is slower but potentially less disruptive. Figure
4(a) shows that ncN-XCSFd is capable of optimal performance in
the real-valued Maze4. Comparison with Figure 3(a) shows a
faster descent to optimality, indicating that duplication during
constructivism is lessening disruption.

(a)

(b)

(c)

Figure 4. ncN-XCSFd (a)performance (b) connected nodes (c)
average self-adaptive values

1980

4.1.2 ncN-XCSFd with Connection-oriented
Constructivism (ncN-XCSFdc)
The addition of node duplication was previously used to reduce
disruption during a GA cycle. Although it has been shown that
duplication allows Maze4 to be solved optimally (Figure 4(a)), it
is unknown whether later, more complex versions of the system
will suffer from disruption that is too great for duplication to
offset. With this in mind, we return to [20], which suggests that an
enhanced approach may consider the use of constructivism at the
level of an individual connection, rather than a fully-connected
neuron. Results from the same paper show that a purely
connection-based constructivism approach produces highly
evolvable solutions. Further benefits include increased flexibility
owing to a more granular constructivism mechanism, and the
potential to evolve more compact solutions by disabling
superfluous connections within a network. It should be noted
however, that the comparisons presented in [20] analyse only
single mutation types. We present here a hybrid system,
incorporating both node constructivism and connection
constructivism simultaneously.

A connection-oriented scheme is implemented as follows: each
network connection is assigned a Boolean flag, which may be 0
(connection disabled) or 1 (connection enabled). Any disabled
connections have their weights set to 0 so that they do not
influence the result of the MLP calculation, and during a GA
cycle are not viable candidates for mutation (so that their 0-value
may not change unless they are enabled). Flags may be
“switched” during reproduction, with a new self-adaptive
parameter τ (applied in the same way as µ, ψ and ω) governing
the probability that a flag is switched. If a connection is disabled
then subsequently enabled, its new weight is randomly generated
uniformly in the range [-1,1].

Neuron addition and removal are unchanged; when a MLP is
generated (i.e., through cover) or modified (i.e., through node
addition), all connection flags are set to 1 by default. It should be
noted that, although connections may be enabled or disabled, they
may never exceed the number of connections in the fully-
connected network (new connections will not bypass the hidden
layer).

(a)

(b)

(c)

(d)

(e)

Figure 5. ncN-XCSFdc (a)performance (b) connected nodes
(c) average self-adaptive values (d) value of τ and (e) average

enabled connections.

1981

As Figure 5(a) shows, the use of connection-oriented
constructivism allows the system to solve Maze4 optimally, and
slightly quicker than ncN-XCSFd. The adaptation of the newest
constructivism parameter, τ, can be seen in Figure 5(d), with the
average percentage of enabled connections per classifier shown in
Figure 5(e). It is thought that for a neural representation to
function, information from all surrounding locations is needed to
make an accurate decision with regards to movement in the maze
(i.e. keeping a Markov problem structure). Experimental results
show that almost all connections are enabled in the first layer
(between input and hidden neurons), compared with fewer in the
second layer (between hidden and output neurons). This has the
effect of preserving the problem structure and allows a stable
solution to be evolved.

4.1.2.1 Alternate methods of connection-oriented
constructivism
As Figure 5(e) shows, only around 40% of the available
connections need to be enabled for the system to reach an optimal
solution. It is therefore suggested that fully-connected node
addition during neuron addition could also be detrimental to the
performance of the system, compared to schemes where less
connection pruning may be required. This section considers the
use of two such schemes; firstly, where node constructivism adds
a node whose connections are initially enabled or disabled with
equal probability (ncN-XCSFdce), and secondly where the
probability of a connection being initially disabled is equal to the
classifiers’ current value of τ (ncN-XCSFdcτ). Specifically,
under ncN-XCSFdce, a flag for a new connection is enabled with
a probability of 0.5 upon node creation, else it begins disabled.
Similarly, ncN-XCSFdcτ flags are enabled with a probability
equal to (1 – τ) upon node creation, and hence disabled with
probability τ. In both systems, connection constructivism is used
in two places within a GA cycle; during mutation, and during
node addition.

(a)

(b)

(c)

(d)

Figure 6 ncN-XCSFdce (a) Steps to goal (b)
connected neurons (c) value of τ (d) average percentage

enabled connections

Comparison of Figures 6(d) and 7(d) shows that ncN-XCSFdce is
capable of generating significantly smaller solutions than ncN-
XCSFdcτ, with around 5% fewer enabled connections utilized.
Figure 6(a) shows that ncN-XCSFdce reaches stability roughly
5000 trials before ncN-XCSFdcτ, as well as using fewer neurons
in its’ overall solutions (~1.7 compared to ~2.2). A possible
explanation for the performance disparity is that using τ to govern
neuron connections during node constructivism and connection-
constructivism events ties too much significance to one
parameter, robbing the system of some of the versatility that a
random approach can yield.

If a node constructivism event occurs when τ is a very low value,
the probability of altering the neuron is so small that connection
constructivism will have negligible impact on the solution
(although by this point, around 55,000 trials, the solution is
generally stable). Conversely, a random approach allows more
flexibility at the beginning of an experiment, allowing the
problem space to be more widely searched, whilst still allowing
self-adaptation of τ to tailor the rate of connection constructivism
during mutation. Intrinsically, the rate of connection
constructivism during node addition is governed by both the
probability of a node constructivism event occurring, (ψ), and the
probability of adding a node, (ω), as both are prerequisites to a
connection constructivism event occurring. ncN-XCSFdc is most
similar to ncN-XCSFdce (compare the similarities between Figure
4(a) and 6(a), and Figure 4(b) and 6(b)). Figure 6(b) contrasts
Figure 7(d), showing that ncN-XCSFdce evolves less-connected
solutions (~38% compared to ~30%), and hence simpler neural
representations.

1982

(a)

(b)

(c)

(d)

Figure 7. ncN-XCSFdcτ (a) Steps to goal (b)
connected neurons (c) value of τ (d) average percentage

enabled connections

5. CONCLUSIONS
We have shown that a self-adaptive and constructive neural XCSF
can perform optimally in noisily-encoded real-valued versions of
two well-known simulated maze environments. The system
evolves a population of MLPs to cover the problem space, the
result being a complete payoff map of the problem space, where
one classifier can cover multiple homogenous regions.
Furthermore, using the prediction computation of XCSF, we have
seen that one MLP can cover several disparate regions of the
problem space, typically where the action required is identical,
but the payoff levels are different.

In our studies we have investigated various methods of
constructivism and highlighted, from a performance standpoint,
the benefits and drawbacks of each. It has been demonstrated that
fully-connected neurons are not required to solve the Maze4
environment, and optimal solutions have been presented that
display as little as 30% neuronal connectivity, which reduces the
number of calculations necessary per classifier. We have come to
the conclusion that connection-oriented schemes allow for more
granular (and therefore less disruptive) network mutations than
schemes based purely on fully-connected node addition/removal.
We have also shown the benefits of node duplication as opposed
to random node addition, especially with respect to lessening
disruption in the XCSF prediction computation. Further work
includes a move from discrete to continuous maze environments,
and later implementing this work on a real robot platform.

6. REFERENCES
[1] Ahluwalia, M. & Bull, L. 1999. A Genetic Programming

Classifier System. In W. Banzhaf, J. Daida, A.E. Eiben,
M.H. Garzon, V. Honavar, M. Jakiela & R.E. Smith (eds)
Proceedings of the Genetic and Evolutionary Computation
Conference – GECCO-99. San Mateo, CA: Morgan
Kaufmann, pp11-18.

[2] Bull, L. & O’Hara, T. 2002. Accuracy-based Neuro and
Neuro-Fuzzy Classifier Systems. In W.B. Langdon,
E.Cantu-Paz, K. Mathias, R.Roy, D.Davis, R.Poli, K.
Balakrishnan, V. Hanavar, G. Rudolph, J. Wegener, L. Bull,
M.A. Potter, A.C. Schultz, J.F.Miller, E.Burke & N. Jonoska
(Eds.) GECCO 2002: Proceedings of the Genetic and
Evolutionary Computation Conference. Morgan Kaufmann.
pp905-911.

[3] Bull, L. 2002. On Using Constructivism in Neural Classifier
Systems. In Merelo, J, Adamidis, P., Beyer, H-G.,
Fernandez-Villacanas, J-L., & Schwefel, H-P. (Eds.) Parallel
Problem Solving from Nature – PPSN VII. Springer Verlag,
pp558-567.

[4] Bull, L., Hurst, J., & Tomlinson, A. 2000. Self-Adaptive
Mutation in Classifier System Controllers. In J-A. Meyer, A.
Berthoz, D. Floreano, H. Roitblatt & S.W. Wilson (Eds.)
From Animals to Animats 6 – The Sixth International
Conference on the Simulation of Adaptive Behaviour, MIT
Press.

[5] Butz, M. V., & Wilson, S. W. 2001. An Algorithmic
Description of XCS. In Lanzi, P. L., Stolzmann, W., and S.
W. Wilson (Eds.), Advances in Learning Classifier Systems,
LNAI 1996, pp. 253-272. Berlin: Springer-Verlag

1983

[6] Cordón, O., Herrera, F., Hoffmann, F. & Magdalena, L.
2001. Genetic Fuzzy Systems. Evolutionary Tuning and
Learning of Fuzzy Knowledge Bases. World Scientific.

[7] Edelman, G. 1987. Neural Darwinism: The Theory of
Neuronal Group Selection. New York: Basic Books.

[8] Harvey, I. 1992. Species Adaptation Genetic Algorithms: A
Basis for a Continuing SAGA. In F. Varela & P. Bourgine
(eds) Proceedings of 1st European Conference on Artificial
Life. MIT Press, pp346-354

[9] Holland, J.H. 1975. Adaptation in Natural and Artificial
Systems. University of Michigan Press, Ann Arbor.

[10] Holland, J.H. 1976. Adaptation. In R. Rosen & F.M. Snell
(Eds.) Progress in Theoretical Biology 4. New York:
Academic Press, pp263-293.

[11] Howard, D., Bull, L. & Lanzi, P-L. 2008. Self-Adaptive
Constructivism in Neural XCS and XCSF. In M. Keijzer et
al. (eds) GECCO-2008: Proceedings of the Genetic and
Evolutionary Computation Conference. ACM Press.

[12] Hurst, J. & Bull, L. 2006. A Neural Learning Classifier
System with Self-Adaptive Constructivism for Mobile Robot
Control. Artificial Life 12(3): 353 - 380

[13] Hutt, B.; Warwick, K. 2007. Synapsing Variable-Length
Crossover: Meaningful Crossover for Variable-Length
Genomes, Evolutionary Computation, IEEE Transactions on
, vol.11, no.1, pp.118-131

[14] Lanzi, P.L. & Loiacono, D. 2007. Classifier systems that
compute action mappings. In GECCO '07: Proceedings of
the 9th annual Conference on Genetic and Evolutionary
Computation, New York, NY, USA. ACM Press. pp1822-
1829.

[15] Lanzi, P.L. 1999. An Analysis of Generalization in the XCS
Classifier System. Evolutionary Computation 7(2): 125-149

[16] Maynard Smith, J. & Szathmary, E. 1995. The Major
Transitions in Evolution. W.H. Freeman

[17] Quartz, S.R. & Sejnowski, T.J. 1997. The Neural Basis of
Cognitive Development: A Constructionist Manifesto.
Behavioural and Brain Sciences 20(4): 537-596.

[18] Rechenberg, I. 1973. Evolutionsstrategie—Optimierung
technischer Systeme nach Prinzipien der biologischen
Evolution. Fommann-Holzboog, Stuttgart

[19] Rumelhart, D.E. & McClelland, J.L. 1986. Parallel
Distributed Processing. Cambridge, MA: MIT Press

[20] Schlessinger, E., Bentley, P. J. and Lotto, R. B. 2005.
Analysing the Evolvability of Neural Network Agents
through Structural Mutations. Proc. of European Conference
on Artificial Life (ECAL 2005), September 5-9, 2005,
Canterbury, UK.

[21] Schmitt, K. 2005. Using Gene Deletion and Duplication in
Evolution Strategies. In H-G. Beyer et al. (Eds) Proceedings
of the Genetic and Evolutionary Computation Conference
2005. ACM Press, pp919-920

[22] Studley, M. & Bull, L. 2006. Using the XCS Classifier
System for Multi-objective Reinforcement Learning
Problems. Artificial Life 13(1): 69-86.

[23] Wilson, S.W. 1994. ZCS: A Zeroth-level Classifier System.
Evolutionary Computation 2(1):1-18.

[24] Wilson, S.W. 1995. Classifier Fitness Based on Accuracy.
Evolutionary Computation, 3(2):149-175.

[25] Wilson, S.W. 2001. Function Approximation with a
Classifier System. In Spector, L., D., G. E., Wu, A.,
Langdon, W.B., Voight, H. M., and Gen, M., (Eds.)
Proceedings of the Genetic and Evolutionary Computation
Conference (GECCO 01) Morgan Kaufmann. pp 974-981

[26] Wilson, S.W. 2007. Three architectures for continuous action
Learning Classifier Systems. International Workshops,
IWLCS 2003-2005, Revised Selected Papers. In T. Kovacs,
X. Llorà, K. Takadama, P. L. Lanzi, W. Stolzmann, S. W.
Wilson (Eds.) Lecture Notes in Artificial Intelligence
(LNAI-4399),. Berlin, Springer-Verlag. pp. 239-257

1984

