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ABSTRACT

Estimation of Distribution Algorithms are a recent new meta-
heuristic used in Genetics-Based Machine Learning to solve
combinatorial and continuous optimization problems. One
of the distinctive features of this family of algorithms is that
the search for the optimum is performed within a candidate
space of probability distributions associated to the problem
rather than over the population of possible solutions. A
framework based on Information Geometry [3] is applied in
this paper to propose a geometrical interpretation of the
different operators used in EDAs and provide a better un-
derstanding of the underlying behavior of this family of algo-
rithms from a novel point of view. The analysis carried out
and the simple examples introduced show the importance of
the boundary of the statistical model w.r.t. the distributions
and EDA may converge to.

Categories and Subject Descriptors

I.2.8 [Problem Solving, Control Methods, and
Search]: [Heuristic methods]; G.3 [Probability and
Statistics]: [Probabilistic algorithms]

General Terms

Theory, Algorithms

Keywords

Estimation of Distribution Algorithms, Information Geom-
etry, Boundary of a Manifold

1. INTRODUCTION
This paper describes an application of notions from Infor-

mation Geometry (IG) [5] to the field of Machine Learning
(ML). In particular, a specific family of algorithms has been
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investigated, namely that of Estimation of Distribution Al-
gorithms (EDAs) [9], a recently proposed model-based meta-
heuristic characterized by the use of a probability density
function (pdf) to model promising solutions in combinato-
rial and continuous optimization problems.

IG can be described as the study of statistical properties of
families of probability distributions by means of differential
and Riemannian geometry. The purpose of the paper is
discussing the behavior of EDAs within a framework based
on IG, by giving a geometrical interpretation of the different
operators used, in order to elucidate from a different point of
view the underlying mechanisms that guide the convergence
to optimal solutions.

In the literature the theoretical study of the behavior of
EDAs has been faced from different points of view. A pos-
sible approach to the study of the dynamics of this meta-
heuristic is based on stochastic processes, as in [8]. By using
a Markov chain it is possible to model the transition prob-
ability from one state to another, and analyze the conver-
gence of different families of algorithms. Unfortunately this
approach is not easy, since it requires an explicit formulation
of how the state is updated from one iteration to the next.
On the other side, another possibility is the use of discrete
dynamical systems, often under the assumption of infinite
population size, as in [17]. In this case the analysis is sim-
plified since the system becomes deterministic, even if the
results can be applied only when large populations are used.
In this paper we do not propose a mathematical model for
EDAs, rather we focus our attentions on the geometry of
the statistical model employed.

Differently from other approaches in Evolutionary Com-
putation, EDAs employ a statistical model instead of a pop-
ulation of solutions, as in Genetic Algorithms (GAs). The
work-flow of an EDA is rather simple: once a parametric
statistical model M and an initial distribution p(x; ξ0) ∈ M
are chosen, where ξt ∈ Ξ is a vector of parameters at time
t, a population of instances is generated by sampling. Then
the most promising solutions are selected according to the
value of a fitness function f(x), given by the specific opti-
mization problem. Finally a new distribution is chosen by
estimating a new parameter vector ξt+1, to bias the search
over regions in M with higher probabilities of generating
optimal solutions w.r.t. the optimization problem.

EDAs explore indirectly the search space X of candidate
solutions by means of an explicit search in the space M of
possible pdfs over X . In other words, the classical formula-
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tion for an optimization problem

x∗ = argmax
x∈X

f(x) (1)

is replaced by a different expression where the search space
consists of the parametric statistical model M = {p(x; ξ)}.
Under some hypothesis over the geometry of M, that is,
whenever M includes all distributions such that p(x) = 1
for some x ∈ X , the solution of the optimization problem

ξ∗ = argmax
ξ | pξ ∈M

Epξ
[f(x)], (2)

where Epξ
[f(x)] is the expected value of f(x) w.r.t. p(x; ξ),

ensures that the optimum value x∗ is generated by the op-
timum model p(x; ξ∗). The advantage of this approach is
that, by moving the search from X to M, it is possible to
reduce the number of variables in the optimization prob-
lem. On the other side, one of the worst drawback is that
the presence of local optimal distributions is affected by the
choice of M.

To better understand how EDAs implement the optimiza-
tion process we propose the use of a geometric framework.
However, the geometry of a statistical model M most of the
times is not Euclidean, and quantities such as the Euclidean
distance often do not have any counterpart in statistics1.
According to IG [5], the proper space for a statistical model
M is given by Riemannian geometry, where the Fisher in-
formation matrix plays the role of metric tensor. The model
M of all distributions over X can be represented as a sta-
tistical manifold, namely a generalization of an Euclidean
space, where the set of parameters used to define a family
of distributions acts as a coordinate system.

IG has been recently applied in ML; particular attention
has been devoted to the Expectation-Maximization algo-
rithm in Neural Networks [2], the Boltzmann Machine learn-
ing rule [4], and, more recently, document classification using
AdaBoost [10]. The framework used in this paper has been
proposed by Amari in [3] and then applied for the first time
in the study of GAs and EDAs by Toussaint in [16]. The aim
of this paper is to move forward in this direction of research
and provide new insights on EDAs from an information ge-
ometric point of view.

The paper is organized as follows. In Section 2 some pre-
liminaries of IG are presented, trying to limit as much as
possible the mathematical background required. For an ex-
haustive discussion of the topic, see the seminal book [5]
by Amari and Nagaoka. Section 3 includes a review of the
canonical classification of EDAs using notions from IG, fol-
lowed by a study of the behavior of the basic operators in
EDAs. Next, an analysis of the boundary of a manifold
is introduced, elucidating the correspondence between dis-
tributions on the boundary of the probability simplex and
limits of distributions in M approaching the boundary of
the manifold. Finally, in Section 4 some basic examples are
presented in order to show the possible impact of this ap-
proach.

2. INFORMATION GEOMETRY BASICS
Given a probability space (Ω,F , P ), where Ω is a finite

sample space, i.e., the set of all the possible outcomes of an

1Dealing with Gaussian models, Euclidean distances play a
role in maximum likelihood estimation, that can be evalu-
ated by the least squares method.

experiment, F a σ-algebra of subsets of Ω, and P a prob-
ability measure, consider a statistical model M = {p(X =
x; ξ), ξ ∈ Ξ} as a parametric set of joint pdfs p(X = x) for
a discrete random vector2 X = (X1, . . . ,Xn) defined over
(Ω,F , P ). Every pdf p(x) = P (X = x) can be represented
by different sets of parameters. For instance, consider the
case when each parameter represents the probability of a
possible outcome x in Ω: in statistics, these parameters are
usually called raw parameters, and are expressed by means
of a vector of probabilities ρ such that ∀x = (x1, . . . , xn) ∈
Ω, ρx1...xn = P (X1 = x1, . . . ,Xn = xn) = p(x). Let each
component Xi of X represent the value of an observation
variable that takes values in {0, 1}. Then, the cardinality of
the sample space Ω is 2n, and since

P

x∈Ω ρx = 1, only 2n−1
parameters are required in order to specify an arbitrary joint
pdf over X.

From an IG point of view, the statistical model Sn of all
the possible positive joint pdfs for a random binary vector
X forms a (2n − 1)-dimensional manifold of distributions,
where the parameter set ρ acts as a coordinate system over
Sn. The values of the parameters identify a specific distri-
bution p(x; ρ), i.e., a point p ∈ Sn. Notice that in case a
parametrization based on raw parameters is used, the coor-
dinate system ρ over Sn is the same as for the probability
simplex ∆2n−1, i.e., the regular polytope given by the con-
vex hull of the standard unit vectors in R2n

.
Consider an arbitrary parametrization ξ for Sn. On the

manifold Sn, the Fisher information matrix G(ξ) = (gij)
plays the role of a metric tensor when G is nondegenerate.
Consequently, Sn can be considered as a Riemannian man-
ifold, and the squared distance ds2 between two infinitesi-
mally close distributions equals twice the Kullback-Leibler
(KL) divergence.

2.1 Geodesics and Mixed Parametrization
One of the main advantages of the generalization from

Euclidean spaces to Riemannian manifolds is that it is pos-
sible to define properties that hold for any equivalent coor-
dinate system. In particular, in IG we can study properties
of a statistical model that do not depend on the specific pa-
rametrization, since often the same distribution p(x) can be
represented by different sets of parameters.

For example, given a vector X of binary variables, one of
the possible parametrization for the set of positive joint pdfs
over X is given by the expansion of the logarithm of p(x):

log p(x; θ) =
X

i

θixi +
X

i<j

θijxixj + · · ·+ θ1...nxi . . . xn −ψ,

(3)
where ψ is a normalizing constant factor that depends on
θ. The set of 2n − 1 parameters in θ works as a coordinate
system over Sn. From Equation 3 it is possible to notice that
the model proposed belongs to the exponential family, so the
set θ is usually addressed as natural or canonical parameters.

Another possible parametrization is based on the expected
values of the random variables in X. Consider the expecta-
tions of all the possible different non-empty subsets of com-
ponents of X w.r.t. the distribution p(x; θ), i.e.,

ηi = Eθ [Xi], ηij = Eθ[XiXj ], (4)

. . . , η1...n = Eθ[X1 . . .Xn],

2We do not use bold font for vectors, since we reserve it for
vectors of vectors as in [3].
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where for each ηi1...ik
, with ij ∈ {1, . . . , n}, 1 ≤ j ≤ k, we

have i1 < · · · < ik. This set of 2n − 1 parameters can be
used to uniquely identify a distribution in Sn. Moreover,
it can be proved that for positive distributions the θ and η
parametrizations are equivalent, and are connected by a bi-
jective relation based on the Legendre transformation. See
[5] for a rigorous discussion of the topic, with all the neces-
sary mathematical derivations.

Since we are interested in both natural and expectation
parameters, in the following we are going to define Sn as the
set of positive distributions for which both parametrizations
are defined, i.e., Sn = {p(x) | ∀x ∈ X , p(x) > 0}. Let us
define the boundary of M ⊂ Sn as the set of all the dis-
tributions in the closure of M, namely M, where at least
one parameter in ρ is equal to 0, i.e., {p(x) ∈ M | ∃x ∈
X , p(x) = 0}, for that it is not possible to provide a param-
etrization based on θ, since some of the natural parameters
are not defined. In a similar way, let the vertices of a mani-
fold M ⊂ Sn be the set of all distributions in M where all
the probability mass is concentrated on a specific instance
in X , i.e., {p(x) ∈ M | ∃x ∈ X , p(x) = 1}.

In order to define a geometric structure for Sn, it is useful
to introduce the notion of geodesic, i.e., a generalization of
the concept of straight line as the shortest path between
two points. Consider a submanifold M ⊂ Sn, and let p1

η

and p2
η be two points in M expressed by means of the η

coordinates. M is said mixture-flat or m-flat whenever any
point belonging to the curve γm(t), expressed as a linear
combination in the η coordinates,

pm
η (x; t) = (1 − t)p1

η(x) + tp2
η(x), (5)

with 0 ≤ t ≤ 1, belongs to M. The curve γm is called
the m-geodesic connecting the two points, and η an m-affine
coordinate system for M. Similarly, consider two points
p1

θ and p2
θ in a submanifold E ⊂ Sn expressed in terms of

the θ coordinates, then E is said exponential-flat or e-flat
whenever the curve γe(t), given by the convex hull of the
two points in the θ coordinates,

log pe
θ(x; t) = (1 − t) log p1

θ(x) + t log p2
θ(x) − φ(t), (6)

lies entirely on E , where φ(t) is a normalization factor, and
0 ≤ t ≤ 1. As a consequence the curve γe is called an
e-geodesic and θ an e-affine coordinate system for E .

The relation among natural and expectation coordinates
is even stronger. Consider the Fisher information matrices
with respect to the η and θ coordinates, namely G(η) and
G(θ). The two coordinate systems are dually coupled and
the relation G(θ) = G(η)−1 holds. Moreover, at each point
p in Sn, the coordinate bases ei and e∗i w.r.t. η and θ are
orthonormal, that is, 〈ei, e

∗
j 〉 = δij , where δij is the Kro-

necker delta. As a consequence, it is possible to employ for
each point in Sn a mixed parametrization based on a mixed
set of parameters from η and θ. Indeed, define a k-cut by
splitting each set of parameters η and θ into two groups, the
parameters with no more than k indexes, describing inter-
actions among variables of order less or equal to k, and the
remaining with more than k indexes for interactions of order
greater than k, namely

η = (ηk ; ηk∗) = (η1, . . . , ηk ; ηk+1, . . . , ηn), (7)

θ = (θk ; θk∗) = (θ1, . . . , θk ; θk+1, . . . , θn), (8)

where ηi and θi are vectors whose components, taken from
η and θ, respectively, have exactly i indexes. Given a dis-

Figure 1: A k-cut mixed parametrization for Sn.

tribution p, due to the orthogonality among the η and θ
coordinates at each point, it is possible to employ a k-cut
mixed parametrization and express it as p(x;ηk ; θk∗).

2.2 Foliations and Projections
The advantage of a k-cut mixed parametrization consists

in the possibility to vary the strength of higher-order inter-
actions among the variables in a pdf, without changing the
value of the marginal probabilities of order less than or equal
to k. Given ck∗ = (ck+1, . . . , cn), where each ci is a vector
of constants, consider the subset Ek∗(ck∗) ⊂ Sn defined as
those distributions with the same fixed value for the θk∗ co-
ordinates, i.e., Ek∗(ck∗) = {p(x;ηk ; θk∗) | θk∗ = ck∗}. The
union of the disjoint subsets Ek∗(ck∗) for all the possible dif-
ferent values of ck∗ covers Sn entirely, that is, the subsets
represent a foliation of Sn. Moreover the nested series of
submanifolds

S1 ⊂ · · · ⊂ Sn, (9)

with Sk = Ek∗(0), is called an e-structure, where each of
the manifolds represents a statistical model having no in-
teractions among variables of order higher than k. Dually,
similar considerations lead to the definition of Mk(dk) =
{p(x; ηk ; θk∗ ) | ηk = dk}, where dk is a set of vectors of
constants complementary to ck∗ , specifying the marginal
distributions of p(x) of order k or less. Due to the orthogo-
nality among η and θ, Ek∗ and Mk are orthogonal at each
point, as represented in Figure 1.

Finally, the last result from IG that will be recalled is
related to the notion of projection. Consider a distribution
p(x;ηk ; θk∗ ) ∈ Sn, since the values in θk∗ do not depend
on those in ηk , define the m-projection of p(x) onto Sk as

p(k)(x) = p(x;ηk ;0). The projection p(k) is the closest dis-
tribution to p(x) in Sk in terms of KL divergence, namely

p(k) = argmin
q ∈Sk

DKL[p : q], (10)

As a consequence of this result, it is possible to formulate
a generalization of the Pythagoras theorem, i.e., given two
distributions p, q ∈ Sn,

DKL[p : q] = DKL[p : p(k)] +DKL[p(k) : q], (11)

where p(k) is them-projection of p onto Sk, as represented in
Figure 1. Moreover, due to the relation between entropy and
KL divergence, p(k)(x) ∈ Sk is the distribution maximizing
the entropy among those in Sk having fixed marginal pdfs.
Due to the generalized Pythagoras theorem, it is possible
to provide a hierarchical decomposition of the interactions
among the variables in a distribution. Let S0 = {p(0)(x)}
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be the uniform distribution, it can be proved that

DKL[p : p(0)] =
n

X

k=1

DKL[p(k) : p(k−1)], (12)

where each addend measures the amount of correlation among
the variables expressed by the interaction at level k.

2.3 A Simple Example
Let us introduce a simple example that will be discussed

through the remaining sections. Consider a 2-dimensional
vector of random binary variables X = (X1,X2) defined
over a probability space (Ω,F , P ), where Ω = X is the set
of all possible solutions to an optimization problem. Every
positive distribution in S2 can be described by means of at
least three different sets of parameters, i.e., ρ, η, and θ.

Multivariate frequency tables, also known as contingency
tables, can be used to cross-classify instances of a sample
population P ⊂ X according to the value of the variables in
the stochastic vector X. In this simple case, the contingency
table is 2-dimensional and can be easily represented as

X1

0 1

X2
0 ρ00 ρ10

1 ρ01 ρ11

where each cell contains the probability of the related in-
stance in terms of frequency in the population.

Even if in practice these tables can not be used in EDAs,
since their dimension grows exponentially with the number
of variables, contingency tables theory is important since it
provides different models able to represent candidate distri-
butions over X. For example, a possible model for the joint
pdf can be expressed in terms of ρ as

p(x;ρ) = ρ
(1−x1)(1−x2)

00 ρ
(1−x1)x2

01 ρ
x1(1−x2)

10 ρ x1x2

11 ,
(13)

where ρij ≥ 0, and
P

i,j ∈{0,1} ρij = 1. Notice that the ρ
parameters play the role of coordinates on the probability
simplex ∆3, that is, the regular tetrahedron in Figure 2(a).
From a geometric point of view, a statistical model con-
sists of a subset of points M ⊂ ∆3; e.g., the independence
model, namely when p(x) can be factorized as the product
of univariate marginal pdfs, corresponds to the set of points
identified by the geometric invariant ρ00ρ11 = ρ10ρ01, repre-
sented in Figure 2(a) by the gridded surface.

In the literature, different statistical models have been
proposed for contingency tables, and most of them belong
to the class of Generalized Linear Models (GLMs)[1]. In
particular, log-linear models provide a factorization for the
logarithm of the joint pdf, as in Equation 3, and allow a
straightforward hierarchical decomposition of the interac-
tions among the variables for the example introduced above,
i.e.,

log p(x; θ) = θ1x1 + θ2x2 + θ12x1x1 − ψ, (14)

where the θ parameters can be derived from those in ρ as

θ1 = log
“ρ10

ρ00

”

, θ2 = log
“ρ01

ρ00

”

, (15)

θ12 = log
“ρ00ρ11

ρ10ρ01

”

, ψ = − log(ρ00),

by comparing and rewriting Equations 13 and 14.

(a) (b)

Figure 2: (a) Probability simplex ∆3 for a 2-
dimensional binary vector X. (b) Representation
of S2 by means of a 1-cut mixed parametrization.

Finally, in the case of binary variables, there exists a third
possible coordinate system based on the expectation param-
eters that can be derived directly from ρ, i.e.,

η1 = ρ10 + ρ11, η2 = ρ01 + ρ11, η12 = ρ11. (16)

Notice that, for all positive distributions, it is easy to com-
pute all the transformations from one parameter set to an-
other by means of matrices, as described in [3].

Once the formulas for η and θ have been introduced, it is
possible to use a k-cut mixed parametrization for each dis-
tribution in S2. In this simple case, since S2 has dimension
3, there exists a global bijective correspondence between the
interior of the manifold and an open set in R3. For example,
consider the k-cut with k = 1, then the coordinates of each
point can be expressed by (η1, η2, θ12). Since η1, η2 ∈ (0, 1),
and θ12 ∈ (−∞,+∞), S2 can be mapped to the interior of
a infinitely-high right rectangular-sided prism, represented
in Figure 2(b). According to the mixed parametrization,
the independence model in Figure 2(a) corresponds to the
open square associated to the geometric invariant θ12 = 0 in
Figure 2(b).

3. A GEOMETRICAL PERSPECTIVE
EDAs implement a discrete dynamical system over the

manifold M ⊂ Sn, where the state at each iteration is a
point in the model and corresponds to a distribution defined
by the value of the parameters. From a geometric point of
view, each execution of and EDA produces a sequence of
points in M:

pξ0 −→ pξ1 −→ . . . −→ pξt −→ . . . (17)

The updating rule ξt+1 = s(ξt), which describes the next
state given the current one, in general is not easy to express
in a concise way, since it depends on non-linear operators
and stochastic contributes as non-deterministic sampling.

3.1 Classification of EDAs
Consider the optimization problem in Equation 2, and

let x be a realization of a random vector of n binary vari-
ables X = (X1, . . . ,Xn). The model Sn of all the possible
pdfs over X requires 2n − 1 parameters. As the number of
variables increases, the use of such model becomes computa-
tionally intractable. EDAs approach this problem by replac-
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ing the search space X with a lower dimensional probability
model M ⊂ Sn, for example by constraining the maximum
order of interactions among the variables in X.

In the literature, EDAs are usually classified into three
classes according to the complexity of the model M [9]. The
first class includes those algorithms using a model with no
interactions among variables, i.e., the joint pdf is factorized
as the product of univariate marginal distributions. This
implies that, for all algorithms belonging to this class, such
as PBIL [6] and DEUMd [14], the search is limited to the
manifold M = S1, i.e., since θ1∗ = 0, all second and higher-
order interactions are not taken into account.

The second class includes algorithms employing models
that consider pairwise interactions, such as MIMIC [7] and
BMDA [13]. A proper mixed parametrization based on the
notion of k-cut suggests to choose k = 2, so that θ2∗ = 0.
Notice that, for these algorithms, in general M is such that
S1 ⊂ M ( S2. For example, in BMDA the joint pdf is
represented by means of a forest of mutually independent
dependency trees, and not all second-order interactions in
M can be considered with a single factorization. Indeed in
a tree each node has at most one parent, consequently some
values in θ2 are equal to 0 due to conditional independence
assumptions, so that in general M is a submanifold of S2.

Finally, the third class includes all those algorithms that
employ models able to cover multivariate interactions, as
Bayesian Networks (BNs) in BOA [12] and Markov Random
Fields (MRFs) in DEUM [14]. In the general case S1 ⊂
M ⊂ Sn, even if often some restrictions are applied to limit
the number of parameters to be estimated, for example by
constraining the highest order k of interactions or by using
specific families of graphical models.

3.2 Operators over a Statistical Manifold
The use of a framework based on a k-cut mixed parame-

trization is not new in the study of Evolutionary Algorithms.
For example, in [16] the uniform crossover operator used in
GAs is interpreted in terms of a step along the m-geodesic
connecting the distribution p(x), best estimating the cur-

rent selected population, and its projection p(1)(x) onto S1.
The crossover operator can be interpreted in terms of a m-
geodesic because by mixing portions of parent solutions it
does not alter univariate marginal distributions, i.e., the
values in η1 remain constant. As to the direction of the
movement along the m-geodesic, it has been proved that
uniform crossover tends to destroy building blocks by dis-
assembling and reassembling solutions, so higher-order in-
teractions among variables are weakened, resulting in an ex-
pected overall decreasing of the absolute values of the θ1∗ co-
ordinates [15]. Notice that since simple GAs do not employ
any explicit parametric probabilistic model, at each iteration
the population of solutions can be represented as a generic
point p(x) ∈ Sn. In principle, due to non-deterministic op-
erators such as mutation, GAs are able to explore any point
of the manifold Sn.

In the rest of this section, we review and discuss the basic
operators employed in EDAs and propose other possible in-
terpretations based on the geometry of M. The behaviour
of a generic EDA has already been introduced. Let us briefly
describe the basic loop executed at each iteration t. First, a
population of solutions Pt is sampled from the current dis-
tribution p(x; ξt), then a subset of instances Pt

s is selected
according to the fitness function f(x), and finally a new dis-

Figure 3: Relevant distributions in Sn for a typical
iteration of an EDA.

tribution p(x; ξt+1) is estimated

p(x; ξt)
sampling
−−−−−→ Pt selection

−−−−−→ Pt
s

estimation
−−−−−−→ p(x; ξt+1).

Since at every iteration t the current distribution belongs
to the statistical model employed by the algorithm, both
p(x; ξt) and p(x; ξt+1) must be in M. By similar considera-
tions as for GAs, the random sample population Pt and the
selected population Pt

s at each iteration can be represented
as two distributions p(x; ζt) and p(x; ζt

s) in Sn. In general,
a different coordinate system ζ is required, since these two
points lie in the higher dimensional space Sn ⊃ M, as rep-
resented in Figure 3.

Let N be the number of instances in the population Pt;
obviously, as N → +∞, p(x; ζt) gets closer to p(x; ξt). Due
to limited computational resources, it is common to sample
a finite population much smaller than the cardinality of the
search space, i.e., N ≪ ‖X‖. Consequently p(x; ζt) has sev-
eral raw parameters describing the probability of generating
solutions that are not in Pt set to 0, so p(x; ζt) is likely to
lie on the boundary of Sn.

The step from p(x; ζt) to p(x; ζt
s) directly depends on how

the specific selection procedure is implemented by the EDA.
In general, since Pt

s ⊂ Pt, this procedure leaves the distri-
bution on the boundary of the manifold. Notice that when
the population degenerates to copies of the same instance,
the distribution collapses to one of the vertices of Sn.

Finally, the third step consists of a projection of p(x; ζt
s)

onto the manifold M. Of course this operator can be im-
plemented in different ways. For example, as pointed out
in [16], whenever the estimation of the parameters is based
on the maximization of the entropy, with M = Sk, the es-
timation operator can be interpreted as the orthogonal pro-
jection p(k)(x) of the distribution p(x; ζt

s) onto the lower di-
mensional submanifold Sk. Similarly, since maximizing the
likelihood is equivalent to minimizing the KL divergence [2],
them-projection of p(x; ζt

s) onto M corresponds to the max-
imum likelihood estimation. Anyway, when the manifold
M is able to represent higher-order interactions, estimation
procedures get more computationally expensive and greedy
techniques are often applied. In this case, the distribution
p(x; ξt+1) can be an approximation of the real projection.
Besides, when the model M is such that Sk−1 ⊂ M ( Sk,
the m-projection onto Sk may not even belong to M.

The ability of an EDA to project the distribution back to
the interior of the manifold once both p(x; ζt) and p(x; ζt

s)
reach the boundary is significant, since having p(x; ξt+1) on
the boundary of M would imply a loss of variance in the
next sample population, due to some parameters in ρ equal
to 0. This capability depends on the model M and on the
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estimation operator. For example, a possibility is to employ
a model belonging to the exponential family, able to repre-
sent only positive distributions not lying on the boundary
of Sn.

3.3 Boundary Analysis of M

From the discussion carried out until this point, it emerges
that the boundary of the manifold Sn has a special role
and that a discussion about the behavior of EDAs can not
ignore it. Even if the boundary is not taken into account
in the geometric framework introduced by Amari, all the
vertices of Sn are candidate solutions to the optimization
problem in Equation 2. Moreover, all the several graphical
models employed by different EDAs, such as MRFs and BNs,
include subsets of the boundary of Sn.

In IG, the dually-flat structure of a manifold and thus the
orthogonality among η and θ exists only when M belongs to
either the exponential or the mixture family, and only pos-
itive distributions are considered. This is because it is not
possible to express a pdf by means of the natural parameter
set when some values in ρ are equal to 0.

In the following, we are not going into the technical de-
tails of a mathematical extension of the exponential model
able to include its boundary. Instead, we are going to study
the boundary of a manifold M by considering the limit of a
sequence of distributions for which some parameters in ρ go
to 0. From a geometrical perspective, we will evaluate the
limit point, when it exists, of a sequence of distributions con-
verging to the boundary of M, that is exactly what happens
when an instance of an EDA is run.

In case a model M ⊂ Sl is represented by means of a k-cut
with l ≤ k ≤ n, all the natural coordinates θk∗ involved in
the mixed parametrization are equal to 0. Otherwise, in case
1 ≤ k < l, some points in M may have some coordinates in
θk∗ different from 0. This distinction is important, since in
the first case there is a linear transformation that maps the
closed unit simplex to the closed convex polytope identified
by the η coordinates, and so it is easy to study the boundary
of M. In the second case, some θ coordinates may not be
defined, thus we decided to evaluate the limit of sequences
of distributions approaching the boundary of the model.

In the following we present an analysis of the boundary
of the manifold Sn for the 2-dimensional binary vector in-
troduced in Section 2.3. Let us first consider the model
M = S1, along with a 1-cut mixed parameter set (η1;0). It
is easy to verify that the four distributions δ(x1,x2) = {p(x) |
p(X1 = x1,X2 = x2) = 1} on the vertices of the probability
simplex ∆3 in Figure 2(a) correspond to the vertices of the
unit square, represented in Figure 4(a) with circled Greek
letters. For example, let Mα = δ(0,0), then from Equa-
tions 16, η1, η2 → 0 as ρ00 → 1. Similarly, the sides of the
unit square in Figure 4(a), with the exception of the vertices,
correspond to those pdfs with only two zero probabilities on
the same row or on the same column of the contingency ta-
ble, represented in Figure 4(a) with circled Latin letters. In-
deed, if Ma = {p(x) | ρ00 = ρ01 = 0, ρ10, ρ11 > 0}, it follows
that η2 → 1 as ρ00, ρ01 → 0. In the cases described above,
all the sequences of distributions approaching the boundary
of S1 have a finite limit, since there exists a bijective corre-
spondence between ρ and η1. All other possible portions of
the boundary of S2, given by other distributions with one
or two parameters in ρ equal to 0 can not be represented by
using the independence model S1.

Let us now consider the model M = S2, expressed by
means of a 1-cut mixed parametrization, and evaluate the
values of the limits of η1 and θ1∗ as some raw parameters
vanish. For example, first let ρ00 = 0, while all the other
probabilities in ρ are positive, i.e., MA = {p(x) | ρ00 =
0, ρ10, ρ01, ρ11 > 0}. From Equation 16, both η1 and η2
belong to the open interval (0, 1). Moreover, as ρ00 → 0, it
follows that (1 − η1) → ρ01, and similarly (1 − η2) → ρ10,
thus (1 − (1 − η1) − (1 − η2)) → ρ11. Since ρ11 > 0, then
η2 > 1−η1. On the other side, for ρ00 = 0, θ12 is not defined
but can be evaluated by means of the following limit

θ12 = lim
ρ00→0

log
“ρ00ρ11

ρ10ρ01

”

= −∞. (18)

In other words, the statistical model MA can be mapped
to the interior of the triangle on the bottom square “face”
of the infinitely-high prism, where η2 > 1 − η1. Similar
considerations can be done for the different models with only
one raw parameter equal to 0, leading to two complementary
couples of triangles on the top and bottom “faces” of the
prism, respectively, represented in Figure 4(b) with circled
capital Latin letters.

Next, consider the case when two different raw parameters
on the same row or the same column vanish. For example,
consider the previously defined model Ma. When ρ00, ρ01 →
0, then η2 → 1, with η1 ∈ (0, 1), while the value of θ12 can
be evaluated by the limit

θ12 = lim
ρ00,ρ01→0

log
“ρ00ρ11

ρ10ρ01

”

= log
“0

0

”

. (19)

Since the limit is an indeterminate form, it may exists or
not, it may diverge to ±∞, or even tend to a fixed value,
according to the laws that govern how ρ00 and ρ01 tend to 0.
When the limit exists, the model Ma can be represented by
the interior of the side face of the prism, where η2 = 1. The
same argument can be applied to all the cases when only
two parameters in the same row or in the same column of
the contingency table tend to 0, leading, respectively, to the
interior of all the four side faces of the prism, as represented
in Figure 4(c) with circled Latin letters.

The third case occurs when there are two vanishing prob-
abilities in either the major or the minor diagonal of the
contingency table, for example let MΓ = {p(x) | ρ00 =
ρ11 = 0, ρ10, ρ01 > 0}. Repeating the procedure above, one
can deduce that as ρ00 and ρ11 → 0, then η1 = 1 − η2 and

θ12 = lim
ρ00,ρ11→0

log
“ρ00ρ11

ρ10ρ01

”

= −∞. (20)

Thus, MΓ corresponds to the open segment delimiting the
two previously identified open triangles on the bottom“face”
of the right prism. Similarly, in the case of the minor di-
agonal, the statistical model can be mapped to the com-
plementary open segment on the top face of the prism, as
represented in Figure 4(d) with circled capital Greek letters.

Finally, the last case includes the δ(x1,x2) distributions
that concentrate all the probability mass on one instance in
X , i.e., the points that lie on the vertexes of the probability
simplex. For example, when Mα = δ(0,0), ρ00 = 1 as all the
other parameters in ρ vanish, then η1 = η2 = 0 and

θ12 = lim
ρ10,ρ01,ρ11→0

log
“ρ00ρ11

ρ10ρ01

”

= log
“0

0

”

. (21)

Even in this case the limit depends on the laws that govern
how the different probabilities tend to 0. When the limit
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(a) (b) (c) (d)

Figure 4: Study of the distributions on the boundary of the manifold S1 (a) and S2 (b-d) represented by
means of a k-cut mixed parametrization, with k = 1.

exists, the values of the parameters identify one of the lateral
edges of the prism, where η1 = η2 = 0. Similarly, the other
distributions on the vertices of M are mapped to each of the
side edges of the prism, labelled in Figure 4(d) with circled
Greek letters.

This analysis has not been formalized in the case of an
arbitrary number of discrete variables, but anyway in the
next section only examples involving two binary variables
will be considered. A more general result would be required,
since as the number of variables increases, it is not feasible
to evaluate the limits of all the possible sequences.

In general, as long as the k-cut mixed parametrization
defines a partition of the parameters of order k, and M ⊂
Sl, with k > l, then all the points on the boundary of M
can be represented with finite values for ηk and θk∗ . In
case M 6⊂ Sl, the points on the boundary of the model
M again correspond to some portions of the boundary of
Sn, represented by means of a k-cut mixed parametrization,
anyway some values of the parameters in θk∗ may depend
on the laws that govern how the raw parameters tend to 0.

4. THE FRAMEWORK IN PRACTICE
Consider the optimization problem in Equation 2. An

EDA performs a stochastic search over a statistical model
M ⊂ Sn in order to detect a distribution able to generate
optimal solutions x∗ with high probability. Let us define S∗

as the set of points in Sn that maximize the expected value
of f(x). In general, S∗ 6⊂ M, for example when a model
does not include the boundary distributions, as for the ex-
ponential family; as a consequence an EDA can converge
only to distributions in M∗ = S∗ ∩M. When the solution
to the optimization problem x∗ is unique, there exists a sin-
gle distribution in S∗, lying on one of the vertices of Sn,
such that p(x∗) = 1. Whenever there are different optimal
solutions, multiple points maximize Ep[f(x)]. Such distribu-
tions correspond to the mixture of the optimal distributions
on the vertices, and correspond to a portion of the boundary
of the manifold. From a semantic point of view, these points
may encapsulate a deeper knowledge about the structure of
the problem, i.e., they somehow reveal the linkage among
variables for all optimal solutions.

These preliminary considerations about where target dis-
tributions are located in Sn are quite relevant w.r.t. the
model M ⊂ Sn employed by an EDA. From the classifi-

cation discussed in Section 3.1, the simplest class of EDAs
employs S1 as model. This implies that these algorithms in
principle can converge to a pdf able to maximize Ep[f(x)].
On the other side, in case of multiple solutions with optimal
fitness value, usually S∗ 6⊂ M; in other words, the choice
of M directly affects the degree of knowledge an EDA can
discover about the optimization problem.

Consider a very simple EDA belonging to the first class
of algorithms introduced in Section 3.1, i.e., M1 = S1, with
a selection operator that selects at each iteration the best
half of the population, and an estimation operator based on
maximum likelihood. Recall the example of a 2-dimensional
binary vector X introduced in Section 2.3, and let the values
of the fitness function be f(00) = 9, f(10) = 2, f(01) = 3,
and f(11) = 10. In this simple case it is easy to verify that
the algorithm not always converges to the global optimum
[8], since, depending on the initial distribution pξ0 , there
exist two different attractors in the manifold, where p(00) =
1 and p(11) = 1, respectively, as in Figure 5(a).

The choice of the model M directly affects the presence
of local optimal distributions. For example, consider the
same algorithm introduced above and let introduce a new
model and a new random variable Y equal to the number of
occurrences of the bit 1 in the string x. Then 2 parameters
p0 and p1, with p2 = 1− p0 − p1, are required to identify all
the possible distributions for Y , where pi = P (Y = i), with
i ∈ {0, 1, 2}, and

P2
i=0 pi = 1. Under the assumption that

p(01) = p(10) = p1/2, the model forms a m-flat manifold
identified by the geometric invariant η1 = η2. In case the
same optimization problem is solved by the EDA introduced
above employing the model M2, it is possible to verify that
a single attractor exists, as in Figure 5(b).

Consider a second optimization problem, and let f(00) =
1, f(10) = 10, f(01) = 4, and f(11) = 10; in this case
we have two attractors in M1 with the same fitness value.
Each trajectory corresponding to a run of an EDA converges
to either one of the two vertices in the model, but neither
distribution is able to produce both optimal instances with
probability 1. The model M2 does not include the attractors
identified in M1, yet it includes a boundary point able to
generate all x∗ with equal probability. Such distribution is
the only attractor in the manifold and corresponds to the
limit point (0.5, 0.5,−∞), in the 1-cut coordinate system.

The model M2 does not include all the vertices of the
manifold. This choice is not recommended unless some a pri-
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Figure 5: Trajectories in M1 (a) and M2 (b) for an
EDA applied to a simple optimization problem.

ori knowledge about the problem is available. Anyway, this
example shows that in some cases it may be useful to intro-
duce different constraints on the geometry of M, resulting
in the possibility to converge to distributions different from
the vertices of Sn, yet able to better represent the structure
of the optimization problem. It becomes important to dis-
cern what portions of the boundary of Sn are included in the
closure of M, since this determines the set of distributions
an EDA may converge to.

5. CONCLUSIONS
The work presented in this paper, along with the prelimi-

nary study done in [11], goes into the direction of an applica-
tion of notions from IG to study the behavior of EDAs. The
simple examples presented suggest that the use of a mixed
parameter set and the identification of couples of orthogonal
submanifolds can help in understanding how the sequence
of distributions reaches one of the points on the boundary
of the manifold. On the other side, it seems rather clear
that there is a strong relation between the portions of the
boundary of Sn contained in the closure of M and the set of
distributions the algorithm may converge to. From the anal-
ysis presented, it emerges the need of a more rigorous and
formal study of the mathematical and statistical properties
of the boundary of the manifold. We are working in this di-
rection, in order to generalize the results obtained to more
complex models, both for binary and continuous variables,
and introduce more theoretical tools for the analysis.

This study may lead to the proposal of new EDAs able
to change from one iteration to the next the model M em-
ployed, by using an orthogonal decomposition of Sn. Also,
we believe that this framework could help in converting a-
priori knowledge about the optimization problem into some
constraints on the portion of boundary of Sn included in
M. Indeed, the geometry of M may be shaped to avoid
premature convergence to known local optimal solutions.

The work done so far can be considered as the preliminary
step not only towards the adoption of a geometrical frame-
work for the study and comparison of existing heuristics, but
also for the definition of new algorithms and IG operators
to be applied to distributions in a statistical manifold.
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