
Evolutionary Facial Feature Selection 
Aaron K. Baughman 

IBM Global Services 
Fairfax VA, USA 
703-653-7525 

baaron@us.ibm.com 

 
 
 

ABSTRACT 
With the growing number of acquired physiological and 
behavioral biometric samples, biometric data sets are 
experiencing tremendous growth.  As database sizes increase, 
exhaustive identification searches by matching with entire 
biometric feature sets become computationally unmanageable.  
An evolutionary facial feature selector chooses a set of features 
from prior contextual or meta face features that reduces the 
search space.  This paper discusses and shows the results of an 
evolutionary computing approach with agglomerative k-means 
cluster spaces as input parameters into a LDA evaluation function 
to select facial features from the Carnegie Mellon University 
Pose, Illumination, and Expression database of human faces 
(PIE).   

Categories and Subject Descriptors 
I.5.3 [Pattern Recognition]: Clustering – algorithms. 

General Terms 
Algorithms, Performance, Experimentation, Theory. 

Keywords 
Application, Artificial Intelligence, Genetic algorithms, Pattern 
recognition and classification, Search. 

1. INTRODUCTION 
Traditional automated biometrics matured from the late 1960’s 
with the first Integrated Automated Fingerprint Identification 
System (IAFIS) fielded by the Federal Bureau of Investigation in 
1972.  Within the United States Government, other biometric 
systems include the US-VISIT program, Transportation Workers 
Identification Credentials (TWIC) program and the Registered 
Traveler (RT) program.  A few international biometric programs 
include the United Arab Emirates border control, Colombia’s La 
Registraduria Nacional del Estado national population registry, 
Germany’s Federal Office of Administration visa program, and 
Pakistan’s passport database. 

The National Institute of Standards and Technology (NIST) has 
run Facial Recognition Vendor Tests (FRVT) beginning with the 
Facial Recognition Technology (FERET) program in 1993.   

 
NIST’s independent evaluations identified the most promising 
approaches to facial recognition.  The evaluations have achieved 
two orders of magnitude improvement in performance from 1993, 
0.79 False Rejection Rate (FRR) at 1/1000 False Acceptance Rate 
(FAR), to 2006, 0.01 FRR at 1/1000 FAR.  The FRVT 2006 
achieved the Facial Recognition Grand Challenge (FRGC) of 
achieving a 0.02 FRR at 1/100 FAR from FRVT 2002, established 
the first 3D face recognition benchmark, showed progress of 
facial recognition technologies among changes in lighting and 
that face recognition algorithms are capable of performing better 
than humans [8].  The number of participants increased from 5 in 
FRVT 2000 to 22 in FRVT 2006. 

This paper presents the design, parameter selection and 
experimental results of an evolutionary facial feature selector 
algorithm.  First, the field of facial recognition as related to the 
proposed algorithm is introduced in Section 2.  Then, in Section 
3, related works are presented.  Next, in Section 4, the 
evolutionary algorithm is discussed while in Section 5 the results 
are given.  Finally, a discussion and future work is presented in 
Section 6.    

2.  BACKGROUND 
Semi automated facial recognition technology has been around 
since the 1960’s where technicians manually marked facial 
features.  In the 1970’s, Goldstein et al used 21 markers for facial 
recognition [2].  The first automated facial recognition techniques 
evolved in the 1980’s with Kohonen’s method of a self organizing 
map or Neural Network to recognize faces.  Facial recognition 
technology is a widely accepted biometric, in part, because 
humans use facial recognition on a daily basis to recognize other 
individuals.   

Biographical information provides Meta Data that describes facial 
images.  The CMU PIE database provides facial expression, 
glasses, talking, pose, flash, light, sex, age, race and etc. 
describing each subject [10].  Similar biographical data is used by 
the FBI to build database indices and binning structures to limit 
the scope of a biometric search.  For latent fingerprint searches, 
the FBI requires that probe penetration rates must not exceed 30% 
of the entire gallery [11].  Subject biographical information is 
used to decrease the probe penetration rate. 

3. RELATED WORKS 
Previous works [1], [4], [5], [6], [7], [12] and [13] presented 
several methods such as inverse file indexing, clustering and 
matching algorithms to support biometric searching.  This paper 
expands evolutionary computing as applied to facial recognition 
search.  Several related works within the fields of k-means 
clustering, linear discriminant analysis (LDA), and evolutionary 
computing support the work within this paper.  
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3.1 Biometric Searching 
Biometric searching addresses two types of problems.  First, 1:1 
or biometric verification is not presented within this paper.  The 
more challenging class concerns 1:N or M:N where an identity 
has multiple biometrics.  Within Germain’s work, an algorithm of 
transformation parameter clustering attempts to build fingerprint 
database index maps [4].  Triangular minutiae constellations are 
created from 
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minutia points.  A bound is established so that not every 
triangular shape is computed.  The full index or key consists of 
nine components: length of each side, ridge counts between the 
pair and angles between the pair [4].  Each index is placed into a 
multimap or container.  If the key is already within with a 
container, the entry is added.  Through a search, accumulation of 
evidence for a potential match is generated based upon the 
members that are found within the probe keyset.  On average, the 
algorithm achieved 7.3 µsec/print with a 1/10 False Negative Rate 
(FNR) and 1/1000000 False Positive Rate (FPR) [4].    
 
The L1 Identix Automated Biometric Identification System 
(ABIS) 4.1 provides several modalities for facial recognition 
search [1].  Each modality is a tradeoff between speed and 
accuracy.  The vendor provides search capability for proprietary 
face representations as vector, full template, two pass and two 
pass with skin luminescence [1].   

3.2 Clustering 
Grouping objects into clusters based upon feature variances 
among objects create collections of associated items.  K-means 
clustering is a grouping algorithm that minimizes the within class 
scatter or the sum squared error.   

Step 1 consists of optionally initializing the K class centers.              
Step 2, each member kX is assigned to a class based on the 
minimization of the Euclidean distance. 

2)()( uuDist −= μ  (2) 

The distance matrix mD  is 
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Step 3, each cluster’s mean is calculated with 
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where a is the center vector for each cluster and b is each cluster. 

Step 4, step 2 is repeated if any class centers changed. 
Step 5, calculate a clustering threshold. 

A method described by Zhao et al [13] calculates the threshold 
value as 

( )12
1

−+= kk CenterCenterThreshold   (6) 

Where k is the highest valued center and k-1 is the second highest 
valued center. 

3.3 Linear Discriminant Analysis (LDA) 
Within Linear Discriminant Analysis, a search within a given 
space yields vectors that best linearly discriminant classes.  
Martinez et al [7] describe LDA as the maximization of the ratio 
of between class scatter and within class scatter also known as the 
Fisher criterion [7].  The analysis technique strives to maintain 
tightly coupled members within a class while having high 
separation between members of differing classes.   
The within class scatter matrix is defined by 
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where 
j

ix
is the ith sample of class j, jμ

is the mean of class j, c 

is the number of classes and jN
is the number of samples in class 

j [7].  The between class scatter matrix is defined by 
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Where μ  represents the mean of all classes [7].  The 
maximization of between class scatter and the minimization of 
within class scatter is defined by 
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Often, LDA is used for both class discrimination and an algorithm 
for dimensionality reduction.  With respect to facial recognition, 
the Fisherface algorithm projects feature vectors of Principal 
Component Analysis onto the Fisherface matrix [5].  The most 
discriminating features that inherently maintain the Fisher 
property are kept.  The predefined feature vectors are used for 
facial recognition. 

 
3.4 Evolutionary Computing 
 
Learning the face space of a face database maintains or reduces 
the dimensionality of data.  The reduction of data complexity 
reduces the amount of computational complexity.  The 
evolutionary pursuit seeks to learn an optimal face space for the 
purpose of pattern classification and data compression [12].  
Evolution is driven by a fitness function.  An example fitness 
function combines performance accuracy, )(Faξ  with the 

predicted risk, )(Fbξ , to evaluate a face space [12]. 
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Chengjun Liu et al [6] examined the application of genetic 
algorithms to face recognition.  The fitness function includes 

)(Faξ  that defines facial recognition accuracy and 

)(Fbλξ that defines class scatter.   

 
The evolutionary computing method reduced a 30 principal 
component analysis space to a 26 vector face space. 

4. NOVEL EVOLUTIONARY FEATURE 
SELECTION APPROACH 
An evolutionary genetic algorithm was implemented with 
Evolutionary Computation in Java (ECJ), LDA fitness evaluation 
and an agglomerative K-Means clustering algorithm to find a 
maximum class scatter.  All of the faces from the CMU PIE 
database were loaded into an evolutionary environment.   
 
The evolutionary automaton contains 10 randomly generated 
chromosomes of length 12.  Each bit position on the chromosome 
is either a 1 for including a face trait or a 0 for excluding a trait.  
For each chromosome, an agglomerative clustering algorithm 
generates a cluster space.  All of cluster spaces’ fitness values are 
measured by an LDA evaluation function.  During a total of 25 
generations, genetic operators are the independent variables for 
experimental analysis.  A formal definition follows: 
 

Evolutionary Automaton = {xi,X,CP(x), G, E(xi),O} 

Where xi = a chromosome, X = population, CP(X) = cluster 
space, G = Generation, E(xi) = evaluation function, O = operator. 

 

For the purpose of experimental setup: 

 

Figure 1: Experimental setup 
 
The 12 bit chromosome represents 0 and 1 weightings for face 
features.  Figure 2 depicts the bit positional mapping to features. 

 
 
Figure 2: Chromosome bit position to face feature mapping. 

4.1 Data 
The Carnegie Mellon University Pose, Illumination, and 
Expression database consists of 41,368 images of 68 people from 
13 camera angles with 43 illumination conditions and 4 
expressions [10].  Over a 3 month period in the year 2000, all of 
the images were acquired in a specialized photo room.  Each 
image contained descriptions for the following fields: facial 
expression, glasses, talking, pose, flash, light, glasses, sex, 
mustache, beard, age, and race [10].  The traits blinking, smiling, 
neutral, talking, glasses, mustache, beard, light, pose, flash, 
gender, and needs glasses were used in experimentation [10].   

4.2 Agglomerative K-Means 
An agglomerative K-Means clustering algorithm was 
implemented during experimentation.  Initially, each data element 
was itself a cluster [8].  Sequentially, the data elements were 
evaluated for cluster membership by the Euclidean distance 
between its feature vector and each cluster’s epicenter.  If the 
sample’s smallest distance from a cluster is less than an 
empirically determined threshold, the data sample is placed into 
the cluster.  Otherwise, a new cluster is formed.  The clustering 
algorithm continued until none of the epicenters moved within the 
cluster space. 

Agglomerative K-means clustering pseudo code 

Step 1:  Through supervised learning, determine a threshold value 

Step 2:  Assign each member to a cluster 

 a) For each member: 

  i) Determine the minimum Euclidean distance 
  to a cluster’s 12 dimensional centroid  

  ii) If the distance is greater than the threshold, 
  a. Create a new cluster 
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   b. Initialize the cluster’s epicenter to the new                                                                                       

                                    feature vector 

  iii) Otherwise, add the member to the closest 
  cluster 

  a. Recalculate the cluster 12 dimensional 
  centroid 

 b) Determine if the cluster epicenters have changed 

  i)  If true, goto step a. 

  ii) If false, goto step 3. 

Step 3:  Return the cluster space 

The clustering threshold was calculated from Equation 11.  A 
mean vector for the entire PIE dataset was calculated.  Next, a 
mean distance from the data epicenter described the average 
member scatter.  Theα within equation 11 is a scalar that is 
multiplied with the PIE data’s standard deviation,σ , to select as 
a threshold.  A series of agglomerative K-Means threshold 
experiments were executed to determine the appropriate selection 
of alpha.   

)(, ℜ= σεασThreshold  (11) 

4.3 Linear Discriminant Analysis 
A LDA evaluation function maximized the ratio of the between 
cluster scatter and within cluster scatter.  Martinez et al describe 
LDA as the ratio maximization of between class scatter and 
within class scatter also known as the Fisher criterion [7].  The 
evaluation function specified in Equation 12, measured the fisher 
property of cluster spaces generated by the agglomerative K-
Means clustering algorithm.   
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Linear Discriminant Analysis pseudo code 
Step 1:  Retrieve all of the cluster spaces 
Step 2:  Calculate the LDA score for each cluster: 
 i)  Calculate the within class scatter 
 ii)  Calculate the between class scatter 
 iii)  Compute the ratio of step ii to step i 
Step 3:  Return LDA scores 

4.4 Evolutionary Computation in Java 
Evolutionary Computation in Java (ECJ) is a research 
evolutionary computing system developed by George Mason 
University’s Evolutionary Computation Laboratory [3].  ECJ 
provides genetic algorithms, generational evolution, flexible 
breeding architecture, multiple selection operators and population 
evolution that are defined within a parameter file and loaded at 
runtime [3].   

4.5 Evolutionary Approach 

 
 
Figure 3: Evolutionary System Architecture 
 
Figure 3 shows the overall system architecture of the evolutionary 
approach within this paper.  All of the CMU PIE data is 
normalized and loaded into a database.  The feature vectors of 
each face are retrieved from the database and placed into a system 
context.  An ECJ parameter file is written to disk that is used to 
initialize the evolutionary environment.  Initialization includes the 
generation of chromosomes.  Each chromosome is retrieved from 
ECJ and mapped into a facial feature selector vector.  The vectors 
are input into the agglomerative K-Means clustering algorithm.  A 
cluster space is generated and tagged to a facial feature selector 
with the associated chromosome.  The tagging and cluster spaces 
are saved into a database.  After all cluster spaces are created and 
saved, the LDA evaluation function scores each cluster space.  
The LDA scores of the cluster spaces are stored into the database.  
ECJ crossed the top two chromosomes based on LDA score rank 
and continued in a pair wise mating scheme.  The generation 
continued until all generations completed.   

5. RESULTS 

5.1 Agglomerative K-Means Results 
A series of tuning experiments were run on all of the images from 
the PIE database to determine an appropriate agglomerative K-
Means threshold.  The threshold was the product of a weight and 
the standard deviation of the data set from a mean vector.  Graph 
1 depicts the results of changing theα weight.   
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Graph 1: K-Means tuning experiments 
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The 10 initial chromosomes were identical throughout all 
experiments. 

The floor of the number of clusters was established with the 10 
scalar while the ceiling was found with a 0.1 scalar.  A scalar 
selection between 0.1 and 10 was desired to compromise between 
run time and the number of clusters.  Since most of the elements 
of the centroid vector were in the interval [0-1], a scalar of 0.3 
was chosen empirically.  The 0.3 scalar produced a threshold of 
1.02. 

5.2 Genetic Algorithm Results 
This paper provides results obtained on an evolutionary algorithm 
on a face dataset.  Two sets of experiments were run on the full 
PIE database.  Each experiment consisted of two batches.   

Within each batch, one genetic operator was selected as an 
independent variable while all other genetic algorithm parameters 
were held constant.  Between batches, the affect of the chosen 
genetic algorithm parameters were examined with respect to LDA 
and the average number clusters for each generation.  In total, 4 
different sets of parameters were chosen for the evolutionary 
facial feature selection. 

Average LDA vs Generation
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Graph 2: Mutation and LDA results 

|G| = 25 

Independent Variable: mutate(xj,P(1)) or mutate(xj,P(0.01)) 

Constant: onePoint(xj,xi,P(1)) 

Dependent Variables: LDA 
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Graph 3: Mutation and average clusters results 

|G| = 25 

Independent Variable: mutate(xj,P(1)) or mutate(xj,P(0.01)) 

Constant: onePoint(xj,xi,P(1)) 

Dependent Variables: Average # clusters 

Average LDA vs Generation
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Graph 4: Crossover type and LDA results 

|G| = 25 

Independent Variable: onePoint(xj,xi,P(1)) or twoPoint(xj,xi,P(1)) 

Constant: mutate(xj,P(0.01)) 

Dependent Variables: LDA 
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Graph 5: Crossover type and average clusters results 

|G| = 25 

Independent Variable: onePoint(xj,xi,P(1)) or twoPoint(xj,xi,P(1)) 

Constant: mutate(xj,P(0.01)) 

Dependent Variables: Average # clusters 

With one point crossover, 0.01 mutation and 25 generations, the 
best converged solution included the chromosome with blinking, 
smiling and pose.  By generation 14, the best fit chromosome was 
evaluated to 845.5 and appeared once.  The entire population 
consisted of the best fit chromosome by generation 22.  Two point 
crossover yielded an identical best chromosome as one point 
crossover.  By the fifth generation, the best fit chromosome 
appeared once.  By generation 15, the best fit chromosome was 
the entire population.  Two point cross over oscillated between 
the most fit chromosome and a second member that was three 
times less fit.     
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Two point crossover achieved the best fit chromosome faster than 
one point crossover.  However, after achievement, the two point 
crossover operator diverged more than the single point crossover. 

With a mutation of 1, one pointer crossover and 25 generations, 
the best chromosome oscillated between one that only contained 
blinking with a score of 25.42 and another that contained all traits 
except light with a score of 33.53.  Neither score was close to a 
previous best of 845.5.  When the mutation rate was changed to 
0.01, the best converged solution contained blinking, smiling and 
pose with a score of 845.5.  From table 1, the LDA evaluation 
results with a mutation rate of 0.01 was over a magnitude better 
than with 1.   

The LDA evaluation score was 25.42 as contrasted to a previous 
best of 845.5.  The first ranked chromosome was present 5 times.  
The second ranking chromosome contained blinking and neutral 
weights.  A mutation rate of 0.01 with 10 generations produced a 
chromosome of blinking and smiling of rank 1 twice.  The second 
ranking chromosome was present twice and contained weights for 
neutral, pose, flash and needs glasses.  Both mutation rates of 0.01 
and 1 contained chromosome 101000000 within the top two. 

This indicates that a lower mutation rate is better than an 
extremely high rate with achieving the best chromosome.  In 
addition, table 2 depicts the oscillation characteristic of mutation 
1.  Local optimum solutions were not annealed. 

6. CONCLUSION 

6.1 Conclusion and Future Works 
This paper provides results obtained on facial meta data features 
from an evolutionary genetic algorithm.  The algorithm used 12 
face meta features as marked during face image acquisition.  The 
experiments indicate that a mutation rate of 1% with a two point 
crossover converge to an optimal chromosome.   

Future experiments will include the analysis of the effects of 
crossover and mutation selection as a whole.  Additional work 
will include the examination of false positives versus true 
positives with the implementation of a facial recognition matcher.  
The comparison of receiver operator curves with and without the 
evolutionary algorithm provides a natural extension of this paper.  
For example, the classification of face images might decrease the 
number of false positives while decreasing the number of true 
positives. 
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