
Recursive Least Squares and Quadratic Prediction in
Continuous Multistep Problems

Daniele Loiacono† and Pier Luca Lanzi†‡
†Artificial Intelligence and Robotics Laboratory (AIRLab)

Politecnico di Milano. P.za L. da Vinci 32, I-20133, Milano, Italy
‡Illinois Genetic Algorithm Laboratory (IlliGAL)

University of Illinois at Urbana Champaign, Urbana, IL 61801, USA

ABSTRACT
XCS with computed prediction, namely XCSF, has been re-
cently extended in several ways. In particular, a novel pre-
diction update algorithm based on recursive least squares
and the extension to polynomial prediction led to signifi-
cant improvements of XCSF. However, these extensions have
been studied so far only on single step problems and it is
currently not clear if these findings might be extended also
to multistep problems. In this paper we investigate this is-
sue by analyzing the performance of XCSF with recursive
least squares and with quadratic prediction on continuous
multistep problems. Our results show that both these ex-
tensions improve the convergence speed of XCSF toward an
optimal performance. As showed by the analysis reported
in this paper, these improvements are due to the capabili-
ties of recursive least squares and of polynomial prediction
to provide a more accurate approximation of the problem
value function after the first few learning problems.

Categories and Subject Descriptors
I.2 [Artificial Intelligence]: Learning

General Terms
algorithms performance

Keywords
learning classifier systems , recursive least squares, multistep
problems

1. INTRODUCTION
Learning Classifier Systems are a genetic based machine

learning technique for solving problems through the inter-
action with an unknown environment. The XCS classifier
system [16] is probably the most successful learning classi-
fier system to date. It couples effective temporal difference

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO’08, July 7–11, 2007, London, England, United Kingdom.
Copyright 2008 ACM 978-1-60558-131-6/08/07...$5.00.

learning, implemented as a modification of the well-known
Q-learning [14], to a niched genetic algorithm guided by an
accuracy based fitness to evolve accurate maximally general
solutions. In [18] Wilson extended XCS with the idea of
computed prediction to improve the estimation of the clas-
sifiers prediction. In XCS with computed prediction, XCSF
in brief, the classifier prediction is not memorized into a
parameter but computed as a linear combination of the cur-
rent input and a weight vector associated to each classifier.
Recently, in [11] the classifier weights update has been im-
proved with a recursive least squares approach and the idea
of computed prediction has been further extended to poly-
nomial prediction. Both the recursive least squares update
and the polynomial prediction have been effectively applied
to solve function approximation problems as well as to learn
Boolean functions. However, so far it is not currently clear
whether these findings might be extended also to contin-
uous multistep problems, where Wilson’s XCSF has been
already successfully applied [9]. In this paper we investigate
this important issue. First, we extend the recursive least
squares update algorithm to multistep problems with the
covariance resetting, a well known approach to deal with
a non stationary target. Then, to test our approach, we
compare the usual Widrow-Hoff update rule to the recur-
sive least squares (extended with covariance resetting) on a
class of continuous multistep problems, the 2D Gridworld
problems [1]. Our results show that XCSF with recursive
least squares outperforms XCSF with Widrow-Hoff rule in
terms of convergence speed, although both reach finally an
optimal performance. Thus, the results confirm the find-
ings of previous works on XCSF with recursive least squares
applied to single step problems. In addition, we performed
a similar experimental analysis to investigate the effect of
polynomial prediction on the same set of problems. Also in
this case, the results suggest that quadratic prediction re-
sults in a faster convergence of XCSF toward the optimal
performance. Finally, to explain why recursive least squares
and polynomial prediction increase the convergence speed
of XCSF we showed that they improve the accuracy of the
payoff landscape learned in the first few learning problems.

2. XCS WITH COMPUTED PREDICTION
XCSF differs from XCS in three respects: (i) classifier

conditions are extended for numerical inputs, as done in
XCSI [17]; (ii) classifiers are extended with a vector of weights
w, that are used to compute prediction; finally, (iii) the
original update of classifier prediction must be modified so

1985

that the weights are updated instead of the classifier predic-
tion. These three modifications result in a version of XCS,
XCSF [18, 19], that maps numerical inputs into actions with
an associated calculated prediction. In the original paper
[18] classifiers have no action and it is assumed that XCSF
outputs the estimated prediction, instead of the action itself.
In this paper, we consider the version of XCSF with actions
and linear prediction (named XCS-LP [19]) in which more
than one action is available. As said before, throughout
the paper we do not keep the (rather historical) distinction
between XCSF and XCS-LP since the two systems are ba-
sically identical except for the use of actions in the latter
case.

Classifiers. In XCSF, classifiers consist of a condition, an
action, and four main parameters. The condition specifies
which input states the classifier matches; as in XCSI [17],
it is represented by a concatenation of interval predicates,
inti = (li, ui), where li (“lower”) and ui (“upper”) are inte-
gers, though they might be also real. The action specifies
the action for which the payoff is predicted. The four pa-
rameters are: the weight vector w, used to compute the
classifier prediction as a function of the current input; the
prediction error ε, that estimates the error affecting clas-
sifier prediction; the fitness F that estimates the accuracy
of the classifier prediction; the numerosity num, a counter
used to represent different copies of the same classifier. Note
that the size of the weight vector w depends on the type of
approximation. In the case of piecewise-linear approxima-
tion, considered in this paper, the weight vector w has one
weight wi for each possible input, and an additional weight
w0 corresponding to a constant input x0, that is set as a
parameter of XCSF.

Performance Component. XCSF works as XCS. At each
time step t, XCSF builds a match set [M] containing the clas-
sifiers in the population [P] whose condition matches the
current sensory input st; if [M] contains less than θmna ac-
tions, covering takes place and creates a new classifier that
matches the current inputs and has a random action. Each
interval predicate inti = (li, ui) in the condition of a cov-
ering classifier is generated as li = st(i) − rand(r0), and
ui = st(i) + rand(r0), where st(i) is the input value of state
st matched by the interval predicated inti, and the function
rand(r0) generates a random integer in the interval [0, r0]
with r0 fixed integer. The weight vector w of covering clas-
sifiers is randomly initialized with values from [-1,1]; all the
other parameters are initialized as in XCS (see [3]).

For each action ai in [M], XCSF computes the system pre-
diction which estimates the payoff that XCSF expects when
action ai is performed. As in XCS, in XCSF the system pre-
diction of action a is computed by the fitness-weighted aver-
age of all matching classifiers that specify action a. However,
in contrast with XCS, in XCSF classifier prediction is com-
puted as a function of the current state st and the classifier
vector weight w. Accordingly, in XCSF system prediction
is a function of both the current state s and the action a.
Following a notation similar to [2], the system prediction for
action a in state st, P (st, a), is defined as:

P (st, a) =

P
cl∈[M]|a cl.p(st)× cl.FP

cl∈[M]|a cl.F
(1)

where cl is a classifier, [M]|a represents the subset of classi-

fiers in [M] with action a, cl.F is the fitness of cl ; cl.p(st) is
the prediction of cl computed in the state st. In particular,
when piecewise-linear approximation is considered, cl.p(st)
is computed as:

cl.p(st) = cl .w0 × x0 +
X
i>0

cl .wi × st(i)

where cl.w i is the weight wi of cl and x0 is a constant in-
put. The values of P (st, a) form the prediction array. Next,
XCSF selects an action to perform. The classifiers in [M]
that advocate the selected action are put in the current ac-
tion set [A]; the selected action is sent to the environment
and a reward P is returned to the system.

Reinforcement Component. XCSF uses the incoming
reward P to update the parameters of classifiers in action set
[A]. The weight vector w of the classifiers in [A] is updated
using a modified delta rule [15]. For each classifier cl ∈ [A],
each weight cl.w i is adjusted by a quantity Δwi computed
as:

Δwi =
η

|st(i)|2 (P − cl.p(st))st(i) (2)

where η is the correction rate and |st|2 is the norm the
input vector st, (see [18] for details). Equation 2 is usu-
ally referred to as the “normalized” Widrow-Hoff update or
“modified delta rule”, because of the presence of the term
|st(i)|2 [5]. The values Δwi are used to update the weights
of classifier cl as:

cl.w i ← cl.w i + Δwi (3)

Then the prediction error ε is updated as:

cl.ε← cl.ε + β(|P − cl.p(st)| − cl.ε)

Finally, classifier fitness is updated as in XCS.

Discovery Component. The genetic algorithm and sub-
sumption deletion in XCSF work as in XCSI [17]. On a reg-
ular basis depending on the parameter θga, the genetic algo-
rithm is applied to classifiers in [A]. It selects two classifiers
with probability proportional to their fitness, copies them,
and with probability χ performs crossover on the copies;
then, with probability μ it mutates each allele. Crossover
and mutation work as in XCSI [17, 18]. The resulting off-
spring are inserted into the population and two classifiers
are deleted to keep the population size constant.

3. IMPROVING AND EXTENDING COM-
PUTED PREDICTION

The idea of computed prediction, introduced by Wilson
in [18], has been recently improved and extended in sev-
eral ways [11, 12, 6, 10]. In particular, Lanzi et al. ex-
tended the computed prediction to polynomial functions [7]
and they introduced in [11] a novel prediction update al-
gorithm, based on the recursive least squares. Although
these extensions proved to be very effective in single step
problems, both in function approximation problems [11, 7]
and in boolean problems [8], they have never been applied
to multistep problems so far. In the following, we briefly
describe the classifier update algorithm based on recursive
least squares and how it can be applied to multistep prob-
lems. Finally, we show how computed prediction can be
extended to polynomial prediction.

1986

3.1 XCSF with Recursive Least Squares
In XCSF with recursive least squares,the Widrow-Hoff

rule used to update the classifier weights is replaced with
a more effective update algorithm based on recursive least
squares (RLS). At time step t, given the current state st

and the target payoff P , recursive least squares update the
weight vector w as

wt = wt−1 + kt[P − xtwt−1],

where xt = [x0 st]
T and kt, called gain vector, is computed

as

kt =
Vt−1xt

1 + xT
t Vt−1xt

, (4)

while matrix Vt is computed recursively by,

Vt =
h
I − ktx

T
t

i
Vt−1. (5)

The matrix V(t) is usually initialized as V(0) = δrlsI, where
δrls is a positive constant and I is the n × n identity ma-
trix. An higher δrls, denotes that initial parametrization
is uncertain, accordingly, initially the algorithm will use a
higher, thus faster, update rate (kt). A lower δrls, denotes
that initial parametrization is rather certain, accordingly the
algorithm will use a slower update. It is worthwhile to say
that the recursive least squares approach presented above
involves two basic underlying assumptions [5, 4]: (i) the
noise on the target payoff P used for updating the classifier
weights can be modeled as a unitary variance white noise
and (ii) the optimal classifier weights vector does not change
during the learning process, i.e., the problem is stationary.
While the first assumption is often reasonable and has usu-
ally a small impact on the final outcome, the second assump-
tion is not justified in many problems and may have a big
impact on the performance. In the literature [5, 4] many ap-
proaches have been introduced for relaxing this assumption.
In particular, a straightforward approach is the resetting of
the matrix V: every τrls updates, the matrix V is reset to its
initial value δrlsI. Intuitively, this prevent RLS to converge
toward a fixed parameter estimate by continually restarting
the learning process. We refer the interested reader to [5,
4] for a more detailed analysis of recursive least squares and
other related approaches, like the well known Kalman fil-
ter. The extension of XCSF with recursive least squares is
straightforward: we added to each classifier the matrix V as
an additional parameter and we replaced the usual update
of classifier weights with the recursive least squares update
described above and reported as Algorithm 1.

3.2 Beyond Linear Prediction
Usually in XCSF the classifier prediction is computed as

a linear function, so that piecewise linear approximations
of the action-value function are evolved. However, XCSF
can be easily extended to evolve also polynomial approxi-
mations. Let us consider a simple problem with a single
variable state space. At time step t, the classifier prediction
is computed as,

cl.p(st) = w0x0 + w1st,

where x0 is a constant input and st is the current state.
Thus, we can introduce a quadratic term in the approxima-
tion evolved by XCSF:

cl.p(st) = w0x0 + w1st + w2s
2
t . (6)

Algorithm 1 Update classifier cl with RLS algorithm

1: procedure update prediction(cl, s, P)
2: error ← P − cl.p(s); 	 Compute the current error
3: x(0)← x0; 	 Build x by adding x0 to s
4: for i ∈ {1, . . . , |s|} do
5: x(i)← s(i);
6: end for
7: if # of updates from last reset > τrls then
8: cl .V ← δrlsI 	 Reset cl .V
9: end if

10: ηrls ← (1 + x · cl.V · xT)−1;
11: cl .V ← cl .V − η−1

rlscl .V · xT x · cl .V ; 	 Update cl .V

12: kT ← cl .V · xT ;
13: for i ∈ {0, . . . , |s|} do 	 Update classifier’s weights
14: cl.w i ← cl.w i + k(i)· error;
15: end for
16: end procedure

To learn the new set of weights we use the usual XCSF
update algorithm (e.g., either RLS or Widrow-Hoff) applied
to the input vector xt, defined as xt = 〈x0, st, s

2
t 〉. When

more variables are involved, so that st = 〈st(1), . . . , st(n)〉,
we define

xt = 〈x0, st(1), s
2
t (1), . . . , st(n), s2

t (n)〉,
and apply XCSF to the newly defined input space. The same
approach can be generalized to allow the approximation of
any polynomials of order k by extending the input vector
xt with high order terms. However in this paper, for the
sake of simplicity, we will limit our analysis to the quadratic
prediction.

4. EXPERIMENTAL DESIGN
To study how the recursive least squares and the quadratic

prediction affect the performance of XCSF on continuous
multistep problems we considered a well known class of prob-
lems: the 2D gridworld problems, introduced in [1]. They
are two dimensional environments in which the current state
is defined by a pair of real valued coordinates 〈x, y〉 in [0, 1]2,
the only goal is in position 〈1, 1〉, and there are four possible
actions (left, right, up, and down) coded with two bits; each
action corresponds in a step of size s in the corresponding
direction; actions that would take the system outside the
domain [0, 1]2 take the system to the nearest position of the
grid border. The system can start anywhere but in the goal
position and it reaches the goal position when both coor-
dinates are equal or greater than one. When the system
reaches the goal it receives 0, in all the other cases it re-
ceives -0.5. We called the problem described above empty
gridworld, dubbed Grid(s), where s is the agent step size.
Figure 1a shows the optimal value function associated to the
empty gridworld problem, when s = 0.05 and γ = 0.95.

A slightly more challenging problem can be obtained by
adding some obstacles to the empty gridworld environment,
as proposed in [1]: each obstacle represents an area in which
there is an additional cost for moving. These areas are
called “puddles” [1], since they actually create a sort of pud-
dle in the optimal value function. Figure 1b depicts the
Puddles(s) environment that is derived from Grid(s) by
adding two puddles (the gray areas). When the system is
in a puddle, it receives an additional negative reward of -

1987

2, i.e., the action has an additional cost of -2; in the area
where the two puddles overlap, the darker gray region, the
two negative rewards add up, i.e., the action has a total ad-
ditional cost of -4. We called this second problem puddle
world, dubbed Puddles(s), where s is the agent step size.
Figure 1c shows the optimal value function of the puddle
world, when s = 0.05 and γ = 0.95.

The performance is computed as the average number of
steps to reach the goal during the last 100 test problems.
To speed up the experiments, problems can last at most 500
steps; when this limit is reached the problem stops even if
the system did not reach the goal. All the statistics reported
in this paper are averaged over 20 experiments.

0

0.5

1

0

0.5

1
−10

−8

−6

−4

−2

0

xy

V
(x

,y
)

(a)

����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����

1

0
0

1x

y

(b)

0

0.5

1

0

0.5

1
−20

−15

−10

−5

0

xy

V
(x

,y
)

(c)

Figure 1: The 2D Continuous Gridworld problems:
(a) the optimal value function of Grid(0.05) when
γ=0.95; (b) the Puddles(0.05) environment; (c) the
optimal value function of Puddles(0.05) when γ=0.95.

5. EXPERIMENTAL RESULTS
Our aim is to study how the RLS update and the quadratic

prediction affect the performance of XCSF on continuous
multistep problems. To this purpose we applied XCSF with
different type of prediction, i.e., linear and quadratic, and

with different update rules, i.e., Widrow-Hoff and RLS, on
the Grid(0.05) and Puddles(0.05) problems. In addition,
we also compared the performance of XCSF to the one ob-
tained with the tabular Q-learning [13], a standard reference
in the RL literature. In order to apply tabular Q-learning to
the 2D Gridworld problems, we discretized the the continu-
ous problem space, using the step size s = 0.05 as resolution
for the discretization process. In the first set of experiments
we investigated the effect of the RLS update on the per-
formance of XCSF, while in the second set of experiments
we extended our analysis also to quadratic prediction. Fi-
nally, we analyzed the results obtained and the accuracy
of the action-value approximations learned by the different
versions of XCSF.

5.1 Results with Recursive Least Squares
In the first set of experiments we compared the Q-learning

and XCSF with the two different updates on the 2D contin-
uous gridworld problems. For XCSF we used the follow-
ing parameter settings: N = 5000, ε0 = 0.05; β = 0.2;
α = 0.1; γ = 0.95; ν = 5; χ = 0.8, μ = 0.04, pexplr = 0.5,
θdel = 50, θGA = 50, and δ = 0.1; GA-subsumption is on
with θsub = 50; while action-set subsumption is off; the pa-
rameters for integer conditions are m0 = 0.5, r0 = 0.25 [17];
the parameter x0 for XCSF is 1 [18]. In addition, with the
RLS update we used δrls = 10 and τrls = 50. Accordingly,
for Q-learning we set β = 0.2, γ = 0.95, and pexplr = 0.5.
The Figure 2a compares the performance of Q-learning and
of the two versions of XCSF on the Grid(0.05) problem. All
the systems are able to reach an optimal performance and
XCSF with the RLS update is able to learn much faster than
XCSF with the Widrow-Hoff update, although Q-learning is
even faster. This is not surprising, as Q-learning is provided
with the optimal state space discretization to solve the prob-
lem, while XCSF has to search for it. However it is worth-
while to notice that when the RLS update rule is used, XCSF
is able to learn almost as fast as the Q-learning. Moving to
the more difficult Puddles(0.05) problem, we find very sim-
ilar results as showed by Figure 2b. Also in this case, XCSF
with RLS update is able to learn faster than XCSF with
the usual Widrow-Hoff update rule and the difference with
Q-learning is even less evident.

Therefore, our results suggest that the RLS update rule is
able to exploit the experience collected more effectively than
the Widrow-Hoff rule and confirm the previous findings on
single step problems reported in [11].

5.2 Results with Quadratic Prediction
In the second set of experiments, we compared linear pre-

diction to quadratic prediction on the Grid(0.05) and the
Puddles(0.05) problems, using both Widrow-Hoff and RLS
updates. Parameters are set as in the previous experiments.
Table 1a reports the performance of the systems in the first
500 test problems as a measure of the convergence speed.
As found in the previous set of experiments, the RLS up-
date leads to a faster convergence, also when quadratic pre-
diction is used. In addition, the results suggest that also
quadratic prediction affects the learning speed: both with
Widrow-Hoff update and with the RLS update the quadratic
prediction outperforms the linear one. In particular, XCSF
with the quadratic prediction and the RLS update is able
to learn even faster than Q-learning in both Grid(0.05) and
Puddles(0.05) problems. However, as Table 1b shows, all

1988

 0

 10

 20

 30

 40

 0 1000 2000 3000 4000 5000

A
V
E
R
A
G
E

N
U
M
B
E
R

O
F

S
T
E
P
S

LEARNING PROBLEMS

WH
RLS
QL

Optimum (21)

(a)

 0

 10

 20

 30

 40

 0 1000 2000 3000 4000 5000

A
V
E
R
A
G
E

N
U
M
B
E
R

O
F

S
T
E
P
S

LEARNING PROBLEMS

WH
RLS
QL

(b)

Figure 2: The performance of Q-learning (reported
as QL), XCSF with the Widrow-Hoff update (re-
ported as WH), and of XCSF with the RLS update
(reported as RLS) applied to: (a) Grid(0.05) problem
(b) Puddles(0.05) problem. Curves are averages on
20 runs.

the systems reach an optimal performance. Finally, it can
be noticed that the number of macroclassifiers evolved (Ta-
ble 1c) is very similar for all the systems, suggesting that
XCSF with quadratic prediction does not evolve a more com-
pact solution.

5.3 Analysis of Results
Our results suggest that in continuous multistep prob-

lems, the RLS update and the quadratic prediction does not
give any advantage either in terms of final performance or
in terms of population size. On the other hand, both these
extensions lead to an effective improvement of the learning
speed, that is they play an important role in the early stage
of the learning process. However, this results is not surpris-
ing: (i) the RLS update exploits more effectively the experi-
ence collected and learns faster an accurate approximation;
(ii) the quadratic prediction allows a broader generalization
in the early stages that leads very quickly to a rough approx-
imation of the payoff landscape. Figure 3 reports the error
of the value function learned by the four XCSF versions dur-
ing the learning process. The error of a learned value func-
tion is measured as the absolute error with respect to the

System Grid(0.05) Puddles(0.05)

Q-learning 27.87 ± 0.84 32.12 ± 1.03
XCSF with LINEAR WH 97.75 ± 136.75 89.13 ± 22.36
XCSF with LINEAR RLS 38.46 ± 16.28 35.20 ± 7.60

XCSF with QUADRATIC WH 33.08 ± 6.07 62.56 ± 14.77
XCSF with QUADRATIC RLS 25.75 ± 3.11 29.51 ± 2.97

(a)
System Grid(0.05) Puddles(0.05)

Q-learning 21.21 ± 0.18 22.64 ± 0.16
XCSF with LINEAR WH 21.10 ± 0.32 22.90 ± 0.46
XCSF with LINEAR RLS 20.99 ± 0.28 23.15 ± 0.73

XCSF with QUADRATIC WH 20.99 ± 0.21 22.78 ± 0.38
XCSF with QUADRATIC RLS 20.97 ± 0.38 22.96 ± 0.56

(b)
System Grid(0.05) Puddles(0.05)

XCSF with LINEAR WH 1231.10 ± 47.04 1491.45 ± 38.17
XCSF with LINEAR RLS 1526.55 ± 29.61 1599.95 ± 40.25

XCSF with QUADRATIC WH 1401.45 ± 35.07 1494.95 ± 44.35
XCSF with QUADRATIC RLS 1577.60 ± 44.23 1596.70 ± 44.15

(c)

Table 1: XCSF applied to Grid(0.05) and to
Puddles(0.05) problems. (a) Average number of steps
to reach the goal per episode in the first 500 test
problems; (b) average number of steps to reach the
goal per episode in the last 500 test problems; (c)
size of the population evolved. Statistics are aver-
ages over 20 experiments.

optimal value function, computed as the average of the ab-
solute errors over an uniform grid of 100×100 samples of the
problem space. For each version of XCSF this error measure
is computed at different stages of the learning process and
then averaged over the 20 runs to generate the error curves
reported in Figure 3. Results confirm our hypothesis: both
quadratic prediction and RLS update lead very fast to accu-
rate approximations of the optimal value function, although
the final approximations are as accurate as the one evolved
by XCSF with Widrow-Hoff rule and linear prediction. To
better understand how the different versions of XCSF ap-
proximate the value function, Figure 4, Figure 5, Figure 6,
and Figure 7 show some examples of the value functions
learned by XCSF at different stages of the learning pro-
cess. In particular, Figure 4a and Figure 5a show the value
function learned by XCSF with linear prediction after few
learning episodes, using respectively the Widrow-Hoff up-
date and the RLS update. While the value function learned
by XCSF with Widrow-Hoff is flat and very uninformative,
the one learned by XCSF with RLS update provides a rough
approximation to the slope of the optimal value function, de-
spite it is still far from being accurate. Finally, Figure 6 and
Figure 7 report similar examples of value functions learned
by XCSF with quadratic predictions. Figure 7a shows how
XCSF with both quadratic prediction and RLS update may
learn very quickly a rough approximations of the optimal
value function after very few learning episodes. A similar
analysis can be performed on the Puddles(0.05) but it is
not reported here due to the lack of spaces.

6. CONCLUSIONS
In this paper we investigated the application of two suc-

cessful extensions of XCSF, the recursive least squares up-
date algorithm and the quadratic prediction, to multistep
problems First, we extended the recursive least squares ap-
proach, originally devised only for single step problems, to

1989

 0

 1

 2

 3

 4

 0 1000 2000 3000 4000 5000

A
V
E
R
A
G
E

E
R
R
O
R

LEARNING PROBLEMS

LINEAR WH
LINEAR RLS

QUADRATIC WH
QUADRATIC RLS

(a)

 0

 1

 2

 3

 4

 0 1000 2000 3000 4000 5000

A
V
E
R
A
G
E

E
R
R
O
R

LEARNING PROBLEMS

LINEAR WH
LINEAR RLS

QUADRATIC WH
QUADRATIC RLS

(b)

Figure 3: Average absolute error of the value func-
tions learned by XCSF on (a) the Grid(0.05) problem
and (b) the Puddles(0.05) problem. Curves are aver-
ages over 20 runs.

the multistep problems with the covariance resetting, a tech-
nique to deal with a non stationary target. Second, we
showed how the linear prediction used by XCSF can be ex-
tended to quadratic prediction in a very straightforward way.
Then the recursive least squares update and the quadratic
prediction have been compared to the usual XCSF on the
2D Gridworld problems. Our results suggest that the recur-
sive least squares update as well as the quadratic prediction
lead to a faster convergence speed of XCSF toward the opti-
mal performance. The analysis of the accuracy of the value
function estimate showed that recursive least squares and
quadratic prediction plays an important role in the early
stage of the learning process. The capabilities of recur-
sive least squares of exploiting more effectively the expe-
rience collected and the broader generalization allowed by
the quadratic prediction, lead to a more accurate estimate
of the value function after few learning episode. In con-
clusion, we showed that the previous findings on recursive
least squares and polynomial prediction applied to single
step problems can be extended also to continuous multistep
problems. Further investigations will include the analysis
of the generalizations evolved by XCSF with recursive least
squares and quadratic prediction.

0

0.5

1

0

0.5

1
−10

−8

−6

−4

−2

0

xy

V
(x

,y
)

(a)

0

0.5

1

0

0.5

1
−10

−8

−6

−4

−2

0

xy

V
(x

,y
)

(b)

0

0.5

1

0

0.5

1
−10

−5

0

5

xy

V
(x

,y
)

(c)

Figure 4: Examples of the value function evolved by
XCSF with linear prediction and Widrow-Hoff up-
date on the Grid(0.05) problem: (a) after 50 learning
episodes (b) after 500 learning episodes (c) at the
end of the experiment (after 5000 learning episode).

7. REFERENCES
[1] Justin A. Boyan and Andrew W. Moore.

Generalization in reinforcement learning: Safely
approximating the value function. In Advances in
Neural Information Processing Systems 7, pages
369–376, Cambridge, MA, 1995. The MIT Press.

[2] Martin V. Butz and Martin Pelikan. Analyzing the
evolutionary pressures in XCS. In Proceedings of the
Genetic and Evolutionary Computation Conference
(GECCO-2001), pages 935–942, San Francisco,
California, USA, 7-11 July 2001. Morgan Kaufmann.

[3] Martin V. Butz and Stewart W. Wilson. An
algorithmic description of XCS. Journal of Soft
Computing, 6(3–4):144–153, 2002.

[4] Graham C. Goodwin and Kwai Sang Sin. Adaptive
Filtering: Prediction and Control. Prentice-Hall
information and system sciences series, March 1984.

1990

0

0.5

1

0

0.5

1
−10

−8

−6

−4

−2

0

xy

V
(x

,y
)

(a)

0

0.5

1

0

0.5

1
−10

−5

0

5

xy

V
(x

,y
)

(b)

0

0.5

1

0

0.5

1
−10

−5

0

5

xy

V
(x

,y
)

(c)

Figure 5: Examples of the value function evolved by
XCSF with linear prediction and RLS update on the
Grid(0.05) problem: (a) after 50 learning episodes
(b) after 500 learning episodes (c) at the end of the
experiment (after 5000 learning episode).

[5] Simon Haykin. Adaptive Filter Theory. Prentice-Hall,
2001. 4th Edition.

[6] P. L. Lanzi and D. Loiacono. XCSF with neural
prediction. In Evolutionary Computation, 2006. CEC
2006. IEEE Congress on, pages 2270–2276, 2006.

[7] Pier Luca Lanzi, Daniele Loiacono, Stewart W.
Wilson, and David E. Goldberg. Extending XCSF
beyond linear approximation. In Genetic and
Evolutionary Computation – GECCO-2005, pages
1859–1866, Washington DC, USA, 2005. ACM Press.

[8] Pier Luca Lanzi, Daniele Loiacono, Stewart W.
Wilson, and David E. Goldberg. XCS with computed
prediction for the learning of boolean functions. In
Proceedings of the IEEE Congress on Evolutionary
Computation – CEC-2005, pages 588–595, Edinburgh,
UK, September 2005. IEEE.

0

0.5

1

0

0.5

1
−10

−8

−6

−4

−2

0

xy

V
(x

,y
)

(a)

0

0.5

1

0

0.5

1
−10

−5

0

5

xy

V
(x

,y
)

(b)

0

0.5

1

0

0.5

1
−10

−5

0

5

xy

V
(x

,y
)

(c)

Figure 6: Examples of the value function evolved by
XCSF with quadratic prediction and Widrow-Hoff
update on the Grid(0.05) problem: (a) after 50 learn-
ing episodes (b) after 500 learning episodes (c) at the
end of the experiment (after 5000 learning episode).

[9] Pier Luca Lanzi, Daniele Loiacono, Stewart W.
Wilson, and David E. Goldberg. XCS with computed
prediction in continuous multistep environments. In
Proceedings of the IEEE Congress on Evolutionary
Computation – CEC-2005, pages 2032–2039,
Edinburgh, UK, September 2005. IEEE.

[10] Pier Luca Lanzi, Daniele Loiacono, Stewart W.
Wilson, and David E. Goldberg. Prediction update
algorithms for XCSF: RLS, kalman filter, and gain
adaptation. In GECCO ’06: Proceedings of the 8th
annual conference on Genetic and evolutionary
computation, pages 1505–1512, New York, NY, USA,
2006. ACM Press.

1991

0

0.5

1

0

0.5

1
−10

−8

−6

−4

−2

0

xy

V
(x

,y
)

(a)

0

0.5

1

0

0.5

1
−10

−5

0

5

xy

V
(x

,y
)

(b)

0

0.5

1

0

0.5

1
−10

−5

0

5

xy

V
(x

,y
)

(c)

Figure 7: Examples of the value function evolved
by XCSF with quadratic prediction and RLS up-
date on the Grid(0.05) problem: (a) after 50 learn-
ing episodes (b) after 500 learning episodes (c) at the
end of the experiment (after 5000 learning episode).

[11] Pier Luca Lanzi, Daniele Loiacono, Stewart W.
Wilson, and David E. Goldberg. Generalization in the
XCSF classifier system: Analysis, improvement, and
extension. Evolutionary Computation, 15(2):133–168,
2007.

[12] Daniele Loiacono, Andrea Marelli, and Pier Luca
Lanzi. Support vector regression for classifier
prediction. In GECCO ’07: Proceedings of the 9th
annual conference on Genetic and evolutionary
computation, pages 1806–1813, New York, NY, USA,
2007. ACM Press.

[13] C.J.C.H. Watkins. Learning from delayed reward. PhD
thesis, 1989.

[14] C.J.C.H. Watkins and P. Dayan. Technical note:
Q-Learning. Machine Learning, 8:279–292, 1992.

[15] B. Widrow and M. E. Hoff. Adaptive Switching
Circuits, chapter Neurocomputing: Foundation of
Research, pages 126–134. The MIT Press, Cambridge,
1988.

[16] Stewart W. Wilson. Classifier Fitness Based on
Accuracy. Evolutionary Computation, 3(2):149–175,
1995. http://prediction-dynamics.com/.

[17] Stewart W. Wilson. Mining Oblique Data with XCS.
In Proceedings of the International Workshop on
Learning Classifier Systems (IWLCS-2000), in the
Joint Workshops of SAB 2000 and PPSN 2000, pages
158–174, 2000. Pier Luca Lanzi, Wolfgang Stolzmann
and Stewart W. Wilson (workshop organisers).

[18] Stewart W. Wilson. Classifiers that approximate
functions. Journal of Natural Computing,
1(2-3):211–234, 2002.

[19] Stewart W. Wilson. Classifier systems for continuous
payoff environments. In Genetic and Evolutionary
Computation – GECCO-2004, Part II, volume 3103 of
Lecture Notes in Computer Science, pages 824–835,
Seattle, WA, USA, 26-30 June 2004. Springer-Verlag.

1992

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

