First Approach toward On-line Evolution of Association
Rules with Learning Classifier Systems

Albert Orriols-Puig*, Jorge Casillas?, and Ester Bernad6-Mansillat

!Grup de Recerca en Sistemes Intel-ligents
Enginyeria i Arquitectura La Salle, Universitat Ramon Llull, 08022, Barcelona, Spain
2Department of Computer Science and Artificial Intelligence.
University of Granada, 18071, Granada, Spain

aorriols@salle.url.edu, casillas@decsai.ugr.es, esterb@salle.url.edu

ABSTRACT

This paper presents CSar, a Michigan-style Learning Clas-
sifier System which has been designed for extracting quanti-
tative association rules from streams of unlabeled examples.
The main novelty of CSar with respect to the existing asso-
ciation rule miners is that it evolves the knowledge on-line
and so it is prepared to adapt its knowledge to changes in
the variable associations hidden in the stream of unlabeled
data quickly and efficiently. Preliminary results provided in
this paper show that CSar is able to evolve interesting rules
on problems that consist of both categorical and continuous
attributes. Moreover, the comparison of CSar with Apri-
ori on a problem that consists only of categorical attributes
highlights the competitiveness of CSar with respect to more
specific learners that perform enumeration to return all pos-
sible association rules. These promising results encourage
us for further investigating on CSar.

Categories and Subject Descriptors

1.2.6 [Learning]: concept learning, knowledge acquisition

General Terms
Algorithms

Keywords

Genetic algorithms, learning classifier systems, unsupervised
learning, association rules.

1. INTRODUCTION

Association rule mining [2] aims at extracting interesting
associations among the attributes of repositories of unla-
beled data. Research conducted on association rule min-
ing was originally focused on extracting rules that identified
strong relationships between the occurrence of two or more

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

GECCO’08, July 12-16, 2008, Atlanta, Georgia, USA.

Copyright 2008 ACM 978-1-60558-131-6/08/07 ...$5.00.

2031

attributes or items on collections of binary data, e.g., “if
item X occurs then also item Y will occur” [2, 3, 11]. Later
on, several researchers concentrated on extracting associa-
tion rules from data described by continuous attributes [7,
20], which posed new challenges to the field. Several algo-
rithms proposed to previously apply a discretization method
to transform the original data to binary values [13, 15, 20,
22] and then use a binary association rule miner. This lead
to further research on designing discretization procedures
that avoided losing useful information. Other approaches
mined interval-based association rules and permitted the al-
gorithm to independently move the interval bound of each
rule’s variable [14]. Also fuzzy modeling was introduced to
create fuzzy association rules (e.g., see [10, 12]).

Association rules are widely used in various areas such as
telecommunication networks, market and risk management,
and inventory control. All these applications are character-
ized by generating data on-line, so that data may be made
available in form of streams [1, 16]. Nonetheless, all the
aforementioned algorithms were designed for static collec-
tions of data. Learning from data streams has received a
special amount of attention in the last few years, particu-
larly in supervised learning [1, 16]. However, few proposals
of on-line binary association rule miners can be found in the
literature, and they are only able to deal with problems with
categorical attributes (e.g., see [21]).

In this paper, we address the problem of mining associ-
ation rules from streams of examples on-line. We propose
a Learning Classifier System (LCS) whose architecture is
inspired by XCS [23, 24] and UCS [5], which we address as
Classifier System for Association Rule mining (CSar). CSar
uses an interval-based representation for evolving quantita-
tive association rules from data with continuous attributes
and a discrete representation for categorical attributes. The
system receives a stream of unlabeled examples which are
used to create new rules and to tune the parameters of the
existing ones with the aim of evolving as many interesting
rules as possible. CSar is tested on two real-life static sce-
narios; one containing categorical attributes and the other
with continuous attributes. The results on the problem with
categorical attributes indicate that CSar can evolve rules
of similar interest as those created by Apriori [3], one of
the most referred algorithms in the association rule mining
realm which considers all the possible combinations of at-
tribute values to create all interesting association rules (no-
tice that this approach can only be used in domains with

categorical data). The results on the problem with contin-
uous attributes denotes that CSar is able to create highly
supported and interesting interval-based association rules in
which the intervals have not been prefixed by a discretiza-
tion algorithm. All these results indicate that the method
holds promise and leads us to further apply the method to
domains with changing dynamics.

The remainder of this paper is organized as follows. Sec-
tion 2 provides the basic concepts of association rules and
reviews the main proposals in the literature for both binary
and quantitative association rule mining. Section 3 describes
in detail our proposal. Section 4 provides the results of the
preliminary experiments, which support the suitability of
the method. Finally, Section 5 summarizes, concludes, and
gives the future work lines that will be followed.

2. FRAMEWORK

Before proceeding with the description of our proposal,
this section introduces some important concepts of associa-
tion rules. We first describe the problem of extracting as-
sociation rules from categorical data. Then, we extend the
problem to mining association rules from data with contin-
uous attributes and review different proposals that can be
found in the literature.

2.1 Association Rule Mining

The problem of association rule mining was firstly defined
over binary data in [2] as follows. Let I = {i1,42,...,%¢}
be a set of binary attributes called items. Let T be a set
of transactions, where each transaction t is represented as
a binary vector of length ¢. Each position ¢ of ¢ indicates
whether the item 4 is present (¢; = 1) or not (¢; = 0) in the
transaction. X is an itemset if X € I. An itemset X has a
support supp(X) which is computed as

supp(X) = | X(T)|/|T|. (1)

That is, the support is the number of transactions in the
database which have the itemset X divided by the total
number of transactions in the database. An itemset is said
to be a large itemset if its support is greater than a user-set
threshold, typically addressed as minsupp in the literature.

Then, an association rule R is an implication of the form
X — Y, where both X and Y are itemsets and X NY = (.
Typically, association rules are assessed with two qualitative
measures, their support (supp) and their confidence (conf).
The support of a rule is defined as ratio of the support of
the union of antecedent and consequent to the number of
transactions in the database, i.e.,

supp(|;(|u Y). @)

The confidence is computed as the ratio of the support of
the union of antecedent and consequent to the support of
the antecedent, i.e.,

supp(R) =

supp(X UY)
supp(X) ®

Therefore, support indicates the frequency of occurring pat-
terns and confidence evaluates the strength of the implica-
tion denoted in the association rule.

Since the proposal of AIS [2], the first algorithm to mine
association rules from categorical examples, several algo-
rithms have been designed to perform this task. Agrawal et

conf(R) =

2032

al. [3] presented the Apriori algorithm, probably the most
influential categorical association rule miner. This work re-
sulted in several papers which designed some modifications
to the initial Apriori algorithm (see, for example, [6, 19]).
All these algorithms used the same methodology as Apriori
to mine association rules, which basically consisted of two
different phases: (i) identification of all large itemsets (i.e.,
all itemsets whose support was greater than minsupp), and
(ii) generation of association rules from these large itemsets.

2.2 Quantitative Association Rules

Early research in the realm of association rules only ad-
dressed the problem of extracting association rules from bi-
nary data. Therefore, these types of rules only permitted to
reflect whether particular items were present in the trans-
action but they did not consider their quantities. Later on,
researchers focused on algorithms that were able to extract
association rules from databases that contained quantitative
attributes.

Srikant and Agrawal [20] designed an Apriori-like approach
to mine quantitative association rules. The authors used an
equi-depth partitioning to transform continuous attributes
to categorical attributes. Moreover, the authors identified
the problem of the sharp boundary between discrete inter-
vals, which highlighted that quantitative mining algorithms
may either ignore or over-emphasize the items that lay near
the boundary of intervals. Attempting to address this prob-
lem, several authors applied different clustering mechanisms
to extract the best possible intervals from the data [13, 15].
A completely different approach was taken in [14], where a
GA-based algorithm was used to evolve interval-based asso-
ciation rules without applying any discretization procedure
to the variables. The GA was responsible for creating new
promising association rules and for evolving the intervals of
the variables of the association rules. The problem associ-
ated to creating variables with unbounded intervals is that,
in general, the support for small intervals is smaller than
the support for large intervals, what makes the system cre-
ate rules with large intervals, covering nearly all the domain.
To avoid this, the system penalized the fitness of rules that
had large intervals. In [18] a similar approach was followed.
The authors proposed a framework in which finding good
intervals from which interesting association rules could be
extracted was addressed as an optimization problem.

As done in [14, 18], CSar does not apply any discretiza-
tion mechanism to the original data and interval bounds are
evolved by the genetic procedure. The main novelty of our
proposal is that association rules are not mined from static
databases but from streams of examples. This characteris-
tic guides some parts of the algorithm design. In the next
section, CSar is described in detail.

3. DESCRIPTION OF CSAR

CSar is a Michigan-style LCSs for mining interval-based
association rules from data that contain both quantitative
and categorical attributes. The learning architecture of CSar
is inspired by UCS [5] and XCS [23, 24]. CSar aims at evolv-
ing populations of interesting association rules, i.e., rules
with large support and confidence. For this purpose, CSar
evaluates a set of association rules on-line and evolves this
rule set by means of a steady-state genetic algorithm that is
applied to population niches. As follows, a detailed descrip-
tion of the system is provided.

3.1 Knowledge Representation

CSar evolves a population of classifiers [P], where each
classifier consists of a quantitative association rule and a set
of parameters. The quantitative association rule is repre-
sented as

if x; € v; and ... and z; € v; then z} € v,

in which the antecedent is represented by a set of £, input
variables Z;,...,2; (0 < £y < £, 0<i<{ and 0 < j <
where ¢ is the number of variables of the problem) and the
consequent contains a single variable x. Note that we per-
mit that rules have an arbitrary number of variables in the
antecedent. For quantitative attributes, a similar represen-
tation to the XCSR one is used [25], in which both an-
tecedent and consequent variables are represented by the
interval of values to which this variable applies, i.e., v; =
[li7 ui}. A maximum interval length maxiInt is set to avoid
having large intervals that nearly contain all the possible
values of a given variable; therefore, V; : u; — l; < maxInt.
Categorical attributes are represented by one of the possi-
ble categorical values x;j, i.e., v; = x;;. A rule matches
an input example if, for all the variables in the antecedent
and consequent of the rule, the corresponding value of the
example is either included in the interval defined for contin-
uous variables or equal to the defined value for categorical
variables.

Each classifier has seven main parameters: (1) the sup-
port supp, i.e., the occurring frequency of the rule; (2) the
confidence conf, which indicates the strength of the impli-
cation; (3) the fitness F', which denotes the quality of the
given rule; (4) the experience exp, which counts the number
of times that the antecedent of the rule has matched an in-
put instance; (5) the consequent matching sum cm, which
counts the number of times that the whole rule has matched
an input instance; (6) the numerosity num, which reckons
the number of copies of the classifier in the population; and
(7) the time of creation of the classifier tcreate.

3.2 Learning Interaction

At each learning iteration, CSar receives an input exam-
ple (e1, €2, ..., e¢). Then, the system creates the match
set [M] with all the classifiers in the population that match
the input example. If [M] contains less that Omne classifiers,
the covering operator is triggered to create as many new
matching classifiers as required to have 0,,,, classifiers in
[M]. Then, classifiers in [M] are organized in association set
candidates following one of the two methodologies explained
below. Each association set is given a probability to be se-
lected that is proportional to the average confidence of the
classifiers that belong to this association set. The selected
association set [A] is checked for subsumption with the aim
of diminishing the number of rules that express similar as-
sociations among variables. Then, the parameters of all the
classifiers in [M] are updated. At the end of the iteration, a
GA is applied to the selected association set if the average
time since the last application of the GA to the classifiers
of the selected association set is greater than 0ga (fga is a
user-set parameter). Finally, for each continuous attribute,
we maintain a list with no repeated elements that stores
the last values seen for the attribute (in our experiments we
stored the last hundred different values). This list is used
by the mutation operator with the aim of preventing the
existence of intervals that cover the same examples but are

2033

slightly different. As follows, we provide details about (i)
the covering operator, (ii) the procedures to create associ-
ation set candidates, (iii) the association set subsumption
mechanism, and (iv) the parameter update procedure. Next
section explains in more detail the discovery component.

3.2.1 Covering Operator

Given the sampled input example e, the covering operator
creates a new matching classifier as follows. Each variable
is selected with probability 1 — P« to belong to the rule’s
antecedent, with the restriction that, at the end of this pro-
cess, at least one variable is been selected. The values of the
selected variables are initialized differently depending on the
type of attribute. For categorical attributes, the variable is
initialized to the corresponding input value e;. For contin-
uous attributes, the interval [I;, u;] that represents the vari-
able is obtained from generalizing the input value e;, i.e.,
li = e; — rand(maxInt/2) and u; = e; + rand(mazxInt/2),
where maxInt is the maximum interval length. Finally, one
of the previously unselected variables is randomly chosen to
form the consequent of the rule, which is initialized following
the same procedure.

3.2.2 Creation of Association Set Candidates

The aim of creating association set candidates or niches
is to group rules that express similar associations to estab-
lish a competition among them and so let the best ones take
over their niche. Whilst the creation of these niches of sim-
ilar rules is quite immediate in reinforcement learning [23]
and classification [5] tasks, several approaches could be used
to form groups of similar rules in association rule mining.
Herein, we propose two alternatives which are guided by
different heuristics:

Grouping by antecedent. This strategy considers that
two rules are similar if they have exactly the same variables
in their antecedent, regardless of their corresponding values
Vi. Therefore, this grouping strategy creates N, association
set candidates, where N, is the number of rules in [M] with
different variables in the antecedent. Each association set
contains rules that have exactly the same variables in the
antecedent. The underlying idea is that rules with the same
antecedent may express similar knowledge. Note that, under
this strategy, rules with different variables in the consequent
can be grouped in the same association set.

Grouping by consequent. This strategy groups in the
same association set the classifiers in [M] that have the same
variable in the consequent with equivalent values. That is,
we consider that two continuous variables are equivalent if
their intervals are overlapped and that two categorical vari-
ables are equivalent if they have the same categorical value.
For this purpose, the next process is followed. The rules
in [M] are sorted ascendingly according to the variable that
they have in their consequent. Given two rules r1 and r
that have the same variable in the consequent, we consider
that r1 is smaller than 7o if

{

where [1, l2, w1, and ugz are the lower bound and upper
bound of the consequent variable of r; and 72 for a contin-
uous attribute, x1 and x2 are the values of the consequent
variable for a categorical attribute, and ord(z;) maps each

li <lzor (li =1z and w1 > u2) if continuous attribute

ord(z1) < ord(z2) if categorical attribute

categorical value to a numeric value. It is worth noting that
given two continuous variables with the same lower bound
in the interval, we sort first the rule with the most general
variable (i.e., the rule with larger u;). We take this approach
with the aim of forming association set candidates with the
largest number of overlapping classifiers by using the proce-
dure explained as follows.

Once [M] has been sorted, the association set candidates
are built as follows. At the beginning, an association set
candidate is created and the first classifier in [M] is added
to this association set candidate. Then, the following clas-
sifier is added if it has the same variable in the consequent,
and his lower bound is smaller than the minimum upper
bound of the classifiers in the association set. This process
is repeated until finding the first classifier that violates this
condition. In this case, a new association set candidate is
created, and the same process is applied to add new clas-
sifiers to this association set. The underlying idea of this
association set strategy is that rules that explain the same
region of the consequent may denote the same associations
among variables.

The cost of both methodologies for creating the associa-
tion sets are guided by the cost of sorting the population.
We applied a quicksort strategy for this purpose, which has
a cost of O(n - logn), where n is the match set size.

3.2.3 Association Set Subsumption

A subsumption mechanism inspired by the one presented
in [24] was designed with the aim of reducing the number of
different rules that express the same knowledge. The pro-
cess works as follows. Each rule of the selected association
set is checked for subsumption with each other rule in the
same association set. A rule r; is a candidate subsumer of r;
if it satisfies the following three conditions: (1) r; has higher
confidence and it is experienced enough (i.e., conf® > confo
and expi > Oezp, where confy and 0eqp are user-set param-
eters); (2) all the variables in the antecedent of r; are also
present in the antecedent of r; and both rules have the same
variable in the consequent (r; can have more variables in the
antecedent than r;); and (3) r; is more general than r;. A
rule r; is more general than r; if all the input and the output
variables of r; are also defined in r;, each categorical vari-
able of r; has the same value as the corresponding variable
in 7, and the interval [l;, u;] of each continuous variable in
r; includes the interval [I;, u;] of the corresponding variable
inr; (ie., l; <lj and u; > uj).

3.2.4 Parameter’s Update

At the end of each learning iteration, the parameters of
all the classifiers that belong to the match set are updated.
First, we increment the experience of the classifier. Next, we
increment the consequent matching estimate cm if the rule’s
consequent also matches the input example. These two pa-
rameters are used to update the support and confidence of
the rule as follows. Support is computed as:

cm
(4)
where ctime is the time of the current iteration and tcreate is

the iteration in which the classifier has been created. Then,
the confidence is computed as

SUu = -
PP = time — tcreate’

conf = —.
exp

(®)

2034

Lastly, the fitness of each rule in [M] is updated with the
following formula

F = (conf - supp)*, (6)

where v is a user-set parameter that permits to control the
pressure toward highly fit classifiers. Note that with this
fitness computation, the system makes pressure towards the
evolution of rules with not only high confidence but also high
support.

Finally, the association set size estimate of all rules that
belong to the selected association set is updated. Each rule
maintains the average size of all the association sets in which
it has participated.

3.3 Discovery Component

CSar uses a steady-state niched genetic algorithm (GA)
[9] to discover new promising rules. The GA is applied to
the selected association set [A]. Therefore, the niching is
intrinsically provided since the GA is applied to rules that
are similar according to one of the heuristics for association
set formation.

The GA is triggered when the average time from its last
application upon the classifiers in [A] exceeds the threshold
Oca. It selects two parents p1 and p2 from [A] using pro-
portionate selection [8], where the probability of selecting a
classifier k is

phy=
sel ZZ—E[A] jad
The two parents are copied into offspring chi and chz, which
undergo crossover and mutation if required.

The system applies uniform crossover with probability Py.
First, it considers each variable in the antecedent of both
rules. If only one parent has the variable, one child is ran-
domly selected and the variable is copied to this child. If
both parents contain the variable, this variable is copied to
each offspring. The procedure controls that, at the end of
the process, each offspring has, at least, one input variable.
Then, the rule’s consequent is crossed by adding to the first
offspring the consequent of one of the parents (which is ran-
domly selected) and adding to the remaining offspring the
consequent of the other parent.

Three types of mutation can be applied to a rule: (i) in-
troduction/removal of antecedent variables (with probabil-
ity Pr/g), (ii) mutation of variable’s values (with probabil-
ity P.), and (iii) mutation of the consequent variable (with
probability Pc). The first type of mutation chooses ran-
domly whether a new antecedent variable has to be added
to the rule or one of the antecedent variables has to be re-
moved. If a variable has to be added, one of the non-existing
variables is randomly selected and added to the rule. This
operation can only be applied if the rule does not have all
the possible variables. If a variable has to be removed, one
of the existing variables is randomly selected and removed
from the rule. This operation can only be applied if the
rule has at least two variables in the antecedent. The sec-
ond type of mutation selects one of the existing variables
of the rule and mutates its value. For continuous variables,
two random amounts ranging in [-mo7 mo] are added to the
lower bound and the upper bound respectively, where myg is
a user-set parameter. If the interval surpasses the maximum
length or the lower bound becomes greater than the upper
bound, the interval is repaired. Finally, the lower and the

(7)

upper bounds of the mutated variable are approximated to
the closest value in the list of seen values for this variable.
For categorical variables, a new value for the variable is ran-
domly selected. The last type of mutation randomly selects
one of the variables in the antecedent and exchanges it with
the output variable.

After crossover and mutation, the new offspring are intro-
duced into the population. First, each classifier is checked
for subsumption [24] with their parents. To decide if any
parent can subsume the offspring, the same procedure ex-
plained for association set subsumption is followed. If any
parent is identified as a possible subsumer for the offspring,
the offspring is not inserted and the numerosity of the parent
is increased by one. Otherwise, we check [A] for the most
general rule that can subsume the offspring. If no subsumer
can be found, the classifier is inserted into the population.

If the population is full, excess classifiers are deleted from
[P] with probability proportional to their association set
size estimate as. Moreover, if a classifier k is sufficiently
experienced (e:cpk > 04e1) and the its fitness F* is signifi-
cantly lower than the average fitness of the classifiers in [P]
(F* < §Fp) where Fip] = + > ielp) F%), its deletion prob-
ability is further increased. That is, each classifier has a
deletion probability px of

dy,
O (8)
Z\fje[P] d;’
where
di = %",:F[P] if exp”® > O4e; and F* < 0Fp) 9)
as - num otherwise.

Thus, the deletion algorithm balances the classifier’s allo-
cation in the different association sets by pushing toward
the deletion of rules belonging to large correct sets. At the
same time, it favors the search toward highly fit classifiers,
since the deletion probability of rules whose fitness is much
smaller than the average fitness is increased.

3.4 Rule Set Reduction

At the end of the learning process, the final rule set is
processed to provide the user with only interesting rules.
For this purpose, we apply the following reduction mecha-
nism. Firstly, we remove all rules whose experience is smaller
than Oegp (fezp is a user-set parameter). Then, each rule is
checked against each other for subsumption following the
same procedure used for association rule subsumption but
with the following exception: now, a rule r; is a candidate
subsumer for r; if r; and r; have the same variables in their
antecedent and consequent, r; is more general than r;, and
r; has higher confidence than ;. Note that, during learning,
the subsumption mechanism requires that the confidence of
r; be greater than con fo.

After applying the rule set reduction mechanism, we make
sure that the final population consists of different rules.
Other policies can be easily incorporated to this process such
as removing rules whose support and confidence are below
a predefined threshold. Nonetheless, in our experiments we
return all the experienced rules in the final population that
are not subsumed by any other.

4. EXPERIMENTS

This section presents some preliminary results that show
the capabilities of CSar to evolve association rules with high

2035

1400 T T
Conf > 0.05
Conf>0.10
Conf>0.15 -]
Conf>0.20 &
Conf>0.25

Conf > 0.30 .
Conf>0.35 ~~e-
Conf>0.40 --a--
Conf>0.45 -« 4

1200 -

1000

800

Conf>0.50
Conf > 0.55
Conf>0.60 -
. Conf > 0.65
a Conf>0.70
: Conf>0.75 4
Conf>0.80 -
Conf>0.85 -

600

Number of Rules

400

o 00

Conf>0.90
Conf > 0.95

g

0.7

0.3

0 01 02 04 05

support
(a) antecedent grouping

0.6 0.8

180

Conf >0.05
Conf>0.10
160 Conf>0.15 -
Conf>0.20 &
Conf>0.25 1
Conf > 0.30
Conf>0.35 ~~e-~ 4
Conf>0.40 --a--
Conf>0.45 -«
Conf >0.50
Conf > 0.55
Conf>0.60 -
Conf > 0.65
Conf>0.70 .
Conf>0.75
Conf>0.80 ~-e-
Conf>0.85 -
.Conf > 0.90 °
-SCapf > 0,95
e

140

120

100

80 -

Number of Rules

60

ot

40

20

s,

0 e o
0 01 02 03 04 05 06 07 08
support
(b) consequent grouping

Figure 1: Number of rules evolved with minimum
support and confidence for the zoo problem with (a)
antecedent grouping and (b) consequent grouping
strategies.

support and confidence on-line. For this purpose, we se-
lected two real-life problems from the UCI repository [4]:
the zoo problem and the Wisconsin-breast cancer diagnosis
problem (wbed). The zoo problem is represented by fifteen
binary attributes and two categorical attributes which can
take more than two values (one of these attributes is the class
of the problem). We selected a problem with only categorical
attributes to be able to compare the results with Apriori [3],
probably the most influential association rule miner, which
only works for categorical data. The wbed problem consists
of nine continuous attributes and a nominal attribute that
is the class of the problem. Therefore, we applied CSar to
this problem to see its capabilities to create quantitative as-
sociation rules. Although both data sets are classification
problems, the information of the class is used as another in-
put attribute to extract association rules. CSar was run on
the whole data set with the following configuration parame-
ters: iterations = 100,000, popSize = 6,400, con fo = 0.95, v
= 10, Omna = 10, {Oger,0ca} = 50, Oexp = 1000, P, = 0.8,
{Pr/r, Pu, Pc} = 0.1, mp=0.2. The two strategies for the
formation of association sets, i.e., grouping by antecedent
and grouping by consequent, were applied. Association set
subsumption was activated in all runs.

Figure 1 shows the number of rules created by CSar with
minimum support and confidence with the two strategies
for the formation of association set candidates. The results
are averages of four runs with different random seeds. The

Table 1: Comparison of the number of rules evolved by CSar with antecedent and consequent grouping
to form the association set candidates with the number of rules evolved by Apriori at high support and

confidence values.

Confidence
antecedent grouping | consequent grouping A-priori
0.4 0.6 0.8 0.4 0.6 0.8 0.4 0.6 0.8

0.40 | 274.7 270.7 230.3 64.7 62.7 59.3 2613.0 2514.0 2070.0

- 0.50 | 122.7 122.7 106.0 61.0 61.0 57.7 530.0 523.0 399.0

5 0.60 | 57.7 577 50.7 | 50.7 50.7 47.3 118.0 118.0 93.0

g: 0.70 | 21.0 21.0 19.0 19.0 19.0 18.0 30.0 30.0 27.0

mﬂ 0.80 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0

0.90 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

1.00 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
1600 Cani> 005 —— may have more variables). In the results provided herein,
1400 Conf>0.10 Lo we removed from the final population all the rules that were
1200 onf>920 2 included by other rules. Thus, we provide an upper bound of
Y Gonf>030 .. the number of different rules that can be generated. Table
z 00 Cont> 048] 1 specifies the number of rules for support values ranging
5 g0 Gont > 0.50 —— from 0.4 to 1.0 and confidence values of {0.4,0.6,0.8}. Note
é 600 Gonf > 060 e that as the minimum confidence and support increase, the
z Gont>0.70 number of rules created by the three systems becomes more

e RS similar.

200 Gonf>0.90 -] Next, we applied CSar to a problem with continuous at-
. — tributes, wbcd, to analyze the capabilities of CSar to cre-
0 01 02 03 04 05 06 07 08 09 1 ate quantitative rules. Figures 3 and 4 show the number of

support

Figure 2: Number of rules created by Apriori with
minimum support and confidence for the zoo prob-
lem. Lower confidence and support are not shown
since Apriori creates all possible combinations of
attributes, exponentially increasing the number of
rules.

two graphics highlight the differences between the two types
of association set formation. The populations evolved with
the antecedent grouping strategy are larger than those built
with the consequent grouping strategy. This behavior was
expected since the antecedent grouping creates smaller asso-
ciation sets, and thus, maintains more diversity in the pop-
ulation. Nonetheless, it is worth noting that the number of
rules with high confidence and support evolved by the two
strategies is approximately the same. That is, antecedent
grouping creates more rules but with low confidence and
support. The most interesting rules, i.e., the rules that have
higher support and confidence, are discovered by the two
strategies. This can be considered as an advantage for the
consequent grouping, since it avoids creating and maintain-
ing uninteresting rules in the population, which implies a
lower computational time to evolve the population.

Figure 2 provides the number of rules created by Apriori
[3] in the zoo problem. Apriori is a two-phase algorithm that
exhaustively explores all the feature space, discovers all the
itemsets with a minimum predefined support, and creates
all the possible rules with these itemsets. Therefore, some
of the rules supplied by Apriori are included in other rules.
We consider that a rule r1 is included in another rule rs
if r1 has, at least, the same variables with the same values
in the rule’s antecedent and the rule’s consequent as r2 (71

2036

rules with minimum support and confidence evolved by CSar
with antecedent grouping and consequent grouping strate-
gies. For each of the two strategies, we ran the system letting
the size of the variable’s intervals be, at most, the ratio of
0.1, 0.5, and 0.9 the whole range of the variable. An ex-
ample of the quantitative rules evolved by CSar is shown as
follows:

if X7 € [1,2] — X8 € [1,2] sup=0.668 , conf=0.975
if X8 € [1,2] — X4 € [2, 3] sup=0.659 , conf=0.718

where X is the ith variable of the problem.

Several observations can be drawn from these results. First,
the results permit to extend the conclusions extracted for
categorical attributes to continuous attributes. For a given
maximum interval size, antecedent grouping results in a
higher number of rules, most of which are rules with low con-
fidence and support. Moreover, for antecedent grouping, the
number of rules decreases for maxzInt = 0.9 since few rules
with high confidence and support take over the population.
That is, larger association sets with highly general and sup-
ported rules are created which may impair the population
diversity. Second, note that the support of the rules is lower
for low values of the maximum interval size. This behavior
can be easily explained as follows. Larger maximum inter-
val sizes enable the existence of highly general rules, which
will have higher support. Moreover, if both antecedent and
consequent variables are maximally general, rules will also
have high confidence. Taking this idea to the extreme, rules
that contain variables whose intervals range from the mini-
mum value to the maximum value for the variable will have
maximum confidence and support. Nonetheless these rules
will be uninteresting for human experts. This highlights the
importance of setting appropriate maximum interval sizes
for each particular problem.

900

Conf >0.05 ——
Conf>0.10 -
800 Conf>0.45 x|
Conf>0.20 &
700 Conf>0.25]
Conf > 0.30
g 600 Conf>0.35 ~~e-- .|
5 Conf>0.40 -4
X 500 Conf > 0.45 = B
‘s Conf>0.50 —v—
5 Conf>0.55 -
o 400 Conf>0.60 - |
E Conf>0.65 e
Z 300 Conf>0.70 4
Conf>0.75
Conf>0.80 ~-e-
200 Conf>0.85 - |
o4 RN Conf>0.90 e
100 (N Conf>0.95 —e— |
—o_¢
0 . . .
0 01 02 03 04 05 06 07 08 09 1
support
(a) maxInt = 0.1
1000 T T T
Conf>0.05
Conf>0.10 - |
Conf>0.15 -
Conf>0.20 e |
Conf>0.25
Conf>0.30 B
® Conf>0.35 ~~e-
2 Conf>0.40 --a-- |
' . Conf > 0.45 =
5 o Conf>0.50 —v—
5 - Conf>0.55 -~ i
£ 400 " Conf>0.60 e
e o Conf>0.65 7
= et e~ | Conf>070
300 . Conf>0.75 |
1 Conf>0.80 ~-e-
200 % Conf>0.85 -0
onf>0.90 e
100 onf > 0.95 —e—
0 It s *-
0 01 02 03 04 05 06 07 08 09 1
support
(b) maxInt = 0.5
1000 T T T T
80n;> 0.05
900 onf>0.10 - |
Conf>0.15 « -
Conf>0.20 & 4
800 Conf>0.25
Conf>0.30
g 1 Conf>035 -~ |
S Conf>0.40 --a--
g 60 Conf >0.45 s 7|
5 Conf>0.50 ——
5 500 \ Conf>055 v]
2 [t Conf>0.60 e
£ 400 O-g i Conf>0.65 e 7
2 B anay S 4 Conf>0.70
300 i Conf>0.75 l
4 Conf>0.80 ~-e-
200 ggonf> 0.85 -0 o
onf>0.90 e
100 095 —e— |
0 i i !
0 01 02 03 04 05 06 07 08 09 1
support

(c) maxInt = 0.9

Figure 3: Number of rules evolved with minimum
support and confidence for the wbed problem with
antecedent grouping strategy and setting the maxi-
mum interval size to (a) maxInt = 0.1, (b) maxInt
= 0.5, and (c) maxInt = 0.9.

5. SUMMARY, CONCLUSION, AND FUR-

THER WORK

In this paper, we presented CSar, a Michigan-style Learn-
ing Classifier System designed to evolve quantitative associ-
ation rules. The preliminary experiments done in this paper
show that the method holds promise for on-line extraction
of both categorical and quantitative association rules. Re-
sults with the zoo problem indicated that CSar was able
to create interesting categorical rules, which were similar to
those built by Apriori. Experiments with the wbed problem

2037

160

Conf > 0,05 ——
Conf>0.10 -
140 % Conf>0.15 x|
R Conf>0.20 &
120 Conf>0.25 i
- Conf > 0.30
? L 28 Conf>0.35 s
2 100 - Conf > 0.40 ~-a--
4 8888802 Conf>0.45 -
5 Conf>0.50 ——
5 80 Conf > 0.55]
2 ° ° M Conf > 0.60 e
Conf>0.65 4
2 ® Conf >0.70
Conf>0.75
40 Conf>0.80 -~~~
Conf>0.85 --e-
20 3 Conf>0.90 o |
K’\‘ Conf>0.95 —e—
0 L Y °- o
0 01 02 03 04 05 06 07 08 09 1
support
(a) maxInt = 0.1
250 T T T
Conf>0.05 ——
Conf>0.10 -
Conf>0.15 -
L..ad Conf>0.20 e |
200 &’%\\: Sa Conf > 025
RS S S Conf>0.30
H Conf>0.35 ~~e-
R e e Conf> 048 1
5 i Conf>0.50 —v—
5 % Conf>0.55 v
_g 100 dg((gon¥>8.go e
“gonf > 0.65 . |
E ®>¢ 5 Conf>070
Cenf>0.75
Conf > 0.80 - -e-
50 Conf>0.85 o
Conf% 0.90 -
nf-?‘f{S —e—
0 i Y
0 01 02 03 04 05 06 07 08 09 1
support
(b) maxInt = 0.5
30 T T T
Conf>0.05 ——
Conf>0.10 -~
* Conf>0.15 -
25 W Conf>0.20 & h
Conf>0.25
L S G i L Conf > 0.30
@ 20 Conf>0.35 ~~e-~ 4
< Cprifgr- @40 - -
& Conf>0.4$\ -
5 .50
s 15 Conf > 0.53 -]
Q Conf>0.60 - 4
5 Conf>0.65
Z 10 Conf>0.70 4
Conf>0.75
Conf>0.80 ~-e-
Conf>0.85 - o~
5 Conf>0.90 e |]
Conf>0.95 —e—
0 i i i
0 01 02 03 04 05 06 07 08 09 1
support

(c) maxInt = 0.9

Figure 4: Number of rules evolved with minimum
support and confidence for the wbed problem with
consequent grouping strategy and setting the maxi-
mum interval size to (a) maxInt = 0.1, (b) maxInt
= 0.5, and (c) maxInt = 0.9.

also pointed out the capabilities of CSar to extract quantita-
tive association rules. These results encourage us to further
investigate on the system with the aim of applying CSar
to mine quantitative association rules from new challenging
real-life problems.

Several future work lines can be followed in light of the
present work. Firstly, we aim at comparing CSar with other
quantitative association rule miners to see if the on-line ar-
chitecture can extract knowledge similar to that obtained by
other approaches that go several times through the learning
data set. Actually, the on-line architecture of CSar makes

the system suitable for mining association rules from chang-
ing environments with concept drift [1], which we think that
is common in many real-life problems in which association
rules have historically been applied such as profile mining
from customer information. Therefore, it would be interest-
ing to analyze how CSar adapts to domains in which variable
associations change over time. In addition to this, new inno-
vations could be introduced to the system, such as the use of
a linguistic fuzzy representation as done in Fuzzy-UCS [17]
with the aim of evolving fuzzy association rules. All these
innovations and analyses point toward the refinement of the
system to apply it to new challenging real-life problems.

Acknowledgements

The authors would like to thank the Ministerio de Edu-
cacion y Ciencia for its support under projects TIN2005-
08386-C05-01 and TIN2005-08386-C05-04, and Generalitat
de Catalunya for its support under grants 2005F1-00252 and
2005SGR-00302.

6. REFERENCES
[1] C. Aggarwal. Data streams: Models and algorithms.
Springer, 2007.

[2] R. Agrawal, T. Imielinski, and A. Swami. Mining
association rules between sets of items in large
databases. In Proceedings of the ACM SIGMOD
International Conference on Management of Data,
pages 207-216, Washington D.C., May 1993.

R. Agrawal and R. Srikant. Fast algorithms for mining
association rules in large databases. In Proceedings of
the 20th International Conference on Very Large Data
Bases, VLDB, pages 487-499, Santiago, Chile,
September 1994.

A. Asuncion and D. J. Newman. UCI Machine
Learning Repository:
[http://www.ics.uci.edu/~mlearn/MLRepository.html].
University of California, 2007.

E. Bernadé-Mansilla and J. Garrell. Accuracy-based
Learning Classifier Systems: Models, analysis and
applications to classification tasks. Fvolutionary
Computation, 11(3):209-238, 2003.

C. H. Cai, A. W.-C. Fu, C. H. Cheng, and W. W.
Kwong. Mining association rules with weighted items.
In International Database Engineering and Application
Symposium, pages 68-77, 1998.

T. Fukuda, Y. Morimoto, S. Morishita, and

T. Tokuyama. Mining optimized association rules for
numeric attributes. In PODS ’96: Proceedings of the
fifteenth ACM SIGACT-SIGMOD-SIGART
symposium on Principles of database systems, pages
182-191, New York, NY, USA, 1996. ACM.

D. E. Goldberg. Genetic algorithms in search,
optimization & machine learning. Addison Wesley, 1
edition, 1989.

D. E. Goldberg. The design of innovation: Lessons
from and for competent genetic algorithms. Kluwer
Academic Publishers, 1 edition, 2002.

T. P. Hong, C. S. Kuo., and S. C. Chi. Trade-off
between computation time and number of rules for
fuzzy mining from quantitative data. International
Journal of Uncertainty, Fuzziness, and
Knowledge-Based Systems, 9(5):587-604, 2001.

8]

[4]

[5]

[6]

[7]

8]

[9]

(10]

2038

[11] M. Houtsma and A. Swami. Set-oriented mining of
association rules. Technical Report RJ 9567, Almaden
Research Center, San Jose, California, October 1993.
M. Kaya and R. Alhajj. Genetic algorithm based
framework for mining fuzzy association rules. Fuzzy
Sets and Systems, 152(3):587-601, 2005.

B. Lent, A. N. Swami, and J. Widom. Clustering
association rules. In Procedings of the IEEE
International Conference on Data Engineering, pages
220231, 1997.

J. Mata, J. L. Alvarez, and J. C. Riquelme. An
evolutionary algorithm to discover numeric association
rules. In SAC ’02: Proceedings of the 2002 ACM
symposium on Applied computing, pages 590-594, New
York, NY, USA, 2002. ACM.

R. J. Miller and Y. Yang. Association rules over
interval data. In SIGMOD ’97: Proceedings of the
1997 ACM SIGMOD international conference on
Management of data, pages 452-461, New York, NY,
USA, 1997. ACM.

M. Nuiiez, R. Fidalgo, and R. Morales. Learning in
environments with unknown dynamics: Towards more
robust concept learners. Journal of Machine Learning
Research, 8:2595-2628, 2007.

A. Orriols-Puig, J. Casillas, and E. Bernad4-Mansilla.
Fuzzy-UCS: a michigan-style learning fuzzy-classifier
system for supervised learning. IEEE Transactions on
Evolutionary Computation, in press.

A. Salleb-Aouissi, C. Vrain, and C. Nortet.
Quantminer: A genetic algorithm for mining
quantitative association rules. In M. M. Veloso, editor,
Proceedings of the 2007 International Join Conference
on Artificial Intelligence, pages 1035—-1040, 2007.

A. Savasere, E. Omiecinski, and S. Navathe. An
efficient algorithm for mining association rules in large
databases. In Proceedings of the 21st VLDB
Conference, pages 432-443, Zurich, Switzerland, 1995.
R. Srikant and R. Agrawal. Mining quantitative
association rules in large relational tables. In
Proceedings of the 1996 ACM SIGMOD International
Conference on Management of Data, pages 1-12,
Montreal, Quebec, Canada, 1996.

C.-Y. Wang, S.-S. Tseng, T.-P. Hong, and Y.-S. Chu.
Online generation of association rules under
multidimensional consideration based on negative
border. Journal of Information Science and
Engineering, 23:233-242, 2007.

K. Wang, S. H. W. Tay, and B. Liu.
Interestingness-based interval merger for numeric
association rules. In Proceedings of the 4th
International Conference on Knowledge Discovery and
Data Mining, KDD, pages 121-128. AAAIT Press, 1998.
S. W. Wilson. Classifier fitness based on accuracy.
Evolutionary Computation, 3(2):149-175, 1995.

S. W. Wilson. Generalization in the XCS classifier
system. In 3rd Annual Conf. on Genetic Programming,
pages 665—674. Morgan Kaufmann, 1998.

S. W. Wilson. Get real! XCS with continuous-valued
inputs. In Learning Classifier Systems. From
Foundations to Applications, LNAI, pages 209-219,
Berlin, 2000. Springer-Verlag.

(12]

(13]

(21]

(22]

