
Evolving Prediction Weights Using Evolution Strategy
Trung Hau Tran, Cédric Sanza, Yves Duthen

IRIT-UPS-CNRS, University of Toulouse, Toulouse, France

{hau, sanza}@irit.fr

ABSTRACT
The evolution strategy is one of the strongest evolutionary
algorithms for optimizing real-value vectors. In this paper, we study
how to use it for the evolution of prediction weights in XCSF in
order to make the computed prediction more accurate. Our version
of XCSF shows to be able to evolve more accurate linear
approximations of functions. It is more efficient than the original
XCSF and slightly better than XCSF with recursive least squares, in
spite of its simple structure and its low complexity.

Categories and Subject Descriptors
I.2.6 [Artificial Intelligence]: Learning—Concept learning,
Parameter learning

General Terms
Algorithms, Performance

Keywords
XCSF, function approximation, evolution strategy

1. INTRODUCTION
The learning classifier system XCSF [15][16] is an extension to
XCS [13]. The major development of XCSF is the use of a
computed classifier prediction instead of a fixed scalar one, which
allows the system to evolve classifiers with more accurate values of
the prediction. Thus, XCSF improves its performance and can yield
more compact solutions.

The efficiency of XCSF in solving reinforcement learning problems
has been demonstrated [5]. In addition, XCSF can be used as an
approach to approximate a target function [4][15][16]. In this case, it
has only one action (or dummy action) and the prediction represents
the value of this approximated function. Wilson [15][16] proposed a
linear prediction, in which the classifier prediction p(x,w) is
computed as a linear combination of the input x and a vector of
prediction weights w associated to each classifier. Lanzi [4]
extended XCSF beyond linear prediction to polynomial predictions.
The accuracy and generalization in the modified version of XCSF is
significantly better than the original XCSF. XCSF with neural
prediction [7] is another extension to XCSF, where the prediction is
the output of a multi-layer neural network. A key importance of
XCSF with neural prediction is that the structure of the network is
also evolved, along with the classifier condition, by a genetic

algorithm to improve the approximation accuracy. This new XCSF
version showed to be more powerful than XCSF on functions highly
non linear.

Besides the type of function approximators used to compute the
prediction, the performance of XCSF also depends on the type of
algorithms used to update prediction weights. In [15][16], prediction
weights w are updated using a modified delta rule [12]. In [6],
different update algorithms were proposed (recursive least square
(RLS), Kalman filter and gain adaptation). XCSF with RLS and
Kalman filter achieve similar performance and outperform the other
versions.

In our work, we will focus on prediction weight update algorithms
to extend XSCF performance. Indeed, we will investigate an
approach in which prediction weights are evolved by using an
evolutionary algorithm. An evolution strategy [9] is more preferable
than a genetic algorithm [2] for this task because the former
maintains a small population of individuals (i.e. prediction weight
vectors) and can learn fast. Its efficiency has been demonstrated to
solve the frog problem (one-dimensional problem) in [10] and
double integrator and pendulum problems (two-dimensional
problems) in [11]. The system that we used, called XCSFCA,
evolved action weights to make the computed continuous action
more accurate in the absence of action feedback. In this paper, we
apply our version of XCSF with evolution strategy, called XCSFES,
to approximate a set of continuous functions taken from [6]. The
main difference with XCSFCA is that XCSFES evolves prediction
weights while the action part is not involved. The results show that
XCSFES outperforms the original XCSF and obtains more accurate
approximations than XCSF with RLS on the functions. XCSFES
produces more compact solutions than these versions.

The next section gives a brief description of the evolution strategy.
Section 3 summarizes the functioning of XCSF. Section 4 presents
XCSFES. Section 5 presents the results obtained when applying it to
approximate the continuous functions. A discussion in section 6
concludes this paper.

2. EVOLUTION STRATEGY
The evolution strategy (ES) was developed by Rechenberg [8] and
Schwefel [9] for optimizing real-vectors. It is based on the ideas of
evolution and adaptation. Each individual in the ES is a real vector
of object parameters x(g)∈ℜn. The simplest version of the ES is a
(1+1)-ES. In this elitist version, in every generation one parent x(g)
produces one offspring x' (g+1) by mutation, the offspring is assigned
a fitness value evaluating its quality with respect to the problem, the
offspring competes with the parent based on the fitness, and the
better individual becomes the parent of the next generation. Thus,
the selection of individuals for the next generation g+1 is
deterministic. Note that, it is a minimization problem and thus the
direction in Eq.(1) is “≤”.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO’08, July 12–16, 2008, Atlanta, Georgia, USA.
Copyright 2008 ACM 978-1-60558-131-6/08/07...$5.00.

2009

⎪⎩

⎪
⎨
⎧ ≤′′

=
++

+

otherwise
)()(if

)(

)()1()1(
)1(

g

ggg
g

x
xfitnessxfitnessx

x

(1)

Mutation on x(g) is performed by adding a random value N(0,σ(g) 2)
from a normal distribution with mean of zero and standard deviation
of σ(g) (Eq.(2)). The global step-size (or standard deviation) σ(g)∈ℜ+
used by mutation is itself adapted by using a 1/5th-rule [8] based on
the rate of successful mutations over a number of G generations. A
mutation is called successful if the offspring dominates its parent in
the fitness sense (i.e.)()()()1(gg xfitnessxfitness ≤′ +). [3] proposed an
alternative simple implementation of the 1/5th-rule. Indeed, after the
evaluation of a new generation, the success or the failure of the
mutation is directly used in the adaptation of the global step-size
(Eq.(3)). The new implementation can achieve faster and more
precisely performance than the original ES.

()1 ,0)()()1(Nxx ggg ⋅+=′ + σ (2)

⎪⎩

⎪
⎨
⎧

⋅

≤′⋅
=

+
+

otherwise

)()(if
1/4-)(

)()1()(
)1(

ES
g

gg
ES

g
g xfitnessxfitness

ασ

ασ
σ

(3)

Where N(0,1) is a normal distribution with mean of zero and
standard deviation of one. αES is the change rate of the global step-
size. Values for αES are recommended between n/12 and 2, where n
is the dimension of the problem. Each element xi

(g) is initialized to a
value xi

(0). σ(g) is initialized to a constant value σ(0). The value for
this constant is problem dependent.

3. REVIEW OF XCSF
XCSF is an extension to XCS for learning environments where the
input is continuous and the payoff landscape is continuous with
respect to the input. A new classifier condition structure adapting to
real value inputs is introduced that allows XCSF to evolve more
appropriate conditions. The use of a computed prediction as a
function of the input allows XCSF to evolve classifiers with more
accurate values of the prediction. Thus, the system performance is
improved, XCSF can yield more compact solutions and the
convergence time may increase.

XCSF runs like XCS. The system receives an input message x via
the detectors, forms a match set M of classifiers whose condition
part matches x, determines a winner action a* between possible
actions in M according to an action selection strategy, forms an
action set A of the classifiers advocating a* and sends a* to the
effectors. The system receives a reward r at the next step to update
the parameters of the classifiers in A. A new component updates the
prediction weights in order to make the predictions more accurate.
Covering operator is triggered according to a covering strategy.
Either no existing classifier matches x as in [13] or M contains less
than φmna discrete actions as in [1]. A niche genetic algorithm is
invoked to generate potential classifiers adapting to the problem.

Classifier condition. XCSF extends XCS to deal with continuous
input. The components of a classifier condition are the interval
predicates inti=(li,ui) where li(“lower”) and ui(“upper”) are real
values. A classifier cl matches an input message x=(x1,…,xn) if each
element xi belongs to the corresponding interval predicate cl.inti at
the position i i.e. li≤xi≤ui. The system with the real input was studied
in [14] and one can use again the methods manipulating interval
predicates.

Computed classifier prediction. The new concept in XCSF is the
computation of the classifier prediction instead of using a parameter
estimating its value. A vector of weights w=(w0,w1,…,wn), called the
prediction weight vector, is added to each classifier. The classifier
prediction cl.p is computed as a linear combination of the prediction
weight vector cl.w and the input message x=(x1,…,xn) concatenated
with a constant x0. Wilson’s studies [16] proposed that the value of
x0 should be the same order of the values of the elements of x.

() xwxpcl ′⋅=.

()nwwww ,...,, 10=

()nxxxx ,...,, 10=′

(4)

Covering operator. When a new covered classifier is created, each
interval predicate inti=(li,ui) is generated as li = xi - rand(r0) and ui =
xi + rand(r0), where rand(r0) is a value uniform randomly from
[0,r0] and r0 is a real constant, and each element wi of the weight
vector is initialized to a value uniform randomly from [-1,1].

Discovery mechanism. A genetic algorithm works as in XCS.
Crossover (with probability χ) exchanges alleles of two parents
between two crossover points. Since an allele is a real value, a new
mutation operator is introduced. Mutation (with probability μ)
modifies an allele by adding an amount ± rand(m0) where m0 is a
real constant.

Domain control. Covering and mutation operators can generate
illegal intervals. If it happens, li and ui of an interval predicate are
brought back to the condition bounds and they are possibly
permuted in order to respect the predicate constraint li≤ui.

Reinforcement. The prediction weight vector cl.w of each classifier
in A is updated using a modified delta rule [12]:

() ii xxpclP
x

w ⋅−⋅
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

′
=Δ)(.2

η

(5)

iii wwclwcl Δ+← .. (6)

Where η is the correction rate. The classifier prediction error cl.ε
and the classifier fitness cl.F are then updated as follows:

()εβεε .)(... clxpclPclcl −−⋅+← (7)

⎪
⎩

⎪
⎨

⎧

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⋅

<

= −

otherwise .

 if 1

.

0

0
ν

ε
εα

εε

κ cl

cl.

cl

(8)

[]
∑
∈

⋅
⋅

=′

Aj
jj numclcl

numclclcl
..

...
κ

κκ
(9)

()FclclFclFcl −′⋅+← κβ (10)

Where β is the learning rate. The constant ε0 represents the
threshold of tolerance for the prediction error cl.ε. If cl.ε is below ε0,
the error is accepted and the classifier cl is considered to be accurate
(cl.κ=1). Otherwise its accuracy drops off and is controlled by an
accuracy function with the parameters α and ν. The relative
accuracy cl.κ′ is calculated with respect to the other classifiers clj of

2010

A. cl.num is the numerosity of the classifier cl. Notice that, cl.w is
updated first and then cl.ε and cl.F are updated.

4. XCSF WITH EVOLUTION STRATEGY
The integration of the evolution strategy into XCSF is
straightforward. Prediction weights in XCSF are updated by
algorithms in Eq.(5)&Eq.(6). We replace them by the corresponding
algorithm (Algorithm 1). The vector of object parameters x in Eq.(2)
corresponds to the prediction weight vector cl.w and the function
evaluation fitness(x) of an individual x in Eq.(3) corresponds to the
calculation of the absolute error between the current reward and the
computed prediction. The modified classifier system is called
XCSFES.

The classifier structure is slightly extended. Indeed, one global step-
size parameter σ is added to each classifier. An (1+1)-ES is applied
on each member of action set A to evolve prediction weights during
explore problems. It will mutate the current prediction weight vector
of each action set classifier to produce one mutant vector and
evaluate it. The better prediction weight vector will be kept to the
next time-step. Consider a classifier cl in A with its prediction
weights cl.w and its step-size cl.σ, the mutant classifier cl′ is a copy
of the parent classifier cl except for its prediction weight vector
represented by cl′.w generated by mutation on cl.w using cl.σ. This
corresponds to step 1 (Algorithm 1). The evaluation of the mutant
prediction weight vector cl′.w consists of the absolute error
calculation between the current payoff P and the computed
prediction cl′.p(x,cl′.w). The evaluation of the parent vector is
similar to the one of the mutant, i.e. the mutant and the parent are
evaluated in the context of the current payoff P. That corresponds to
step 2 (Algorithm 1). If the mutant is better than the parent (i.e.
lower error), it will replace its parent (step 3 in Algorithm 1). If
replacement does not occur, the mutant is discarded and a new
mutant will be generated in next generations. After the evaluation of
a generation, the global step-size is itself updated by taking into
account the success or the failure of the mutation (step 4 in
Algorithm 1).

Algorithm 1. Evolve prediction weights by (1+1)-ES

1. Mutate one parent prediction weight vector represented by
cl.w to produce one mutant vector cl′.w by Eq.(2)
2. Evaluate the mutant vector cl′.w, i.e. compute the absolute
error between the reward P and the computed prediction cl′.p

() .,.).(wlcxplcPwlceval ′′−=′

Evaluate the parent vector cl.w:
() .,.).(wclxpclPwcleval −=

3. Replace the parent prediction weight vector if the mutant
vector dominates the parent vector

 IF (eval(cl′.w) < eval(cl.w))
replace cl by cl′

4. Update the global step-size cl.σ by Eq.(3)

In term of memory usage XCSFES requires only one additional
parameter (i.e. the global step-size). The complexity of
XCSFES’s update algorithm is O(n). The global step size may
prematurely converge. A lower bound σmin may be necessary to
ensure a minimum global step size.

5. EXPERIMENTS
5.1 Experiment Settings
XCSF learns to approximate a function f(x) from examples
(x, f(x)), where x is randomly selected on the domain [0,1] and f(x)
is the corresponding function value. The following set of
functions is taken from [6]. XCSF receives a vector x as input,
computes the approximated value)(ˆ xf as the system prediction
for the only available action, executes the action and then receives
the real function value f(x) used as reward.

Table 1. Target functions with x∈[0,1]
321)(xxxxfp +++= (11)

)cos()sin()(xxxfabs += (12)

)3sin()2sin()sin()(3 xxxxfs ++= (13)

)4sin()3sin()2sin()sin()(4 xxxxxfs +++= (14)

We use the same parameter settings and measures described in
[6]. These are: N=800, β=0.2, θGA=50, χ=0.8, μ=0.04, r0=0.1,
m0=0.2, x0=1, α=0.1, ν=5, θdel=50, δ=0.1 and three values 0.05,
0.10 and 0.20 for ε0. XCSFES uses the extra settings: the initial
standard deviation σ(0)=3, σmin=0.01, the change rate αES= n/12
[3], where n=2 is the vector length of prediction weights. Each
element wi of the prediction weight vector is initialized to 1. GA-
subsumption is enabled with θgasub=50 while action set
subsumption is disabled. Explore and exploit problems are
alternated. One run is stopped after 100,000 explore problems.
The system error measures the difference between the
approximated value and the real function value. The system error
curve is plotted by using a 50-point running average from exploit
problems, averaged over 50 runs. We use the root mean square
error (RMSE) defined in [6] to evaluate the approximation
accuracy. RMSE represents the average RMSE over all runs.

∑ −=
xrmse

xfxf
n

RMSE 2))(ˆ)((1 (15)

Where nrmse is the number of samples used for this measure. In
our experiment, x is chosen from 0 to 1, increased by 0.001.

5.2 Results
Table 2 reports the performance of XCSFES, XCSF with RLS [6]
and XCSF on the target functions. Over 50 runs, approximations
obtained by XCSFES are more accurate than the original XCSF
on the functions. In comparison with XCSF with RLS, XCSFES
performs slightly better. For the average population size,
XCSFES produces more compact solutions than XCSF and XCSF
with RLS.

Fig. 1 shows the system error of XCSFES, XCSF with RLS and
XCSF, respectively on fp. The three systems have their system
error below ε0. The first two systems are significantly better than
XCSF and there is little difference between XCSFES and XCSF
with RLS. For ε0=0.05, after about 50,000 problems, XCSF with
RLS performance stays at 0.007 while XCSFES continues to
evolve prediction weights and stabilizes performance at 0.005.
For ε0=0.10 and ε0=0.20, XCSF with RLS performance is about

2011

0.011 and 0.022, respectively while XCSFES performance is
about 0.008 and 0.011, respectively.

On fabs, the system error of XCSFES, XCSF with RLS and XCSF
is below ε0 (Fig. 2). XCSFES is better than the others for each ε0.

(a) ε0=0.05

(b) ε0=0.10

(c) ε0=0.20

Figure 1. System error of XCSFES, XCSF with RLS and
XCSF on fp. (a), (b) and (c) correspond to 3 values 0.05, 0.10
and 0.20 for ε0.

(a) ε0=0.05

(b) ε0=0.10

(c) ε0=0.20

Figure 2. System error of XCSFES, XCSF with RLS and
XCSF on fabs

On fs3, for ε0=0.05 and ε0=0.10, XCSFES performance is little
difference with XCSF with RLS. For ε0=0.20, XCSFES has less
error than XCSF with RLS (Fig. 3).

2012

On fs4, XCSFES and XCSF with RLS significantly outperform
XCSF (Fig. 4). The system error of XCSFES and XCSF with RLS
falls more quickly than the one of XCSF. For ε0=0.05, after about
30,000 problems, the system error of XCSF with RLS decreases
more slowly than the one of XCSFES. The same behaviors are
obtained for ε0=0.10 and ε0=0.20.

(a) ε0=0.05

(b) ε0=0.10

(c) ε0=0.20

Figure 3. System error of XCSFES, XCSF with RLS and
XCSF on fs3

(a) ε0=0.05

(b) ε0=0.10

(c) ε0=0.20

Figure 4. System error of XCSFES, XCSF with RLS and
XCSF on fs4

6. DISCUSSION AND CONCLUSION
The evolution strategy is an evolutionary method for evolving the
prediction weights and is also considered as a kind of updating the

2013

prediction weights, in the sense of modifying. It differs from
“error-correcting” methods such as the modified delta rule and the
recursive least square method, which directly correct the
prediction weights.

The ES requires less computation time than the RLS method. The
former requires O(n) while the latter requires O(n2) [6]. If the
input space is high, the ES needs more time to evolve prediction
weights and thus it can be slower than the error-correcting
methods. This is a disadvantage of the ES.

In this paper, we have presented a modification of XCSF, in
which prediction weights of each classifier are not updated,
instead they are evolved by using an evolution strategy. We use
XCSFES to approximate a set of target functions. Although
XCSFES uses the simple structure for the prediction weight
vector and requires less computation time than XCSF with RLS,
the results show XCSFES is able to evolve more accurate
approximations. Our system is significantly more efficient than
the original XCSF and obtains more accurate approximations than
XCSF with RLS. More compact solutions are obtained by
XCSFES.

Even though the functions tested have one dimensional input, the
success obtained could lead to a future work that extends
experiments to difficult target functions (e.g. high dimensional
input space) and investigates the integration of other versions of
the evolution strategy (e.g. covariance matrix adaptation
evolution strategy) into XCSF.

Acknowledgements
The authors wish to acknowledge helpful and constructive
comments of Stewart W. Wilson and the anonymous reviewer.

7. REFERENCES
[1] Butz, M. V., and Wilson, S. W., An Algorithmic Description

of XCS, Soft Computing, 6(3-4), pp. 144-153, 2002.

[2] Goldberg, D. E., Genetic Algorithms in Search,
Optimization, and Machine Learning, Addison-Wesley,
Reading, MA, 1989.

[3] Kern, S., Müller, S. D., Hansen, N., Büche, D., Ocenasek, J.,
and Koumoutsakos, P., Learning Probability Distributions in
Continuous Evolutionary Algorithms - A Comparative
Review, Natural Computing: an international journal, Vol.
3, pp. 77-112, 2004.

[4] Lanzi, P. L., Loiacono, D., Wilson, S. W., and Goldberg, D.
E., Extending XCSF beyond Linear Approximation,
GECCO‘2005, Genetic and Evolutionary Computation
Conference, pp. 1827-1834, ACM Press, New York, USA,
2005.

[5] Lanzi, P. L., Loiacono, D., Wilson, S. W., and Goldberg, D.
E., Classifier Prediction based on Tile Coding,
GECCO‘2006, Genetic and Evolutionary Computation
Conference, pp. 1497–1504, ACM Press, New York, USA,
2006.

[6] Lanzi, P. L., Loiacono, D., Wilson, S. W., and Goldberg, D.
E., Prediction Update Algorithms for XCSF: RLS, Kalman
filter, and Gain Adaptation, GECCO‘2006, Genetic and
Evolutionary Computation Conference, pp. 1505-1512,
ACM Press, New York, USA, 2006.

[7] Loiacono, D., and Lanzi, P. L., Evolving Neural Networks
for Classifier Prediction with XCSF, ECAI‘2006, Workshop
on Evolutionary Computation, pp. 36-40, ACM Press, New
York, USA, 2006.

[8] Rechenberg, I., Evolutionsstrategie: Optimierung
technischer Systeme und Prinzipien der biologischen
Evolution, Frommann-Holzboog, Stuttgart, 1973.

[9] Schwefel, H.-P., Numerical Optimization of Computer
Models, Chichester: Wiley, 1981.

[10] Tran, T. H., Sanza, C., Duthen, Y., and Nguyen, D. T.,
XCSF with Computed Continuous Action, GECCO’2007,
Genetic and Evolutionary Computation Conference, London,
England, pp. 1861-1869, 2007.

[11] Tran, T. H., Approches évolutionnaires pour le
comportement adaptatif d’entités autonomes, PhD thesis,
University of Toulouse, IRIT lab., France, 2007.

[12] Widrow, B., and Hoff, M. E., Adaptive Switching Circuits,
Neurocomputing: Foundations of Research, pp. 126-134,
MIT Press, Cambridge, MA, 1988.

[13] Wilson, S. W., Classifier Fitness Based on Accuracy,
Evolutionary Computation, 3(2), pp. 149-175, 1995.

[14] Wilson, S. W., Get Real! XCS with Continuous-Valued
Inputs, Festschrift in Honor of John H. Holland, pp. 111-
121, 1999.

[15] Wilson, S. W., Function Approximation with a Classifier
System, GECCO’2001, Genetic and Evolutionary
Computation Conference, San Francisco, CA, pp. 974-981,
2001.

[16] Wilson, S. W., Classifiers that Approximate Functions,
Natural Computing, 1(2-3), pp. 211-234, 2002.

2014

Table 2. (a), (b), (c) and (d) report XCSFES performance on the target functions fp, fabs fs3, and fs4, respectively. The first column is
the error threshold ε0, the second and third columns are the average RMSE with the standard deviation (RMSE ±σ) obtained by
XCSFES, XCSF with RLS and the original XCSF, respectively, and the fourth and last columns are the average population size
with the standard deviation (|P|±σ) of XCSFES, XCSF with RLS and XCSF, respectively.

ε0 RMSE±σ (XCSFES) RMSE±σ (RLS) RMSE±σ (XCSF) |P|±σ (XCSFES) |P|±σ (RLS) |P|±σ (XCSF)

0.05 0.008±0.002 0.010±0.001 0.015±0.002 94.560±10.112 124.680±7.004 120.340±10.184

0.10 0.011±0.003 0.015±0.002 0.023±0.004 105.580±9.833 130.660±7.522 134.600±7.017

0.20 0.014±0.006 0.029±0.003 0.037±0.005 115.360±10.033 134.120±7.727 136.680±7.145

(a) fp

ε0 RMSE±σ (XCSFES) RMSE±σ (RLS) RMSE±σ (XCSF) |P|±σ (XCSFES) |P|±σ (RLS) |P|±σ (XCSF)

0.05 0.004±0.001 0.007±0.001 0.009±0.001 107.020±8.885 132.620±7.502 136.280±7.037

0.10 0.005±0.001 0.010±0.001 0.012±0.001 115.380±10.020 131.060±7.245 133.840±7.963

0.20 0.008±0.003 0.010±0.001 0.012±0.001 122.700±8.455 133.320±7.098 132.980±6.793

(b) fabs

ε0 RMSE±σ (XCSFES) RMSE±σ (RLS) RMSE±σ (XCSF) |P|±σ (XCSFES) |P|±σ (RLS) |P|±σ (XCSF)

0.05 0.011±0.008 0.012±0.002 0.022±0.004 88.520±9.603 118.640±6.962 115.860±7.754

0.10 0.013±0.004 0.016±0.002 0.025±0.004 100.300±9.669 127.180±6.893 126.560±7.489

0.20 0.018±0.004 0.027±0.004 0.033±0.004 107.900±10.445 130.480±6.932 135.680±7.875

(c) fs3

ε0 RMSE±σ (XCSFES) RMSE±σ (RLS) RMSE±σ (XCSF) |P|±σ (XCSFES) |P|±σ (RLS) |P|±σ (XCSF)

0.05 0.008±0.007 0.016±0.003 0.035±0.006 95.813±17.384 111.120±6.728 110.360±7.485

0.10 0.011±0.009 0.021±0.004 0.041±0.007 104.567±18.155 120.080±8.197 119.800±7.965

0.20 0.014±0.010 0.030±0.003 0.050±0.008 112.280±15.231 127.000±7.909 129.180±7.979

(d) fs4

2015

