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ABSTRACT
This paper focuses on the study of the behavior of a ge-
netic algorithm based classifier system, the Adapted Pitts-
burgh Classifier System (A.P.C.S), on maze type environ-
ments containing aliasing squares. This type of environment
is often used in reinforcement learning litterature to assess
the performances of learning methods when facing problems
containing non markov situations.

Through this study, we discuss on the performances of the
APCS on maze type environments and also of the efficiency
of an improvement of the APCS learning method inspired
from the XCS : the covering mechanism. We manage to show
that, without any memory mechanism, the APCS is able to
build and to keep accurate strategies to produce regular sub-
optimal solutions to these maze problem. This statement is
shown through a comparison of the results obtained by the
XCS, XCSM and XCSMH on distinct maze problems with
these obtained by the APCS.

Categories and Subject Descriptors
I.2.6 [Learning]: [Concept learning, knowledge acquisition]

General Terms
Algorithm, Performances, Verification

Keywords
APCS, XCS, classifier systems, non-markovian multi-step
environments, strategy

1. INTRODUCTION
Classifier systems based on genetic algorithm are rule based

systems whose diagnose ability is known to be used on pa-
rameters optimisation problems [7].Nevertheless, before be-
ing used in a production and diagnostic context, this type
of classifiers needs to perform a learning step. Most often,
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this learning stage is performed on a sample of data repre-
senting the available and validated / expertised data of the
considered environment.

Tendencies contained by this data set are assimilated by
the classifier system using reinforcement learning : the sys-
tem is continuously exposed to signals created using the
learning sample. At this point, the action performed by
the classifier, in reaction to the incomming signal, is used
to improve the accuracy of its answer thanks to the fitness
function. This function is defined depending on the learning
problem considered: its aim is to maintain strong classifiers
within the population by preventing them to be deleted or
lost by genetic pressure.

In the literature, we encounter various methods used to
successfully perform this reinforcement learning but, con-
cerning learning classifier system using genetic algorithms,
Q-Learning reinforcement methods and anticipation based
methods are the most widely used [11, 3, 2, 12].

In order to characterize the efficiency of a learning method
performed by a given learning classifier system in front of a
given reinforcement learning problem, we need to find a test
environment that offers an appropriate set of measure tools.

To fulfill this requirement, we introduce in Section 2 the
type of environment chosen to perform these measures with
a precise description of these used in this study. Then, in
Section 3, we describe the main algorithm of Adapted Pitts-
burgh Classifier System, including its latest improvement.
After this point, we will describe the experiments we con-
ducted and discuss the obtained results in Section 4. This
discussion will be extended to Section 5 with a compari-
son of the results previously obtained with results obtained
with the eXtented Classifier System (XCS [3]) on the same
reinforcement learning problems and with classifier systems
which are known to solve POMPD problems in order to dis-
cuss of the pertinency of the obtained results. We will then
conclude on the measured improvements led by the covering
mechanism and on ongoing experiments.

2. CONTEXT AND RELATED WORK

2.1 The animat problem
Maze problems, as simplified reinforcement learning prob-

lems, are often used in classifier systems literature to assess
the efficiency of a learning method (XCS, ZCS), an improve-
ment of an existing classifier system (XCSM, ZCSM), or
to validate a new algorithm (ACS, AgentP, ATNoSFERES)

2001



[1]. Moreover, some mazes also offer perceptually similar
situations that requires different actions to reach the goal:
these situations are known as “aliasing squares”. The abil-
ities needed by a learning classifier system to solve a maze
problem can also be easily related to the abilities needed to
solve a given optimization problem with a learning sample
containing missing or aliased data.

Most often, a maze is defined as a given number of neigh-
boring cells. A cell is a bounded space formally defined: it
is the elementary unit of a maze. When it is not empty, a
given cell of a maze can contain an obstacle, food, an animat
and eventually a predator of the animat.

The maze problem is defined as following: an animat is
randomly placed in the maze and its aim is to set its position
to a cell containing food. To perform this task, it possess
a limited perception of it environment: it can only see the
eight cells surrounding its position. The animat can also
only move to an empty cell between these neighboring cells,
moving step by step through the maze in order to fulfill its
goal.

The problem given to the cognitive system which behav-
ior is studied on these environment is to attend to adopt a
policy inside this environment. This strategy must allow the
animat to complete its goal using a minimal number of steps.

Maze environments also offer plenty of parameters that
allows to evaluate the complexity of a given maze and also
to evaluate the efficiency of given a learning method. The
full description of these parameters is available in [1].

The following chart[1] (fig. 1) presents most of mazes that
are available in the literature. It was built considering the
type of the aliasing squares contained by each maze and by
realizing the mean of the average number of steps φQm done
by a Q-Learning algorithm to reach the food over the average
distance to the food φmmeasured for this maze.

Figure 1: Complexity chart of maze-type environ-
ments

The Woods101 maze which is easy to represent (fig. 2)

possess a high
φQ

m
φm

rate (φQm = 402.3 and φm = 2.7,
φQ

m
φm

=

149 [16]). For the same reasons, two other mazes also raise

our interest: the E2 (φQm = 710.23 and φm = 2.33,
φQ

m
φm

=

304.81 [16]) and the Maze10 (φQm = 890.83 and φm = 4.56,
φQ

m
φm

= 195, 35 [16]).
As the E2 environment appears to be the most difficult

maze, we will study the effects of the parameters proper to

the APCS only on this environment. Woods101 and Maze10
will be used on the two last sections when comparing the
results of APCS with results obtained with XCS, XCSM
and XCSMH.

Figure 2: Woods101, E2 and Maze10 mazes

2.2 Random walk and optimal number of steps
In order to determine the quality of the obtained results

on a given maze, we need to establish clearly two datas : the
measure done using a random method and the results that
would be obtained using optimal choices.

We have chosen to collect the same data on the random
walk experiments, on the optimal choice approximation and
on the experiments conducted with the classifier systems.
Concerning the random walk, the animat is randomly placed
in the maze and at each time step it chooses a random direc-
tion between the eight directions available. We measure the
number of steps done by the animat and the final distance of
the animat to the food (this choices are clearly established
in Section 4.2, please refer to it for more details).

When considering the optimal number of steps that should
be done by the animat to fulfill its goal, we had to con-
sider the fact that the mazes we have chosen contain alias-
ing squares. As a consequence, we have chosen to refer to
previous work of Zatuchna[16] on MASS and AgentP when
dealing with measures of optimal performances for the con-
sidered mazes.

3. PRINCIPLES OF STUDIED CS

3.1 The Adapted Pittsburgh Classifier System
The Adapted Pittsburgh Classifier System (APCS) differs

from other kind of classifier systems on many points. We will
review in the next sub-sections how does structure, evalu-
ation and evolution mechanism differ from other classifier
systems and from Smith’ original work[13].

3.1.1 Structure
APCS is built with production rules also called classifiers.

These classifiers are split into a condition part (also called
sensor) that reads the environment signal and an action part
(also called effectors) that acts upon the environment. Usu-
ally, the condition part is defined upon a ternary alphabet
{0, 1,#}, where # replaces 0 and 1, it is also called wild-
card. The action part contains only bits. Other represen-
tations are possible but as we will not use them, we will
not describe them further. Classifiers are melt together to
form an individual i.e. an individual is a set of classifiers
also called knowledge structure or knowledge base. Finally,
a population of an APCS is filled with several individuals.

The internal language proposed by [14] to instantiate vari-
ables within condition part is not implemented in APCS. So
a population is initially created using four parameters:
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• A fixed number Ni of individuals in population.

• A fixed number Nc of classifiers per individual.

• A fixed size Lc for all classifiers.

• An allelic probability P# of having a wildcard in the
condition part.

A population is first filled with random classifiers. It is also
possible to fill initial population with chosen classifiers. We
will focus now on how APCS’ population is evaluated.

3.1.2 Evaluation mechanism
Individuals interact with the environment through sen-

sors and effectors. They are rewarded thanks to a multi-
objective fitness function. Thus, individuals have a strength
that globally reflects the mean strength of the classifiers fill-
ing it. The specific structure of APCS implies a specific
evaluation mechanism. Individuals are evaluated at once
i.e. with parallel firing classifiers. This is due to the fact
that individuals are potential solutions to the problem so,
they are not linked to each others as in a Michigan CS (see
[5]).

Individuals are composed of classifiers: in order to ensure
that all classifiers had a chance to be tested before evolution
occurs, individuals must have been tested a number K of
trials. A trial consists in three steps (see fig. 3). First,
the environment sends a signal to the individual currently
evaluated. Then, thanks to that signal, the individual fire
a classifier that matches the incoming signal. The triggered
classifier produces an action upon the environment. Last,
the fitness function gives a reward to the whole individual
for the effector fired by one classifier. As a consequence, we
need to set K over Nc

2
[5] to ensure that every single classifier

had at least one chance to be evaluated.

Figure 3: Evaluation mechanism

The evolution algorithm (here genetic algorithm) is ap-
plied when all individuals had been evaluated K times. In
this case, the reward can be continuous, using a Q-Learning
method for fitness / strength update, or it can be reset at
each generation and based only upon the last generation
trials.

When an individual is evaluated, many classifiers can match
the environment signal. Smith proposed to give a relative
weight to each action of matching classifiers. These weights
would be used as a probability of choosing a particular ef-
fector. This mechanism can be found in XCS with a more
sophisticated evaluation of effector weights. However, action
or classifier weight is not implemented in APCS.

As shown in this description, individuals are evaluated
independently. Thus, each individual possesses its own en-
vironment that allows it to be evaluated independently from
other individuals. This aspect of the APCS also permits to
evaluate individuals in parallel. The major interest for sepa-
rated environment is that the genetic algorithm should mix
together positive experiences of each individual.

We will now describe the evolution mechanism.

3.1.3 Evolution mechanism: The Genetic Algorithm
Genetic Algorithm (GA) is essential to APCS: it allows

learning and evolution within the classifier system. The
GA applies its four main operators among individuals of the
population using their fitness. It first selects parents that
will eventually reproduce using crossover operator and uses
mutation operator to create new offspring that can also be
inverted.

The selection mechanism uses mainly the roulette wheel
or the tournament methods to select parents that will be
kept to generate next generation.

The crossover operator chooses randomly a {n, i} pair
where iε{2, Lc−1} is the position where crossover will occur
within classifier n (nε{1, Nc}) in each individual selected for
reproduction. The crossover is thus one point and manip-
ulates individuals of the same size. The reason why Énée
has chosen fixed length individuals [5] comes from Smith’
work[13]. Smith has proved that the crossover operator be-
tween individuals of different lengths will mainly accentuate
the difference of length between the two offspring’s. The se-
lection mechanism would then progressively erase short indi-
viduals that would not be able to answer problems because
they do not have enough classifiers. Thus, bigger individu-
als would be selected and the individual size would tend to
grow through generations. Smith also observed that while
the individuals tend to grow, they first reach an optimal
size to well answer to the problem. Then additional classi-
fiers appear and produce noise in answer. Finally, without
individuals and classifiers of fixed length, the Pitt-CS be-
comes unable to reach an optimal solution. Thus, having an
infinite cognitive capacity1 to answer a question is useless
assuming that the considered problem can be solved with a
finite cognitive capacity[?].

Mutation operator is allelic. Crossover and mutation and
inversion are expressed as probabilities.

The inversion operator can be used with APCS because
each classifier is member of an unordered knowledge struc-
ture: an individual. So inversion of classifiers within an indi-
vidual allows classifiers to be better exchanged when single
point crossover occurs.

Best genetic algorithm parameters usually taken by Smith
are (except for the selection mechanism):

• Selection mechanism: roulette wheel.

• Crossover probability: 50-100%.

• Allelic mutation probability: 0,01-0,5%.

• Inversion probability: 50%.

The inversion operator is not used by the APCS in order to
allow the system to make a supra-individual emerge within
its population[6]. This “unique” individual appears thanks

1Ni or Nc infinite
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to the genetic algorithm. As the inversion operator changes
the order of classifiers within individual, it would prevent
this “supra” individual to emerge.

3.1.4 Further discussion upon APCS and covering
mechanism

When a signal comes from environment, several classifiers
can match this signal. This classifier selection problem can
be solved for example :

• by taking randomly one classifier among the matching
ones,

• by taking the most specific classifier i.e. with the low-
est number of #,

• or by taking the most generic classifier i.e. with the
greatest number of #.

For the last two methods, if several classifiers still match,
the random selection mechanism is used among the selected
matching classifiers. This permits to have different actions
for one signal. Thus, APCS should be able to find non
markovian processes to solution.

The simulator of the environment that is used to make
the population learn can be used in two ways. It can be
reset at each generation or set to its previous status using a
learning algorithm. The last method is not within the origi-
nal framework of Smith where system is GA dependent only
for learning. Parallelism can be easily simulated through a
simulator that keeps track of its status for each individual
at the end of previous evaluation. If the simulator is reset,
parallelism can be easily translated in sequential evaluation
of individuals also.

To have a clear and complete view of the evaluation mech-
anism, see algorithm 1.

The ending criteria can be a choosen number of generation
or when a choosen number of individual receive maximal
rewards for each one of the K trials. So to evaluate an
APCS, you need these parameters:

• Simulator / Environment reset mode: To zero / To
previous status.

• A number of trials.

• A selection rule mechanism: random / specific / generic.

• A number of generations.

Covering mechanism is newly implemented in APCS. Di-
rectly inspired from Wilson work with XCS[15], it consists
here in replacing the sensor part of a classifier when no clas-
sifier matches the signal from environment. To enhance this
mechanism, we add a parameter to each classifier, called
covering time Ct, in order to measure the number of gen-
erations a classifier has not been activated before it should
be covered. As a consequence, each classifier has a chance
to bring strong genomic precursors to collectivity, i.e. in-
dividuals, before being covered. The covering mechanism
replaces the condition part of a classifier with the message
from environment adding wildcards thanks to the wildcard
probability P# found in genetic algorithm parameters. Thus
the action part is kept as it was before covering.

We have made a quick technical tour of APCS, let’s have
a quick tour of XCS.

Algorithm 1 of Adapted Pittsburgh style classifier system

Begin

Fill(P); { Random initialization of P or using

a file initialization. }

Generation = 1;
Repeat

For (All Ij of P) Do

Reset_Environment(j); { Reset environment to

individual Ij last status or reset it to zero . }

RewardIj = 0; { If reward is continuous,

then you should remove this line. }

For (A number of Trials k) Do

Fill(Message); { with message from envi-

ronment. }

Fill(Match-List); { Create Match-Set from

Ik classifiers that match signal. }

If (IsEmpty(Match-List)) Then

ReplacePosition = ChooseCoveredClassi-

fier(); { Select a classifier not used since Ct
last generations. }

CoverClassifier(ReplacePosition, Mes-

sage); { Replace condition part of classifier num-

ber ReplacePosition with Message and wildcards.

}

Fill(Match-List);

Endif

If (Size(Match-List)> 1) Then

C = BestChoice(Match-List); { Choose

classifier in Match-List using strategy described

in this section. }

Else

C = First(Match-List);

Endif

A = Action(C);
DoAction(A); { Acts upon environment using

action A. }

RewardIj = RewardIj + ActionReward(A)/k; {

ActionReward is the fitness function. }

EndFor

ChangeStrength(Ij,RewardIj); { Change indi-

vidual Ij strength using RewardIj. }

EndFor

ApplyGA(P); { Genetic Algorithm is applied

after every individuals had been evaluated. }

Generation = Generation+ 1;
Until (Ending Criteria encountered);

End

3.2 The eXtended Classifier System
For this experiment, we compare the performances of the

APCS with these obtained with an eXtended Classifier Sys-
tem on the same maze.

The XCS, which was first built by Wilson in 1995 [15]
started to become mature near 2000 thanks to Butz, Lanzi
and Kovacs who realized rigorous performance and accuracy
studies over this system, allowing it to evolve through new
mechanisms: improvements on the main algorithm, adding
memory (XCSM1, XCSM2 [9]). As a consequence, this sys-
tem show pretty good results, even on maze-type environ-
ments with aliasing squares (see [11]).
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The XCS principle is quite easy to understand: it consists
in a population of classifiers (sensor plus effector) called indi-
viduals, which evolution relies on the ability of each classifier
to predict, thanks to a Q-Learning algorithm, the obtained
reward for a given action. These classifiers are mixed with
a classical GA and converge easily towards quite generalist
classifiers that answer globally to the problem.

To realize our measures, we have used the version 1.2 of
the XCS [4], which is related to the algorithmic version of
XCS published in the article of Butz and Wilson [3]. This
version includes most of the mechanisms developed until
here for the XCS, without including register memory mech-
anism.

4. EXPERIMENTS - RESULTS

4.1 Experimental settings
For each experiment, we submitted 20000 consecutive prob-

lems to the system: for each problem, the animat is ran-
domly put on a free square of the maze and the trial stops
when one of these two conditions is fulfilled:

1. the position of the animat in the maze is equal to the
position of the food

2. the number of steps done by the animat surpass a cer-
tain threshold (MaxSteps, equal to 50 steps for every
presented results)

When the problem is solved, we record the starting distance
to the food of the animat, its final distance to the food2

and its total number of steps. Both APCS and XCS results
shown in this paper are averaged over 10 experiments.

As done in [3] and in [11], the signal received by the sys-
tem consists in a 16 bits string that represents each of the 8
squares surrounding the animat. These squares are encoded
clockwise, starting by North: (00) stands for an empty cell,
(11) for food and (10) for an obstacle. As a consequence, the
sensor part of the classifier also contain 16 positions. Each
position in the sensor can be randomly occupied by 0, 1 or
by a wildcard (#). The effector part, coded by a string of 3
bits, stands for one of the eight directions available for the
animat, coded clockwise, as the sensor part.

Specific settings used for XCS are the same as these used
by Lanzi in 1999 [11], please refer to this experiment for
more details.

Concerning the APCS, each evaluation group controls an
animat. As a consequence, during the experiment, each
group is submitted to the 20000 problems and solve them
asynchronously. The experiment stops when all evaluation
groups have solved at least 20000 problems. The number
of moves is measured during each of the K trials (see sec-
tion 3.1): if it is correct, (i-e if the animat moves toward
an empty cell), the evaluated individual receives a reward
of 0.2

K
and the movement is performed by the animat of the

group; if it reaches the food, it receives a reward of 1.0
K

and
the animat of this group is randomly replaced in the maze.
Else, the individual receives a negative reward of −0.5

K
and

the animat of the group is not moved.

2due to MaxSteps, it may be greater than 0

Concerning the GA step, the mutation mechanism allows
to reinforce the exploratory ability of the system by creating
new classifiers. These classifiers are created when modifying
locally and randomly existing classifiers according to a cer-
tain rate, which is expressed by the chosen mutation proba-
bility PMut. However, two consecutive positions of the con-
sidered mazes rarely differs one from another than more than
4 bits, and the non-sense sequence (01) can, in the present
case, invalidate the activation of a classifier. As a conse-
quence, the more the number of mutated bits is high, the
more the system may lose classifiers that could have allowed
it to manage to find the food. Experiments performed in [5]
have also validated that a high mutation rate (PMut > 0.2)
prevents the system from keeping optimal classifiers.

The other important parameter of the GA step, the cross-
over rate, has a great influence on the homogeneity and on
the stabilization of the system: combined to elitism, it allows
the system to preserve the best behaviors expressed inside
the population. Énée had measured in [5]that a low cross-
over rate (PCross < 0.6) slows the convergence of the system
by preventing good genetic precursors to be replicated inside
the population.

As shown in [6, 5], stable results are obtained using a mu-
tation probability PMut set to 0.005 and a cross-over proba-
bility PCross set to 0.75. As a consequence, we have chosen
to use these values of parameters to perform our experi-
ments.

4.2 Results without covering
For the presented experiments, we made two significant

measures: the first measure, the average number of steps
done by the animats, allows us to tackle the ability of the
system to conform to a moving policy inside of the maze.
Due to that fact, the evolution of this measure reflects and
characterize the evolution of this ability.

As a second measure, the average final distance of the
evaluation groups at the end of a trial allows us to validate
the results outlined by the first measure. As the animat is
randomly replaced when the number of steps done crosses a
certain threshold, this second measure shows the efficiency
of the policy built by the system to allow its animats to
achieve their goal.

Maze E2
Avg. nb of steps Avg. final dist.

Random walk 32.49 0.78
NI = 20 24.84 0.58
NI = 30 15.03 0.11
NI = 40 13.43 0.08
NI = 50 12.62 0.06

Table 1: Measure of the influence of the variation of
the number of individuals on the average number of
steps (Nc = 30, NI = 20, .., 50)

Now, we can study the influence of parameters proper
to the classifier system. The number of individuals and the
number of classifiers are the only parameters that really have
an influence on the cognitive properties of the CS ([5, 13]).

2005



First, for a fixed number of classifiers (Nc = 30) , lets com-
pare obtained results for NI between 20 and 50 (Table 1).

When the number of individuals changes, it also modify
the number of evaluation groups. As in this experiment,
each group controls the moves of an animat, the classifier
system is able to learn on NI different situations for each
trials. As a consequence, the raise of the number of individ-
uals also raise the exploratory ability of the system which
accelerates and improves the convergence of the system.

When considering the evolution of the average final dis-
tance to the food (Table 1, column “avg. final dist”)., we
can conclude that the raise of the number of individuals
contribute to the system’s stabilization and to raise it uni-
formity.

Lets now consider the influence of the variation of the
number of classifiers contained by an individual on the per-
formances of the system on this problem. The following
experiments (Table. 2) have been conducted with a fixed
number of individuals (NI = 30) and various number of
classifiers (Ncbetween 20 and 50).

Each classifier determine the answer of the individual to
one or several given signals coming from the environment.
As a consequence, the number of classifiers contained by an
individual can possibly have an influence on the number of
signals which may trigger an answer from a given individual.

Maze E2
Avg. nb of steps Avg. final dist.

Random walk 32.49 0.78
Nc = 20 33.35 1.25
Nc = 30 15.03 0.11
Nc = 40 12.53 0.06
Nc = 50 11.88 0.07

Table 2: Measure of the influence of the variation of
the number of classifiers on the average number of
steps (NI = 30, Nc = 20, .., 50)

As shown by Smith [13], if the potential information con-
tained by an individual is too high, the exceeding informa-
tion generate noise that disturbs the answer of the system
and the evolution of more fitted classifiers. In addition
to this phenomenon, as non markovian situations trigger
a higher wildcard rate in the classifiers [1], each additional
classifier may bring more unnecessary information. This side
effect emphasize the fact that it exists a potential informa-
tion threshold on information contained by an individual.
When considering the obtained measures, we can conclude
that this threshold depend on the considered problem.

As a conclusion, if in the beginning, providing to the in-
dividuals of the APCS additional cognitive capacity can im-
prove the quality of the answer of the system, additional
classifiers may contain useless precursors that disturb the
convergence of the system.

4.3 Results obtained using covering
In order to improve our results, we have adapted the cov-

ering mechanism used in the XCS to allow APCS to generate
well fitted classifiers when encountering an unknown signal
(Section 3.1.4). To measure the impact of the activation

on the evolution of the classifiers contained by the individ-
uals of the APCS, we have chosen to measure the changes
registered when choosing different values for the Ct param-
eter. To prevent any additional perturbation, these tests
have been performed on a fixed number of classifiers and a
fixed number of individuals. In this paper, we have chosen
to present these results for NI = 40, Nc = 30 for the maze
E2 with a Ct between 0 (no covering) and 30 (uses classifiers
not triggered during 30 generations).

Maze E2 (NI = 40, Nc = 30)
Avg. nb of steps Avg. final dist.

Ct = 0 13.43 0.08
Ct = 3 8.65 0.01
Ct = 7 8.47 0.01
Ct = 11 8.60 0.01
Ct = 15 8.64 0.01
Ct = 20 8.48 0.01
Ct = 30 8.83 0.01

Table 3: Measure of the influence of the variation of
the parameter Ct on the obtained results

We can notice on Table. 3 that the number of steps done
by the system to reach the food decreases when increasing
the Ct parameter. This improvement occurs due to the ar-
tificial modification of the available pool of classifiers by the
covering mechanism. As we have measured, a classifier that
have not been activated on Ct generations have strong prob-
ability to contain one or many defective precursors. As this
mechanisms allows to remove these precursors from the pop-
ulation, it also increases the accuracy of the strategy built
by the system. This phenomenon is suggested by the evolu-
tion of the average final distance to the food of the animats
: the tendencies observed on the first measure are assessed
by the second one.

As a summary, through the results presented on tab 3, we
deduce that the classifiers with the condition part replaced
by the covering mechanism carry an amount of information
whose usability decrease depending on the raise of the num-
ber of evaluation steps passed without being activated. As
the animat problem is studied on a multi step environment,
it may occur that a classifier that have not been triggered
at a given evaluation step ti can be triggered at the step
ti+n depending on the moves of the animats through the
environment. However, the number of squares which can
be occupied by the animat are finite so it exist an upper
boundary to the number of available signals generated by
this environment.

Figure 4 represents the average over all the conducted ex-
periments of the gain we register when we increase the Ct
parameter. Due to the fact that this gain becomes equal
to 0 when a certain value of Ct is crossed, we can suppose
that it exists a finite number of generations NCTwhich may
allow us to diagnose that if a classifier has not matched any
signal emitted by the environment during the last NCT gen-
erations, the signals corresponding to this classifier are not
available in the current environment. Moreover, according
to the structure of the APCS (see Section 3.1), and if we
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Figure 4: Evolution of the gain related to the cov-
ering mechanism on Maze E2

extend the range of this conclusion, we can also suppose
that for each environment of this type, it exists a threshold
value of evaluation steps K ∗NCT over which we can decide
that an upper value of the Ct parameter does not carry any
additional knowledge on the potentially useless information
carried by a classifier.

5. DISCUSSION ON RESULTS
As shown by the experiments presented in this paper,

APCS manage to evolve classifiers allowing it to adopt a
stable policy whose quality is greatly improved by the used
covering mechanism.

We will now focus on the comparative study of the best
results we obtained with the XCS with the best results
obtained with the APCS on the environments Woods101
(NI = 30, Nc = 20 and Ct = 7), E2 (NI = 40, Nc = 50 and
Ct = 11 ) and Maze10(NI = 40, Nc = 50 and Ct = 7) (see
tab. 4).

XCS APCS
Rand Opt steps fdist. steps fdist.

Woods101 29.19 2.90 7.89 0.02 5.63 0.01
E2 32.49 28.20 19.74 0.18 7.86 0.01

Maze10 42.27 5.11 40.69 3.8 23.81 1.08

Table 4: Best average results (number of steps
and final distance to the food) obtained by XCS
and APCS on the considered environments, average
number of steps obtained using random walk and
optimal number of steps given by MASS

Parameters used for the XCS during these experiments are
these used in the experiment conducted by Lanzi in 1999 on
this type of environment[11], exception made for the number
of individuals which is 2000 for the Woods101, 8000 for E2
environment and 10000 for Maze10 environment.

When we consider the differences between the best results
obtained by the XCS and the best results obtained by the
APCS, we notice two differences. The first one, significant

on E2 and on Maze10 but not on Woods 101 is that the
average number of steps done by the APCS is closer to the
optimal than the average number of steps done by the XCS.
This statement can find its foundation in the second differ-
ence noticed: the average final distance to the food for the
APCS on the three mazes is lower than the one measured for
the XCS. This difference means that the APCS accurately
find the food more often than the XCS which implies that
the policy built by the APCS is more stable and accurate.

However, the strategies employed by the two systems are
quite different one from another: the XCS learning stage
focuses on the value function and the policy deployed by
this system is strongly dependent of this value function. In
addition to that fact, in order to keep the accuracy of its
prediction, this mechanism requires to maintain all the ac-
tions available for a given signal. Due to these facts, even
if the XCS succeed in keeping a stable policy for the Woods
101 environment, it fails when facing an environment with
numerous aliasing situations.

,

XCS XCSM XCSMH APCS
Woods101 7.89 3 2.9 5.63

E2 19.74 — — 7.86
Maze10 40.69 15.1 6.1 23.81

Table 5: Comparison of the average number of
steps done by the APCS on the considered mazes
with performances obtained using LCS able to solve
POMDP

As a consequence, Lanzi developped XCSM and XCSMH
allowing XCS to use an inner register to keep a trace of its
previous actions within its population. This internal register
allows XCSM and XCSMH to deal successfully with maze
environments containing aliasing squares by adding informa-
tion to solve the aliased situations depending on the values
contained by its internal register (please refer to [9, 10] for
more details).

On the opposite, the learning mechanism used by the
APCS relies on its cognitive capacity (Nc) which allows it
to keep different efficient actions for each aliasing situation
with the same probability of being chosen thanks to the ran-
dom selection of matching classifiers.

The strongest classifiers will tend to stay in the population
because they will allow their owner to reach the food more
accurately and more often than the other individuals of the
APCS. As a consequence, in a multistep environment, the
classifiers contained by these strong individuals allow them
to build action chains which are reward dependent. More-
over, instead of solving one problem at once, the APCS tries
to solve NI problems at the same time (see Section 3.1.2)
which enables it to explore a higher number of situations in
a short time of simulation.

Due to all these facts, the system tend to converge to
a “sub-optimal” (see tab. 5 [8] [16]) solution that allows
it to be rewarded accurately and more often without using
anticipation or memory mechanisms.
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Figure 5: Example of policies deployed by the APCS
to solve E2 and Maze10

We assist to the formation of policies (see fig. 5) that al-
lows it to reach the food from every position, even when the
environment contain aliasing squares. This policy evolves
with the frequency of the reward encountered by the in-
dividuals which allow them to adapt and modify (via the
genetic algorithm) their classifiers.

6. CONCLUSIONS
Through this paper, we have shown and studied results

which indicate that, without any knowledge of its environ-
ment, even when facing non-markovian positions, the Adapted
Pittsburgh Classifier System improved with the covering
mechanism is able to adopt a quasi-stable policy in maze en-
vironments containing aliasing squares. This policy allows
it to reach accurately the food with a low but not optimal
number of steps as we have seen through a comparison with
classifier systems using memory mechanisms.

When studying the number of classifiers contained by an
individual, we have shown that the raise of this local cogni-
tive capacity can benefit to the system if it remains under a
problem dependent threshold (see also [6]). Cognitive capac-
ity provided over this threshold shown the conservation of
defective precursors and a strong disturbance of the system
answer due to them. Fortunately, as shown in the exper-
iments, these precursors are assimilated/eliminated by the
system during a period depending on the useless amount of
information they carry.

We have also shown that the covering mechanism we pro-
pose had a noticeable influence on the performances of the
system: classifiers eliminated by this mechanism would carry
an information that have a decreasing usability depending
on the number of evaluation steps during which these clas-
sifiers are not triggered by a signal from the environment.

Some interesting further work remains to be finalized, es-
pecially concerning the precise built of the policy evolved by
the APCS along the experiment and the role occupied by the
number of evaluation trialsin the constitution of this policy.
Further interesting work should also been conducted on the
possible use of these properties on aliased data samples as
available in economy or physics.
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