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ABSTRACT 
For artificial entities to achieve high degrees of autonomy they 
will need to display appropriate adaptability. In this sense 
adaptability includes representational flexibility guided by the 
environment at any given time. This paper presents the use of 
constructivism-inspired mechanisms within a neural learning 
classifier system which exploits parameter self-adaptation as an 
approach to realize such behavior. Various network 
growth/regression mechanisms are implemented and their 
performances compared.  The system uses a rule structure in 
which each is represented by an artificial neural network. It is 
shown that appropriate internal rule complexity emerges during 
learning at a rate controlled by the system.   

Categories and Subject Descriptors 
I.2.6 [Artificial Intelligence]: Learning – knowledge acquisition, 
parameter learning, connectionism and neural nets. 

General Terms 
Experimentation. 

Keywords 
Constructivism, Learning Classifier Systems, Neural Networks, 
Reinforcement Learning, Self-Adaptation. 

1. INTRODUCTION 
The neural constructivist (NC) [17] explanation for the emergence 
of reasoning within brains postulates that the dynamic interaction 
between neural growth mechanisms and the environment drives 
the learning process. This is in contrast to related evolutionary 
selectionist ideas which emphasize regressive mechanisms 
whereby initial neural over-connectivity is pruned based on a 
measure of utility [7]. The scenario for constructivist learning is 
that, rather than start with a large neural network, development 
begins with a small network. Learning then adds appropriate 
structure, particularly through growing/pruning dendritic 
connectivity, until some satisfactory level of utility is reached. 

Suitable specialized neural structures are not specified a priori; 
the representation of the problem space is flexible and tailored by 
the learner's interaction with it. We are interested in the feasibility 
of a constructive approach to realize flexible learning within 
Learning Classifier Systems (LCS) [10], exploiting its genetic 
algorithm (GA) [9] foundation. In this paper we present a form of 
neural LCS [2] based on XCSF [25]. In particular, we explore the 
success of extensions to the XCSF-based neural LCS, N-
XCSF[11], including node duplication and a connection-oriented 
neural constructivism scheme, on a real-valued version of a well-
known maze task.  The main differences between XCSF and N-
XCSF are that, in N-XCSF, a neural network is used in place of 
the condition-action pair, and self-adaptive mutation parameters 
are included. 

We shall refer to the four systems presented using the following 
nomenclature: neural constructive XCSF (ncN-XCSF), neural 
constructive XCSF with node duplicaton (ncN-XCSFd), and 
neural constructive XCSF with duplication and connection 
constructivism (ncN-XCSFdc / ncN-XCSFdce / ncN-XCSFdcτ).  
To our knowledge, this is the first comparative study of the above 
constructivism mechanisms that uses N-XCSF as a basis.  The 
paper is ordered as follows:  the next section provides a brief 
overview of related work. Section 3 describes the 
implementations of the various systems. Section 4 presents the 
results of ncN-XCSF in solving a well-known maze environment, 
and compares the results with the same experiments attempted by 
ncN-XCSFd, and variants of ncN-XCSFdc.  Section 5 draws 
conclusions from the results and suggests directions for future 
work.  

2. RELATED WORK 
The use of constructivism within neural learning classifier 
systems was first described by Bull [3], using Wilson’s ZCS [23] 
as a basis. Hurst and Bull [12] later extended this work to include 
parameter self-adaptation and used it for real mobile robot 
control. In both cases it is reported that networks of different 
structure evolve to handle different areas of the problem space, 
thereby identifying the underlying structure of the task.  An 
overview of the effects of various methods of neural 
constructivism applied to the traditional evolution of single neural 
networks can be found in [20].   

As we are experimenting with rules based on neural networks, 
work on alternate representations which compute actions based on 
inputs are closely related: fuzzy logic (e.g., see [6] for an 
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overview); Lisp S-Expressions [1]; and parameterized functions 
[14, 26].   

3. IMPLEMENTATION 

3.1 Maze environment 
The mazes in traditional LCS research are encoded as binary 
strings that represent the local topology of the maze. The length 
of the string depends upon the number of exclusive object types 
represented in the maze. For example, a maze with three 
exclusive object types requires each object to be represented by 
two bits (e.g. 00 = empty, 01 = obstacle, 11=food) giving a 16-bit 
string representing the eight cells surrounding the agent. The 
maze environment used in this paper is the benchmark 
Maze4[15].  Performance is chiefly gauged by a “Step-to-goal” 
count – the number of discrete movements required to reach the 
goal state from a random starting position in the maze. In Maze4 
the optimal figure is 3.5; Figure 1 shows the layout.  Here, “O” 
represents an obstacle, “*” an empty space and “G” the goal state.  
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Figure 1. The Maze4 Environment 

 

3.2 A Neural XCSF 
In XCSF [25], a classifier’s prediction (that is, the reward a 
classifier expects to gain from executing its’ action based on the 
current input state), is computed. This attempts to alleviate a 
drawback of XCS (e.g., [24, 5]); that a classifier’s prediction is 
constant in the entire problem subspace covered by its condition, 
which can limit generalization capabilities. Utilizing XCSF may 
lead to the discovery of classifiers within the population that 
generalize not only within a payoff level, but also between payoff 
levels.   

Adapting the work of Bull and O`Hara [2], a number of changes 
were made to the standard XCSF algorithm to accommodate the 
use of artificial neural network rules. As in [3], we use multi-
layered perceptrons (MLPs) [19] in place of ternary strings. 
Firstly, the environmental representation was altered - the binary 
string normally used to represent a given state S is replaced with a 
real-valued counterpart in the same way as in [3]. That is, each 
exclusive object type the agent could encounter is represented by 
a random real number within a specified range ([0.0, 0.1] for free 

space, [0.4, 0.5] for an obstacle and [0.9, 1.0] for the goal state). 
This bounded randomness attempts to loosely emulate the sensory 
noise that a real robot invariably encounters whilst also increasing 
the difficulty of learning the environment.  

The real-valued input vector, S, is processed by each member of 
[P] in turn. Each classifier is represented by a vector that 
represents the connection weights of an MLP. Each weight is 
initialized randomly as a uniform number in the range [-1, 1].  
Each network is fully connected, and comprises of 8 input 
neurons, representing the environmental state in the 8 directions 
surrounding the agent, a number of hidden layer neurons, which 
varies between experiments, and 3 output neurons. The first two 
output neurons represent the strength of action passed to the left 
and right motors of the robot respectively, and the third output 
neuron is a “don’t-match” neuron, that excludes the classifier 
from the match set if it has the highest activation of the three.  
This is necessary as the action of the classifier must be re-
calculated for each state the classifier encounters, so each 
classifier “sees” each input. A sigmoid function is used to 
constrain the MLP output node values between 0 and 1.  

The outputs at the other two neurons (real numbers) are mapped 
to a discrete movement in one of eight compass directions.  This 
takes place similarly to [3], where three ranges of discrete output 
are possible: 0.0<x<0.4 (low), 0.4<x<0.6 (medium), and 
0.6<x<1.00 (high).  The unequal partitioning is used to counteract 
the insensitivity of the sigmoid function to values within the 
extreme reaches of its range.  The combined actions of each 
motor translate to a discrete movement according to the two 
motor output strengths – (high, high) = north, (high, med) = 
northeast, (high, low) = east, and so on.  It should be noted that 
the final two motor pairings – (low, medium) and (low, low) both 
produce a move to the northwest. Covering is achieved by 
repeatedly generating random MLPs with a single hidden layer 
neuron (unless otherwise stated), until the MLP’s action matches 
the desired output for a given input state. After each matching 
classifier’s action is determined an action selection policy is 
invoked and all classifiers that advocate the chosen action form 
[A].  If the goal state is found, reward is distributed as in XCS and 
the task is reset. 

At the start of each experiment, the classifiers’ prediction 
components (linear approximators) are initialized with a weight 
vector, w. This vector has one element for each input (8 in this 
case), plus an additional element w0 which corresponds to x0, a 
constant input that is set as a parameter of XCSF. Each vector 
element is initialized as 0. At each time step, XCSF builds a 
match set, [M], that consists of all classifiers that match the 
current input.  An action set is generated via the formation of a 
prediction array. Each classifier prediction (cl.p) is calculated as a 
product of the environmental input (or state, st) and the weight 
vector (w) associated with each classifier, specifically:   

 
These predictions are summed to form the prediction array as a 
fitness-weighted average of all classifiers in the match set that 
specify a given action. The prediction array is then used to decide 
on an action to take (in our version, this is deterministic during an 
exploit trial and roulette during an explore trial). The action is 
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then performed and reward returned from the environment. All 
other updating of the vector w is as described in [25].  

GA crossover is removed, due to the potential competing 
conventions problem and the difficulties associated with crossing 
variable-length representations (although it is possible, e.g., see 
[8, 13]).  

Two further changes are employed to increase the efficiency of 
the system. A mechanism known as teletransportation[15] is 
enforced on both explore and exploit trials, to ensure that the 
agent is exposed more evenly to different areas of the 
environment.  Teletransportation imposes a timeout on the 
system, resetting the trial if the agent has not reached the goal 
state after 50 discrete movements. Additionally, as noted, as 
explore trial is based on roulette wheel selection rather than 
random action selection, to discourage time-wasting movements 
by the agent; we envisage using the system on a real robot in the 
near future [22].  

We apply self-adaptation as in [4], to dynamically control the 
amount of genetic search (the frequency of mutation events) 
taking place within a given niche. This provides stability to parts 
of the problem space that are already “solved” as the mutation 
rate for a niche is typically directly proportional to its distance 
from the goal state during learning; generalization learning, along 
with the value function learning, occurs faster nearer the goal 
state. Self-adaptive mutation is here applied as in [12], where the 
µ value of each classifier is initialized uniformly randomly in the 
range [0,1]. During a GA cycle, a parent’s µ value is modified in 
the following way before being copied to its offspring:  µ  µ * e 
N(0,1), with the result being clipped to the range [0,1].  The 
offspring then applies its own µ to itself before being inserted into 
the population.   

In each experiment (unless stated to be otherwise), each classifier 
begins with one fully-connected hidden layer neuron; appropriate 
complexity is grown through constructivism at a rate determined 
by the self-adaptive parameters of the system. 

4. EXPERIMENTATION 
Each experiment consists of 100,000 trials, each consisting of one 
exploration cycle and one exploitation cycle. Parameters used are 
(using notation from[25]) N=7000, β=0.2, γ= 0.71, ε0= 10, ν=5, 
θGA = 25, σ= 0.1.; additionally the experimentally-determined x0 
parameter is set to 10 and the correction rate η to 0.2.  Each 
experiment is repeated 10 times, and the results are averaged for 
all parameters.   

4.1 ncN-XCSF 
Implementation of NC in this system is based on the work of 
Hurst and Bull [12]. Each rule has a varying number of hidden 
layer neurons (initially 1, and always > 0), with additional 
neurons being added or removed from the hidden layer depending 
on the constructivism element of the system.  Constructivism 
takes place during discovery, after mutation. Two new self-
adaptive parameters, ψ and ω, are added. Here, ψ represents the 
probability of performing a constructivism event and ω is the 
probability of adding a neuron, with removal occurring with 
probability 1- ω. As with self-adaptive mutation, both are initially 
randomly generated uniformly in the range [0,1]. Offspring 
classifiers have their parents’ ψ and ω values multiplied by eN(0,1) 

during reproduction, and are clipped to the range [0,1]. Much like 
self-adaptive mutation, this has the potential to give a gradient to 
the amount of constructivism that takes place within any given 
niche, with the effect of keeping optimal/fit solutions stable whilst 
altering non-optimal niches more frequently until they reach 
optimality. A constructivism event either adds a randomly created 
node or removes the last added node depending upon the 
satisfaction of ω.  The performance of ncN-XCSF can be seen in 
Figure 2(a). Initially, the seen instability was attributed to a 
possible difficulty encountered by ncN-XCSF in growing 
solutions of sufficient complexity in a noisy maze environment. 
To test this hypothesis, we increased the starting number of 
hidden layer nodes to 2, so as to reduce the amount of network 
growth that would be necessary to reach a solution. Figure 3(a)  
shows that this has eliminated the problem to a degree. Figure 
3(b) shows how the average number of hidden layer nodes has 
decreased from 2 to around 1.5.  It is postulated that, if left for a 
longer period, the average number of nodes seen in Figures 2(b) 
and 3(b) would converge. 
 

 
(a) 

 
(b) 

 
(c) 

 
Figure 2. ncN-XCSF 1 node (a)performance (b) connected 

nodes (c) average self-adaptive values 
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(a) 

 
(b) 

 
(c) 

Figure 3. ncN-XCSF 2 nodes (a) performance, (b) average 
hidden layer size and (c) average self-adaptive values  

 
The fact that the system is optimal for large periods of time 
suggests that some disruption is causing the divergence from 
optimality. One possible explanation is that the addition/removal 
of fully-connected neurons due to constructivism, alongside the 
prediction computation, creates some interaction of variables that 
is detremental to the performance of the system. That is, the 
impact of adding or removing a neuron is large enough in some 
cases to disrupt the accuracy of the prediction computation. A 
recent study undertaken into the evolvabiltiy of various structural 
mutations [20] in single networks suggests various methods to 
lessen disruption in general caused by constructivism. We base 
our implementation of potential solutions on this work. 
 

4.1.1 ncN-XCSF with Duplication 
(ncN-XCSFd) 
Within the constructivist framework, node duplication refers to 
the process of copying of a pre-existing node rather than 
randomly generating a new nodes’ connection weights during a 

node addition event.  The biological plausibility of a duplication-
based approach to constructivism is examined in [16], which 
highlights the importance of a cycle of duplication followed by 
divergence to evolution in nature. Empirical evidence of the 
benefits of duplication can be seen in [21], where a duplication 
scheme is used to improve the performance of an Evolutionary 
Strategy (ES) [18] to optimise multi-modal fitness functions.  

Previously, new neurons were added with random weights in the 
range [-1,1], which could create large changes in the functionality 
of the network.  Now, during a constructivism event, one of the 
offsprings’ hidden neurons is selected at random, duplicated, 
mutated using the classifiers’ current value of µ, and added back 
to its’ genome. In this way, much of the functionality in the new 
neuron is comparable to that of the old neuron; exploration of the 
solution space is slower but potentially less disruptive.  Figure 
4(a) shows that ncN-XCSFd is capable of optimal performance in 
the real-valued Maze4.  Comparison with Figure 3(a) shows a 
faster descent to optimality, indicating that duplication during 
constructivism is lessening disruption. 

 

 
(a) 

 
(b) 

 
(c) 

Figure 4.  ncN-XCSFd (a)performance (b) connected nodes (c)  
average self-adaptive values 
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4.1.2 ncN-XCSFd with Connection-oriented 
Constructivism (ncN-XCSFdc) 
The addition of node duplication was previously used to reduce 
disruption during a GA cycle. Although it has been shown that 
duplication allows Maze4 to be solved optimally (Figure 4(a)), it 
is unknown whether later, more complex versions of the system 
will suffer from disruption that is too great for duplication to 
offset. With this in mind, we return to [20], which suggests that an 
enhanced approach may consider the use of constructivism at the 
level of an individual connection, rather than a fully-connected 
neuron. Results from the same paper show that a purely 
connection-based constructivism approach produces highly 
evolvable solutions.  Further benefits include increased flexibility 
owing to a more granular constructivism mechanism, and the 
potential to evolve more compact solutions by disabling 
superfluous connections within a network.  It should be noted 
however, that the comparisons presented in [20] analyse only 
single mutation types.  We present here a hybrid system, 
incorporating both node constructivism and connection 
constructivism simultaneously. 

A connection-oriented scheme is implemented as follows:  each 
network connection is assigned a Boolean flag, which may be 0 
(connection disabled) or 1 (connection enabled). Any disabled 
connections have their weights set to 0 so that they do not 
influence the result of the MLP calculation, and during a GA 
cycle are not viable candidates for mutation (so that their 0-value 
may not change unless they are enabled). Flags may be 
“switched” during reproduction, with a new self-adaptive 
parameter τ (applied in the same way as µ, ψ and ω) governing 
the probability that a flag is switched. If a connection is disabled 
then subsequently enabled, its new weight is randomly generated 
uniformly in the range [-1,1].   

Neuron addition and removal are unchanged; when a MLP is 
generated (i.e., through cover) or modified (i.e., through node 
addition), all connection flags are set to 1 by default. It should be 
noted that, although connections may be enabled or disabled, they 
may never exceed the number of connections in the fully-
connected network (new connections will not bypass the hidden 
layer).   

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

Figure 5.  ncN-XCSFdc (a)performance (b) connected nodes 
(c) average self-adaptive values (d) value of τ and (e) average 

enabled connections. 
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As Figure 5(a) shows, the use of connection-oriented 
constructivism allows the system to solve Maze4 optimally, and 
slightly quicker than ncN-XCSFd. The adaptation of the newest 
constructivism parameter, τ, can be seen in Figure 5(d), with the 
average percentage of enabled connections per classifier shown in 
Figure 5(e). It is thought that for a neural representation to 
function, information from all surrounding locations is needed to 
make an accurate decision with regards to movement in the maze 
(i.e. keeping a Markov problem structure). Experimental results 
show that almost all connections are enabled in the first layer 
(between input and hidden neurons), compared with fewer in the 
second layer (between hidden and output neurons).  This has the 
effect of preserving the problem structure and allows a stable 
solution to be evolved. 

4.1.2.1 Alternate methods of connection-oriented 
constructivism 
As Figure 5(e) shows, only around 40% of the available 
connections need to be enabled for the system to reach an optimal 
solution. It is therefore suggested that fully-connected node 
addition during neuron addition could also be detrimental to the 
performance of the system, compared to schemes where less 
connection pruning may be required. This section considers the 
use of two such schemes; firstly, where node constructivism adds 
a node whose connections are initially enabled or disabled with 
equal probability (ncN-XCSFdce), and secondly where the 
probability of a connection being initially disabled is equal to the 
classifiers’ current value of τ (ncN-XCSFdcτ).  Specifically, 
under ncN-XCSFdce, a flag for a new connection is enabled with 
a probability of 0.5 upon node creation, else it begins disabled.  
Similarly, ncN-XCSFdcτ flags are enabled with a probability 
equal to (1 – τ) upon node creation, and hence disabled with 
probability τ. In both systems, connection constructivism is used 
in two places within a GA cycle; during mutation, and during 
node addition.   

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 6 ncN-XCSFdce  (a) Steps to goal (b) 
connected neurons (c) value of τ (d) average percentage 

enabled connections 
 

Comparison of Figures 6(d) and 7(d) shows that ncN-XCSFdce is 
capable of generating significantly smaller solutions than ncN-
XCSFdcτ, with around 5% fewer enabled connections utilized.  
Figure 6(a) shows that ncN-XCSFdce reaches stability roughly 
5000 trials before ncN-XCSFdcτ, as well as using fewer neurons 
in its’ overall solutions (~1.7 compared to ~2.2). A possible 
explanation for the performance disparity is that using τ to govern 
neuron connections during node constructivism and connection-
constructivism events ties too much significance to one 
parameter, robbing the system of some of the versatility that a 
random approach can yield.  

If a node constructivism event occurs when τ is a very low value, 
the probability of altering the neuron is so small that connection 
constructivism will have negligible impact on the solution 
(although by this point, around 55,000 trials, the solution is 
generally stable).  Conversely, a random approach allows more 
flexibility at the beginning of an experiment, allowing the 
problem space to be more widely searched, whilst still allowing 
self-adaptation of τ to tailor the rate of connection constructivism 
during mutation. Intrinsically, the rate of connection 
constructivism during node addition is governed by both the 
probability of a node constructivism event occurring, (ψ), and the 
probability of adding a node, (ω), as both are prerequisites to a 
connection constructivism event occurring.  ncN-XCSFdc is most 
similar to ncN-XCSFdce (compare the similarities between Figure 
4(a) and 6(a), and Figure 4(b) and 6(b)).  Figure 6(b) contrasts 
Figure 7(d), showing that ncN-XCSFdce evolves less-connected 
solutions (~38% compared to ~30%), and hence simpler neural 
representations. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 7. ncN-XCSFdcτ  (a) Steps to goal (b) 
connected neurons (c) value of τ (d) average percentage 

enabled connections 

5. CONCLUSIONS 
We have shown that a self-adaptive and constructive neural XCSF 
can perform optimally in noisily-encoded real-valued versions of 
two well-known simulated maze environments. The system 
evolves a population of MLPs to cover the problem space, the 
result being a complete payoff map of the problem space, where 
one classifier can cover multiple homogenous regions. 
Furthermore, using the prediction computation of XCSF, we have 
seen that one MLP can cover several disparate regions of the 
problem space, typically where the action required is identical, 
but the payoff levels are different.  

In our studies we have investigated various methods of 
constructivism and highlighted, from a performance standpoint, 
the benefits and drawbacks of each.  It has been demonstrated that 
fully-connected neurons are not required to solve the Maze4 
environment, and optimal solutions have been presented that 
display as little as 30% neuronal connectivity, which reduces the 
number of calculations necessary per classifier.  We have come to 
the conclusion that connection-oriented schemes allow for more 
granular (and therefore less disruptive) network mutations than 
schemes based purely on fully-connected node addition/removal.  
We have also shown the benefits of node duplication as opposed 
to random node addition, especially with respect to lessening 
disruption in the XCSF prediction computation. Further work 
includes a move from discrete to continuous maze environments, 
and later implementing this work on a real robot platform. 
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