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ABSTRACT 
The evolution strategy is one of the strongest evolutionary 
algorithms for optimizing real-value vectors. In this paper, we study 
how to use it for the evolution of prediction weights in XCSF in 
order to make the computed prediction more accurate. Our version 
of XCSF shows to be able to evolve more accurate linear 
approximations of functions. It is more efficient than the original 
XCSF and slightly better than XCSF with recursive least squares, in 
spite of its simple structure and its low complexity. 

Categories and Subject Descriptors 
I.2.6 [Artificial Intelligence]: Learning—Concept learning, 
Parameter learning 

General Terms 
Algorithms, Performance 

Keywords 
XCSF, function approximation, evolution strategy 

1. INTRODUCTION 
The learning classifier system XCSF [15][16] is an extension to 
XCS [13]. The major development of XCSF is the use of a 
computed classifier prediction instead of a fixed scalar one, which 
allows the system to evolve classifiers with more accurate values of 
the prediction. Thus, XCSF improves its performance and can yield 
more compact solutions. 

The efficiency of XCSF in solving reinforcement learning problems 
has been demonstrated [5]. In addition, XCSF can be used as an 
approach to approximate a target function [4][15][16]. In this case, it 
has only one action (or dummy action) and the prediction represents 
the value of this approximated function. Wilson [15][16] proposed a 
linear prediction, in which the classifier prediction p(x,w) is 
computed as a linear combination of the input x and a vector of 
prediction weights w associated to each classifier. Lanzi [4] 
extended XCSF beyond linear prediction to polynomial predictions. 
The accuracy and generalization in the modified version of XCSF is 
significantly better than the original XCSF. XCSF with neural 
prediction [7] is another extension to XCSF, where the prediction is 
the output of a multi-layer neural network. A key importance of 
XCSF with neural prediction is that the structure of the network is 
also evolved, along with the classifier condition, by a genetic 

algorithm to improve the approximation accuracy. This new XCSF 
version showed to be more powerful than XCSF on functions highly 
non linear. 

Besides the type of function approximators used to compute the 
prediction, the performance of XCSF also depends on the type of 
algorithms used to update prediction weights. In [15][16], prediction 
weights w are updated using a modified delta rule [12]. In [6], 
different update algorithms were proposed (recursive least square 
(RLS), Kalman filter and gain adaptation). XCSF with RLS and 
Kalman filter achieve similar performance and outperform the other 
versions. 

In our work, we will focus on prediction weight update algorithms 
to extend XSCF performance. Indeed, we will investigate an 
approach in which prediction weights are evolved by using an 
evolutionary algorithm. An evolution strategy [9] is more preferable 
than a genetic algorithm [2] for this task because the former 
maintains a small population of individuals (i.e. prediction weight 
vectors) and can learn fast. Its efficiency has been demonstrated to 
solve the frog problem (one-dimensional problem) in [10] and 
double integrator and pendulum problems (two-dimensional 
problems) in [11]. The system that we used, called XCSFCA, 
evolved action weights to make the computed continuous action 
more accurate in the absence of action feedback. In this paper, we 
apply our version of XCSF with evolution strategy, called XCSFES, 
to approximate a set of continuous functions taken from [6]. The 
main difference with XCSFCA is that XCSFES evolves prediction 
weights while the action part is not involved. The results show that 
XCSFES outperforms the original XCSF and obtains more accurate 
approximations than XCSF with RLS on the functions. XCSFES 
produces more compact solutions than these versions. 

The next section gives a brief description of the evolution strategy. 
Section 3 summarizes the functioning of XCSF. Section 4 presents 
XCSFES. Section 5 presents the results obtained when applying it to 
approximate the continuous functions. A discussion in section 6 
concludes this paper. 

2. EVOLUTION STRATEGY 
The evolution strategy (ES) was developed by Rechenberg [8] and 
Schwefel [9] for optimizing real-vectors. It is based on the ideas of 
evolution and adaptation. Each individual in the ES is a real vector 
of object parameters x(g)∈ℜn. The simplest version of the ES is a 
(1+1)-ES. In this elitist version, in every generation one parent x(g) 
produces one offspring x' (g+1) by mutation, the offspring is assigned 
a fitness value evaluating its quality with respect to the problem, the 
offspring competes with the parent based on the fitness, and the 
better individual becomes the parent of the next generation. Thus, 
the selection of individuals for the next generation g+1 is 
deterministic. Note that, it is a minimization problem and thus the 
direction in Eq.(1 ) is “≤”. 

 

Permission to make digital or hard copies of all or part of this work for 
personal or classroom use is granted without fee provided that copies are 
not made or distributed for profit or commercial advantage and that copies 
bear this notice and the full citation on the first page. To copy otherwise, or 
republish, to post on servers or to redistribute to lists, requires prior specific 
permission and/or a fee. 
GECCO’08, July 12–16, 2008, Atlanta, Georgia, USA. 
Copyright 2008 ACM  978-1-60558-131-6/08/07...$5.00. 
 

2009



⎪⎩

⎪
⎨
⎧ ≤′′

=
++

+

otherwise        
)()( if     

)(

)()1()1(
)1(

g

ggg
g

x
xfitnessxfitnessx

x  
 

(1) 

Mutation on x(g) is performed by adding a random value N(0,σ(g) 2) 
from a normal distribution with mean of zero and standard deviation 
of σ(g) (Eq.(2)). The global step-size (or standard deviation) σ(g)∈ℜ+ 
used by mutation is itself adapted by using a 1/5th-rule [8] based on 
the rate of successful mutations over a number of G generations. A 
mutation is called successful if the offspring dominates its parent in 
the fitness sense (i.e. )()( )()1( gg xfitnessxfitness ≤′ + ). [3] proposed an 
alternative simple implementation of the 1/5th-rule. Indeed, after the 
evaluation of a new generation, the success or the failure of the 
mutation is directly used in the adaptation of the global step-size 
(Eq.(3)). The new implementation can achieve faster and more 
precisely performance than the original ES. 
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Where N(0,1) is a normal distribution with mean of zero and 
standard deviation of one. αES is the change rate of the global step-
size. Values for αES are recommended between n/12  and 2, where n 
is the dimension of the problem. Each element xi

(g) is initialized to a 
value xi

(0). σ(g) is initialized to a constant value σ(0). The value for 
this constant is problem dependent. 

3. REVIEW OF XCSF 
XCSF is an extension to XCS for learning environments where the 
input is continuous and the payoff landscape is continuous with 
respect to the input. A new classifier condition structure adapting to 
real value inputs is introduced that allows XCSF to evolve more 
appropriate conditions. The use of a computed prediction as a 
function of the input allows XCSF to evolve classifiers with more 
accurate values of the prediction. Thus, the system performance is 
improved, XCSF can yield more compact solutions and the 
convergence time may increase. 

XCSF runs like XCS. The system receives an input message x via 
the detectors, forms a match set M of classifiers whose condition 
part matches x, determines a winner action a* between possible 
actions in M according to an action selection strategy, forms an 
action set A of the classifiers advocating a* and sends a* to the 
effectors. The system receives a reward r at the next step to update 
the parameters of the classifiers in A. A new component updates the 
prediction weights in order to make the predictions more accurate. 
Covering operator is triggered according to a covering strategy. 
Either no existing classifier matches x as in [13] or M contains less 
than φmna discrete actions as in [1]. A niche genetic algorithm is 
invoked to generate potential classifiers adapting to the problem. 

Classifier condition. XCSF extends XCS to deal with continuous 
input. The components of a classifier condition are the interval 
predicates inti=(li,ui) where li(“lower”) and ui(“upper”) are real 
values. A classifier cl matches an input message x=(x1,…,xn) if each 
element xi belongs to the corresponding interval predicate cl.inti at 
the position i i.e. li≤xi≤ui. The system with the real input was studied 
in [14] and one can use again the methods manipulating interval 
predicates. 

Computed classifier prediction. The new concept in XCSF is the 
computation of the classifier prediction instead of using a parameter 
estimating its value. A vector of weights w=(w0,w1,…,wn), called the 
prediction weight vector, is added to each classifier. The classifier 
prediction cl.p is computed as a linear combination of the prediction 
weight vector cl.w and the input message x=(x1,…,xn) concatenated 
with a constant x0. Wilson’s studies [16] proposed that the value of 
x0 should be the same order of the values of the elements of x. 
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Covering operator. When a new covered classifier is created, each 
interval predicate inti=(li,ui) is generated as li = xi - rand(r0) and ui = 
xi + rand(r0), where rand(r0) is a value uniform randomly from 
[0,r0] and r0 is a real constant, and each element wi of the weight 
vector is initialized to a value uniform randomly from      [-1,1]. 

Discovery mechanism. A genetic algorithm works as in XCS. 
Crossover (with probability χ) exchanges alleles of two parents 
between two crossover points. Since an allele is a real value, a new 
mutation operator is introduced. Mutation (with probability μ) 
modifies an allele by adding an amount ± rand(m0) where m0 is a 
real constant. 

Domain control. Covering and mutation operators can generate 
illegal intervals. If it happens, li and ui of an interval predicate are 
brought back to the condition bounds and they are possibly 
permuted in order to respect the predicate constraint li≤ui. 

Reinforcement. The prediction weight vector cl.w of each classifier 
in A is updated using a modified delta rule [12]: 
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iii wwclwcl Δ+← ..  (6) 

Where η is the correction rate. The classifier prediction error cl.ε 
and the classifier fitness cl.F are then updated as follows: 
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Where β is the learning rate. The constant ε0 represents the 
threshold of tolerance for the prediction error cl.ε. If cl.ε is below ε0, 
the error is accepted and the classifier cl is considered to be accurate 
(cl.κ=1). Otherwise its accuracy drops off and is controlled by an 
accuracy function with the parameters α and ν. The relative 
accuracy cl.κ′ is calculated with respect to the other classifiers clj of 
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A. cl.num is the numerosity of the classifier cl. Notice that, cl.w is 
updated first and then cl.ε and cl.F are updated. 

4. XCSF WITH EVOLUTION STRATEGY 
The integration of the evolution strategy into XCSF is 
straightforward. Prediction weights in XCSF are updated by 
algorithms in Eq.(5)&Eq.(6). We replace them by the corresponding 
algorithm (Algorithm 1). The vector of object parameters x in Eq.(2) 
corresponds to the prediction weight vector cl.w and the function 
evaluation fitness(x) of an individual x in Eq.(3) corresponds to the 
calculation of the absolute error between the current reward and the 
computed prediction. The modified classifier system is called 
XCSFES. 

The classifier structure is slightly extended. Indeed, one global step-
size parameter σ is added to each classifier. An (1+1)-ES is applied 
on each member of action set A to evolve prediction weights during 
explore problems. It will mutate the current prediction weight vector 
of each action set classifier to produce one mutant vector and 
evaluate it. The better prediction weight vector will be kept to the 
next time-step. Consider a classifier cl in A with its prediction 
weights cl.w and its step-size cl.σ, the mutant classifier cl′ is a copy 
of the parent classifier cl except for its prediction weight vector 
represented by cl′.w generated by mutation on cl.w using cl.σ. This 
corresponds to step 1 (Algorithm 1). The evaluation of the mutant 
prediction weight vector cl′.w consists of the absolute error 
calculation between the current payoff P and the computed 
prediction cl′.p(x,cl′.w). The evaluation of the parent vector is 
similar to the one of the mutant, i.e. the mutant and the parent are 
evaluated in the context of the current payoff P. That corresponds to 
step 2 (Algorithm 1). If the mutant is better than the parent (i.e. 
lower error), it will replace its parent (step 3 in Algorithm 1). If 
replacement does not occur, the mutant is discarded and a new 
mutant will be generated in next generations. After the evaluation of 
a generation, the global step-size is itself updated by taking into 
account the success or the failure of the mutation (step 4 in 
Algorithm 1). 

Algorithm 1. Evolve prediction weights by (1+1)-ES 

1. Mutate one parent prediction weight vector represented by 
cl.w to produce one mutant vector cl′.w by Eq.(2) 
2. Evaluate the mutant vector cl′.w, i.e. compute the absolute 
error between the reward P and the computed prediction cl′.p 

( )   .,.).( wlcxplcPwlceval ′′−=′  

Evaluate the parent vector cl.w: 
( )   .,.).( wclxpclPwcleval −=  

3. Replace the parent prediction weight vector if the mutant 
vector dominates the parent vector 

 IF ( eval(cl′.w) < eval(cl.w) ) 
replace  cl  by  cl′ 

4. Update the global step-size cl.σ by Eq.(3) 

In term of memory usage XCSFES requires only one additional 
parameter (i.e. the global step-size). The complexity of 
XCSFES’s update algorithm is O(n). The global step size may 
prematurely converge. A lower bound σmin may be necessary to 
ensure a minimum global step size. 

5. EXPERIMENTS 
5.1 Experiment Settings 
XCSF learns to approximate a function f(x) from examples         
(x, f(x)), where x is randomly selected on the domain [0,1] and f(x) 
is the corresponding function value. The following set of 
functions is taken from [6]. XCSF receives a vector x as input, 
computes the approximated value )(ˆ xf  as the system prediction 
for the only available action, executes the action and then receives 
the real function value f(x) used as reward. 

Table 1. Target functions with x∈[0,1] 
321)( xxxxfp +++=  (11) 

 )cos()sin( )( xxxfabs +=  (12) 

)3sin()2sin()sin()(3 xxxxfs ++=  (13) 

)4sin()3sin()2sin()sin()(4 xxxxxfs +++=  (14) 

We use the same parameter settings and measures described in 
[6]. These are: N=800, β=0.2, θGA=50, χ=0.8, μ=0.04, r0=0.1, 
m0=0.2, x0=1, α=0.1, ν=5, θdel=50, δ=0.1 and three values 0.05, 
0.10 and 0.20 for ε0. XCSFES uses the extra settings: the initial 
standard deviation σ(0)=3, σmin=0.01, the change rate αES= n/12  
[3], where n=2 is the vector length of prediction weights. Each 
element wi of the prediction weight vector is initialized to 1. GA-
subsumption is enabled with θgasub=50 while action set 
subsumption is disabled. Explore and exploit problems are 
alternated. One run is stopped after 100,000 explore problems. 
The system error measures the difference between the 
approximated value and the real function value. The system error 
curve is plotted by using a 50-point running average from exploit 
problems, averaged over 50 runs. We use the root mean square 
error (RMSE) defined in [6] to evaluate the approximation 
accuracy. RMSE  represents the average RMSE over all runs. 

∑ −=
xrmse

xfxf
n

RMSE 2))(ˆ)((1  (15) 

Where nrmse is the number of samples used for this measure. In 
our experiment, x is chosen from 0 to 1, increased by 0.001. 

5.2 Results 
Table 2 reports the performance of XCSFES, XCSF with RLS [6] 
and XCSF on the target functions. Over 50 runs, approximations 
obtained by XCSFES are more accurate than the original XCSF 
on the functions. In comparison with XCSF with RLS, XCSFES 
performs slightly better. For the average population size, 
XCSFES produces more compact solutions than XCSF and XCSF 
with RLS. 

Fig. 1 shows the system error of XCSFES, XCSF with RLS and 
XCSF, respectively on fp. The three systems have their system 
error below ε0. The first two systems are significantly better than 
XCSF and there is little difference between XCSFES and XCSF 
with RLS. For ε0=0.05, after about 50,000 problems, XCSF with 
RLS performance stays at 0.007 while XCSFES continues to 
evolve prediction weights and stabilizes performance at 0.005. 
For ε0=0.10 and ε0=0.20, XCSF with RLS performance is about 
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0.011 and 0.022, respectively while XCSFES performance is 
about 0.008 and 0.011, respectively. 

On fabs, the system error of XCSFES, XCSF with RLS and XCSF 
is below ε0 (Fig. 2). XCSFES is better than the others for each ε0. 

 
(a) ε0=0.05 

 
(b) ε0=0.10 

 
(c) ε0=0.20 

Figure 1. System error of XCSFES, XCSF with RLS and 
XCSF on fp. (a), (b) and (c) correspond to 3 values 0.05, 0.10 
and 0.20 for ε0. 

 
(a) ε0=0.05 

 
(b) ε0=0.10 

 
(c) ε0=0.20 

Figure 2. System error of XCSFES, XCSF with RLS and 
XCSF on fabs 

On fs3, for ε0=0.05 and ε0=0.10, XCSFES performance is little 
difference with XCSF with RLS. For ε0=0.20, XCSFES has less 
error than XCSF with RLS (Fig. 3). 
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On fs4, XCSFES and XCSF with RLS significantly outperform 
XCSF (Fig. 4). The system error of XCSFES and XCSF with RLS 
falls more quickly than the one of XCSF. For ε0=0.05, after about 
30,000 problems, the system error of XCSF with RLS decreases 
more slowly than the one of XCSFES. The same behaviors are 
obtained for ε0=0.10 and ε0=0.20. 

 
(a) ε0=0.05 

 
(b) ε0=0.10 

 
(c) ε0=0.20 

Figure 3. System error of XCSFES, XCSF with RLS and 
XCSF on fs3 

 
(a) ε0=0.05 

 
(b) ε0=0.10 

 
(c) ε0=0.20 

Figure 4. System error of XCSFES, XCSF with RLS and 
XCSF on fs4 

6. DISCUSSION AND CONCLUSION 
The evolution strategy is an evolutionary method for evolving the 
prediction weights and is also considered as a kind of updating the 
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prediction weights, in the sense of modifying. It differs from 
“error-correcting” methods such as the modified delta rule and the 
recursive least square method, which directly correct the 
prediction weights. 

The ES requires less computation time than the RLS method. The 
former requires O(n) while the latter requires O(n2) [6]. If the 
input space is high, the ES needs more time to evolve prediction 
weights and thus it can be slower than the error-correcting 
methods. This is a disadvantage of the ES. 

In this paper, we have presented a modification of XCSF, in 
which prediction weights of each classifier are not updated, 
instead they are evolved by using an evolution strategy. We use 
XCSFES to approximate a set of target functions. Although 
XCSFES uses the simple structure for the prediction weight 
vector and requires less computation time than XCSF with RLS, 
the results show XCSFES is able to evolve more accurate 
approximations. Our system is significantly more efficient than 
the original XCSF and obtains more accurate approximations than 
XCSF with RLS. More compact solutions are obtained by 
XCSFES. 

Even though the functions tested have one dimensional input, the 
success obtained could lead to a future work that extends 
experiments to difficult target functions (e.g. high dimensional 
input space) and investigates the integration of other versions of 
the evolution strategy (e.g. covariance matrix adaptation 
evolution strategy) into XCSF. 
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Table 2. (a), (b), (c) and (d) report XCSFES performance on the target functions fp, fabs fs3, and fs4, respectively. The first column is 
the error threshold ε0, the second and third columns are the average RMSE with the standard deviation ( RMSE ±σ) obtained by 
XCSFES, XCSF with RLS and the original XCSF, respectively, and the fourth and last columns are the average population size 
with the standard deviation (|P|±σ) of XCSFES, XCSF with RLS and XCSF, respectively. 

ε0 RMSE±σ (XCSFES) RMSE±σ (RLS) RMSE±σ (XCSF) |P|±σ (XCSFES) |P|±σ (RLS) |P|±σ (XCSF) 

0.05 0.008±0.002 0.010±0.001 0.015±0.002 94.560±10.112 124.680±7.004 120.340±10.184 

0.10 0.011±0.003 0.015±0.002 0.023±0.004 105.580±9.833 130.660±7.522 134.600±7.017 

0.20 0.014±0.006 0.029±0.003 0.037±0.005 115.360±10.033 134.120±7.727 136.680±7.145 

(a) fp 

ε0 RMSE±σ (XCSFES) RMSE±σ (RLS) RMSE±σ (XCSF) |P|±σ (XCSFES) |P|±σ (RLS) |P|±σ (XCSF) 

0.05 0.004±0.001 0.007±0.001 0.009±0.001 107.020±8.885 132.620±7.502 136.280±7.037 

0.10 0.005±0.001 0.010±0.001 0.012±0.001 115.380±10.020 131.060±7.245 133.840±7.963 

0.20 0.008±0.003 0.010±0.001 0.012±0.001 122.700±8.455 133.320±7.098 132.980±6.793 

(b) fabs 

ε0 RMSE±σ (XCSFES) RMSE±σ (RLS) RMSE±σ (XCSF) |P|±σ (XCSFES) |P|±σ (RLS) |P|±σ (XCSF) 

0.05 0.011±0.008 0.012±0.002 0.022±0.004 88.520±9.603 118.640±6.962 115.860±7.754 

0.10 0.013±0.004 0.016±0.002 0.025±0.004 100.300±9.669 127.180±6.893 126.560±7.489 

0.20 0.018±0.004 0.027±0.004 0.033±0.004 107.900±10.445 130.480±6.932 135.680±7.875 

(c) fs3 

ε0 RMSE±σ (XCSFES) RMSE±σ (RLS) RMSE±σ (XCSF) |P|±σ (XCSFES) |P|±σ (RLS) |P|±σ (XCSF) 

0.05 0.008±0.007 0.016±0.003 0.035±0.006 95.813±17.384 111.120±6.728 110.360±7.485 

0.10 0.011±0.009 0.021±0.004 0.041±0.007 104.567±18.155 120.080±8.197 119.800±7.965 

0.20 0.014±0.010 0.030±0.003 0.050±0.008 112.280±15.231 127.000±7.909 129.180±7.979 

(d) fs4 
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