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ABSTRACT

The XCS classifier system has been successfully applied
to various problem domains including datamining, boolean
classifications, and function approximation. In all these ap-
plications just two classifiers were reproduced in a match or
action set, given a time-recency threshold was met in the
set. In this paper, we investigate the effect of selecting more
than two classifiers for reproduction in XCSF. We either in-
crease the number of selected classifiers or select a number
of classifiers relative to the current match set size. In the
functions investigated, both approaches showed a highly sig-
nificant increase in initial learning speed. Also, in less chal-
lenging approximation tasks, the final accuracy reached is
not affected by the approach. However, in harder functions,
learning may stall due to over-reproductions of inaccurate,
ill-estimated classifiers. Thus, we propose an adaptive off-
spring size rate that may depend on the current reliability
of classifier parameter estimates. First results with a fixed
offspring set size decrement show promising results. Future
work is needed to speed-up XCS’s learning progress and ad-
just its learning speed to the perceived problem difficulty.

Categories and Subject Descriptors

F.1.1 [Models of Computation]: Self-modifying machines

General Terms

Algorithms, Performance.

Keywords
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1. INTRODUCTION
Learning classifier systems were introduced over thirty

years ago [8] as cognitive systems. Over all these years,
it has been clear that there is a strong interaction between
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parameter estimations—be it by traditional bucket brigade
techniques [9], the Widrow-Hoff rule [12, 13], or by recur-
sive least squares and related techniques [10, 7]—and the
genetic algorithm, whose successful identification and prop-
agation of better classifiers depends on the appropriateness
of these estimates. Various control parameters have been
used to balance genetic reproduction with the reliability of
the parameter estimation, but to the best of our knowledge,
there is no study that addresses the estimation problem ex-
plicitly and directly.

In the XCS classifier system [13], reproduction takes place
by means of a steady-state, niched GA. Reproductions are
activated in current action sets (or match sets in function ap-
proximation problems as well as in the original XCS paper).
Upon reproduction, two offspring classifiers are generated,
which are mutated and recombined with certain probabil-
ities. Reproduction is balanced by the θGA threshold. It
specifies that GA reproduction is activated only if the av-
erage time of the last GA activation in the set lies longer
in the past than θGA. It has been shown that the thresh-
old can delay learning speed but it also prevents forgetting
and overgeneralization in the case of unbalanced data sets
[11]. Nonetheless, the reproduction of two offspring seems to
be rather arbitrary—except for the fact that two offspring
classifiers are needed for simple recombination mechanisms.
Thus, this study investigates the effect of increasing the
number of offspring classifiers generated upon GA invoca-
tion. We further focus our study on the real-valued domains
and thus the XCSF system [14, 15]. Besides, we use the ro-
tating hyperellipsoidal representation for the evolving clas-
sifier condition structures [5].

This paper is structured as follows. Since we assume a
general knowledge about XCS, we immediately start inves-
tigating performance of XCSF on various test problems and
with various offspring sizes. Next, we discuss the results and
provide some theoretical considerations. Finally, we pro-
pose a road-map for further studying the observed effects
and adapting the offspring sizes according to the perceived
problem difficulty and learning progress as well as on the
estimated reliability of available classifier estimates.

2. INCREASED OFFSPRING SIZES
To study the effect of increased offspring set sizes, we chose

four increasingly challenging functions, each with rather dis-
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Figure 1: Final function approximations and population distributions after compaction. The conditions
visualized are 20% of the actual size.
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(a) sine function

 0.01

 0.1

 1

 0  10000  20000  30000  40000  50000  60000  70000  80000  90000  100000

pr
ed

. e
rr

or
, m

ac
ro

 c
l. 

(/6
40

0)

number of learning steps

RadialSine

regular - pred. error
macro cl.

select4 - pred. error
macro cl.

select8 - pred. error
macro cl.

 0.01

 0.1

 1

 0  10000  20000  30000  40000  50000  60000  70000  80000  90000  100000

pr
ed

. e
rr

or
, m

ac
ro

 c
l. 

(/6
40

0)

number of learning steps

RadialSine

regular - pred. error
macro cl.

select10% - pred. error
macro cl.

select50% - pred. error
macro cl.

(b) radial sine function

Figure 2: Different selection strengths with fixed (left hand side) or match-set-size relative (right hand side)
offspring sizes can speed-up learning significantly but potentially increase the final error level reached.

tinct regularities:

f1(x, y) = sin(4π(x + y)) (1)

f2(x, y) = exp−16
P

i
(x−.5)2×cos(8π

P
i
(x−.5)2) (2)

f3(x, y) = max{e−10(2x−1)2 ; e−50(2y−1)2 ; (3)

1.25e−5((2x−1)2+(2y−1)2)}

f4(x, y) = sin(2π(x + sin(πy))) (4)

Function f1 has been used in various studies [5] and has a
diagonal regularity. It requires the evolution of stretched

hyperellipsoids that are rotated by 45
◦

. Function f2 is a
radial sine function that requires a somewhat circular dis-
tribution of classifiers. Function f3 is a crossed ridge func-
tion, for which it has been shown that XCSF performs com-
petitively when compared to deterministic machine learning
techniques [6]. Finally, function f4 twists two sine functions
so that it becomes very hard for the evolutionary algorithm
to receive enough signal from the parameter estimates in
order to structure to the problem space effectively for an
accurate function value approximation.

Figure 1 shows the final approximation reached by XCSF
with compaction [6] after 100k learning iterations and with
population sizes of N = 6400.1 The graphs on the left hand-
side show the actual function structures and generally con-
firm that XCSF is able to learn accurate approximations for
all four functions. The contours at the bottom of the graphs
show the general structure of the gradients on the surface.
The graphs on the right show the classifier conditions of the
XCSF final populations after 100k learning iterations. It
can be seen that the classifiers orient themselves reflecting
the function contours. On irrelevant dimension (such as the
diagonal in f1) XCSF exhibits typical genetic drift.

Performance was compared to the standard setting of two
offspring classifiers for settings in which four and eight clas-
sifiers (with replacement) were selected for reproduction and
10% and 50% of the match set size classifiers (with replace-
ment) were selected for reproduction. Learning progress is

1Other parameters were set to the following values: β = .1,
η = .5, α = 1, ε0 = .01, ν = 5, θGA = 50, χ = 1.0, μ = .05,
r0 = 1, θdel = 20, δ = 0.1, θsub = 20. Compaction was
started after 90k learning iterations. All experiments in this
paper are averaged over 20 experiments.
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(a) crossed ridge function
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(b) sine-in-sine function

Figure 3: While in the crossed ridge function larger offspring sizes mainly speed-up learning, in the challenging
sine-in-sine function, larger offspring sizes can strongly affect the final error level reached.

shown in Figure 2 for functions f1 and f2. It can be seen that
in both cases standard XCSF with two offspring classifiers
learns significantly slower than settings with a larger number
of offspring classifiers. The number of distinct classifiers in
the population, on the other hand, show that initially larger
offspring sizes increase the population sizes much faster, in-
dicating that initially higher diversity due to larger offspring
sets yields faster learning. However, towards the end of the
run, standard XCSF actually reaches a slightly lower error
than the settings with larger offspring sets. This effect is
the more pronounced the larger the offspring set. In the
radial sine function, the effect is not as strong and learning
takes longer for the standard XCSF settings. However, if
the runs had been extended further, it is likely that stan-
dard XCSF would outperform all other offspring set sizes
used. Similar observations can also be made in the crossed
ridge function (Figure 3a). However, in Figure 3b, which
shows performance in the sine-in-sine function f4, we can
see that a larger offspring set size can dramatically degrade
performance. Since it is rather hard to detect the local regu-
larities in f4, larger offspring set sizes can prevent successful
learning. While a selection of four offspring classifiers as

well as a selection of a size of 10% of the match set size still
shows slight error decreases, larger offspring sizes completely
stall learning despite large and diverse population sizes. It
appears that the larger offspring sizes prevent the popula-
tion from identifying relevant structures and thus prevent
the accurate function approximation.

3. THEORETICAL CONSIDERATIONS
What is really the effect of increasing the number of off-

spring generated upon GA invocation? The results indicate
that initially, faster learning can be induced. However, later
on, learning potentially stalls.

Previously, learning in XCS was characterized as an inter-
active learning process in which several evolutionary pres-
sures [4] cause the learning progress: (1) A fitness pressure
is induced since more accurate classifiers are selected for re-
production than those being deleted. (2) A set pressure,
which causes an intrinsic generalization pressure, is induced
since on average more general classifiers are selected for re-
production than those being deleted. (3) Mutation pres-
sure causes diversification of classifier conditions. (4) Sub-
sumption pressure causes convergence to maximally accu-
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rate, general classifiers, if found. Larger offspring set sizes
increase fitness pressure, since more classifiers are selected
based on the current fitness estimates, however, larger off-
spring set sizes also increase the set pressure and mutation
pressure, since the reproduced classifiers still origin in action
sets and are all independently mutated, while excess classi-
fiers are still deleted from the population as a whole. Thus,
the balance between fitness, set, and mutation pressures is
not directly affected by the increased offspring set sizes be-
cause the increase equally affects all pressure influences.

Another analysis estimated the reproductive opportuni-
ties a superior classifier might have before being deleted
[3]. Moreover, a niche support bound was derived [2], which
characterizes the probability that a classifier is sustained in
the population, given that it represents an important prob-
lem niche for the final solution. Both of these bounds assume
that the accuracy of the classifier is accurately estimated.
However, the larger the offspring set size is the faster XCSF
generates new classifiers and deletes older ones. Thus, the
average classifier age in the population is smaller and thus
the average number of learning iterations a classifier stays
in the population is smaller. This has the effect that the
number of iterations available to a classifier for reproductive
success is smaller. And since the number of iterations are
smaller, the GA has to work with classifier parameter esti-
mates that are less reliable since they underwent less updates
on average. Thus, larger offspring set sizes induce larger
noise in the selection process. This appears to be the main
reason why population sizes become larger initially. More-
over, as long as the fitness pressure still leads into the right
direction since the parameter estimates have enough signal,
learning proceeds faster. This latter reason stands also in
relation to the estimated learning speed of XCS, approxi-
mated elsewhere [1]. Since reproductions of more accurate
classifiers are increased learning speed increases as long as
the more accurate classifiers are detected.

Due to this reasoning, however, it can also be expected
that learning can stall prematurely. This should be the
case when the signal-to-noise ratio is not sufficiently high
to identify more accurate classifiers and consequently have
a reliable fitness pressure. That is, the smaller the signal of
a more accurate classifier relative to the noise that disturbs
the signal, the harder it will be to identify the more accurate
classifiers. In XCS terms, that is, when the time necessary
to identify a more accurate classifier as actually more accu-
rate is on average larger than the time until the deletion of
that more accurate classifier, then the XCS learning progress
can be expected to stall. Signal-to-noise ratios depend on
the problem at hand, the space partitioning of the classi-
fier, and the used linear approximation techniques (here we
use recursive least squares). Thus, it is hard to specify the
exact ratio in general and future research is needed to de-
rive mathematical bounds on this problem. Nonetheless, the
considerations explain the general observations in the con-
sidered functions: The more complex the function, the lower
the signal-to-noise ratio in the function and thus the more
problematic larger offspring sets become - until also the tra-
ditional two offspring classifiers are too fast to yield effective
learning progress.

To control the signal-to-noise problem, consequently, it
appears to be important to balance reproduction rates and
offspring set sizes problem-dependently. A similar sugges-
tion is made elsewhere for the control of parameter θGA [11].

Thus, we proceed now to an approach that decreases the off-
spring set size over a learning experiment to get the best of
both worlds: Fast initial learning speeds and maximally ac-
curate final solution representations.

4. ADAPTING OFFSPRING SET SIZES
As a first approach to determine if it can be useful to

use large initial offspring set sizes and to decrease those size
during the run, we linearly annealed the offspring set size
from 10% offspring set size to 2 over the 100k learning iter-
ations. Figure 4 shows the resulting performance in all four
functions comparing the linearly reduced offspring set size
with fixed two offspring classifiers and fixed 10% offspring.
In graphs 4a,b,c we can see that the annealing technique
reaches maximum accuracy. Particularly in graph 4a we
can see that the performance stalling is overcome and an
error level is reached that is similar to the one reached with
that traditional XCS setting. Performance in function f4

shows that the error still stays on a high level initially but it
starts decreasing further when compared to a 10% offspring
set size later on in the run. Although it does not reach the
error level of the two offspring setting, performance is ex-
pected to further decrease when more learning interactions
are executed.

Thus, the results show that a linear reduction of offspring
set sizes can have positive effects and the final error level
reached while still allowing faster initial learning speeds.
However, the results also suggest that a fixed linear scheme
is not necessarily optimal and its success is highly problem-
dependent. Thus, in the future we intend to make offspring
set sizes dependent on a current estimate of the signal-to-
noise ratios.

5. CONCLUSIONS
This paper has shown that a fixed offspring set size does

not necessarily yield the best learning speed that the XCSF
classifier system can achieve. Larger offspring set sizes can
strongly increase the initial learning speed but do not nec-
essarily reach maximum accuracy. Adaptive offspring set
sizes, if scheduled appropriately, can get the best of both
worlds in yielding high initial learning speed and low final
error. The results however also suggest that a simple adap-
tation scheme is not generally applicable. Furthermore, the
theoretical considerations suggest that the signal-to-noise es-
timates could be used to control the GA offspring schedule
and the offspring set sizes. Given the signal-to-noise ratio is
large, a larger set of offspring should be generated.

Another consideration that needs to be taken into account
in such an offspring generation scheme, however, is the fact
that problem domains may be strongly unbalanced, in which
some subspaces may be very easily approximated while oth-
ers may be much more complex. In these cases, it has been
shown, though, that the θGA threshold can be increased to
ensure a representation of the complete problem space [11].
Future research should consider adapting θGA hand-in-hand
with the offspring set sizes. In which way this may be accom-
plished exactly still needs to be determined. Nonetheless, it
is hoped that the results and considerations of this work pro-
vide good clues in the right direction in order to speed-up
XCS(F) learning and to make XCS(F) learning more robust
in problems with low signal-to-noise ratios.
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Figure 4: When decreasing the number of generated offspring over the learning trial, learning speed is kept
high while the error convergence reaches the level that is reached by always generating two offspring classifiers
(a,b,c). However, in the case of the challenging sine-in-sine function, further learning would be necessary to
reach a similarly low error level (d).
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