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ABSTRACT 
One of the major causes of premature convergence in Evolutionary 
Algorithm (EA) is loss of population diversity, which pushes the 
search space to a homogeneous or a near-homogeneous 
configuration. In particular, this can be a more complicated issue in 
case of high dimensional complex problem domains. In [13, 14], we 
presented two novel EA frameworks to curb premature convergence 
by maintaining constructive diversity in the population. The 
COMMUNITY_GA or COUNTER_NICHING_GA in [13] uses an 
informed exploration technique to maintain constructive diversity. 
In addition to this, the POPULATION_GA model in [14] balances 
exploration and exploitation using a hierarchical multi-population 
approach. The current research presents further investigation on the 
later model which synergistically uses an exploration controlling 
mechanism through informed genetic operators along with a multi-
tier hierarchical dynamic population architecture, which allows 
initially less fit individuals a fair chance to survive and evolve. 
Simulations using a set of popular benchmark test functions showed 
promising results. 

Categories and Subject Descriptors 
 Computing Methodologies [I.2 Artificial Intelligence]: I.2.8 
Problem Solving, Control Methods, and Search. 

General Terms 
Algorithms, Design, Performance. 

Keywords 
Premature convergence, evolutionary algorithm, population. 

1. INTRODUCTION AND BACKGROUND 
Many real life problems often involve non-linear, high-dimensional, 
complex search space that may be riddled with many local minima 
or maxima. Stochastic methods, such as evolutionary algorithms 
perform a more exhaustive search of the model space as compared 
to deterministic search techniques. However, they are not as good at 
exploiting the early results of the search. When dealing with high 
dimensionality problems, it may be difficult or too time consuming 
for all the model parameters or variables to converge within a given 
margin of error. This renders crucial and typical EA problems such 
as premature convergence even harder to deal with. Algorithmic 
features like high selection pressure and very high gene flow among 
population members are primary causes of premature convergence 
[6]. As the evolutionary search process progresses, population 
diversity declines, as a canonical GA tends to concentrate more and 
more of its search effort near the already discovered “peaks” or 
“attractors”, converging towards similar points or even single points 

in the search space, gradually reaching a near homogeneous state. 
High gene flow on the other hand, pushes the population towards a 
homogeneous state by spreading genetic material across the 
population by means of unrestricted mating or crossover.  Escaping 
the local optimum will be difficult, as genetic operators can no 
longer produce offspring that are even different, leave alone 
superior, compared to their parents. Maintaining constructive 
population diversity, besides helping against entrapment in local 
optima, also leads to increase in exploration, so that a good single 
solution can be found, and also multiple solutions can be located 
when there is more than one optimum [9]. 

In case of high dimensional problems, as the number of model 
parameters increases, so does the required population size. Large 
population sizes imply large number of cost function evaluations. 
Certain micro-genetic algorithm has been suggested [16], which 
evolve very small populations that are claimed to be efficient in 
locating promising areas of the search space. Obviously, these small 
populations are unable to maintain diversity for many generations, 
but the population can be restarted whenever diversity is lost, 
keeping only the very best fit individuals (usually just the best one 
according to elitism of one individual). Restarting the population 
several times during the run of the genetic algorithm is also meant to 
prevent the risk of premature convergence due to the presence of a 
particularly fit individual, which has the potential to prevent further 
exploration of the search space and so may make the program 
converge to a local minimum. However, such methods overlook the 
fact that without required balance between exploitation and 
exploration it can be impossible to reach a result close to the true 
optimum or optima. 

The major researches devoted to trying to maintain or introduce 
population diversity can be broadly categorized as one of the 
following [6]: 

1) Controlled gene flow using complex population structures. The 
diffusion model [10], the island model [10], the multinational 
EA [7] and the religion model [8] are few examples of this 
method. 

2) Controlled and assisted selection by means of specialized 
operators. This technique has been implemented in crowding 
[4], deterministic crowding [9], and sharing [1] and is believed 
to maintain diversity in the population. 

3) Reintroduction of genetic material. The random immigrants 
[3], mass extinction models [8], [2], and [11] are few examples 
of this technique and are aimed at reintroducing diversity in the 
population. 

4) Dynamic parameter encoding (DPE), which dynamically 
resizes the available range of each parameter by expanding [5] 
or reducing the search window. 

5) Diversity guided/ controlled genetic algorithms that use a 
diversity measure to assess and control the survival probability 
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of individuals and the process of exploration and exploitation 
[6]. 

6) Specialized operators to introduce diversity while getting rid of 
redundant genetic material. This has been implemented in [13, 
14]. 

The EA framework [14] investigated in this paper uses a synergistic 
approach by combining the benefits of the complex population 
structure as in item 1 and the specialized operator as in item 6 above. 
While the informed mutation operator promotes exploitation, the 
multi-tier hierarchical population structure confronts genetic drift. 

Rest of the paper is organized as follows: The synergistic EA 
framework is outlined in Section 2. Simulation details, results and 
discussions are presented in Section 3. Finally, conclusions are 
drawn in Section 4. 

2. THE GA WITH A SYNERGISTIC 
APPROACH 
Algorithm 1: Procedure POPULATION_GA 

1: begin 
2: 0t =  

3: Initialize population ( )tP  

4: Evaluate population ( )tP  

5: while (not<termination condition>) 
6: begin 
7:      1tt +=  
       (* Perform pseudo-niching of the population*) 
8:     Call Procedure GRID_NICHING 
       (* Perform informed genetic operations *) 
9:     Call Procedure INFORMED_OP 
10:   Create new population using an elitist selection   
         mechanism 
11: Evaluate ( )tP  

14: end while 
15: for (each individual in the population) 
16: begin 
17: Determine migration based on spatial and/or fitness 
information 
18: end for 
19: for (each one of n  pre-sampled sub-populations) 
20: begin 
21: Evolve population as per canonical GA 
22: Determine migration of individuals 
23: end 

24: end 
 
The synergistic POPULATION_GA algorithm is as described in 
Algorithm 1. This model comprises of multiple co-existing and co-
operative functional schemes, which work in tandem.  Firstly, the 
preferential pseudo-genetic operation based on population 
characteristics and, secondly, the co-evolving hierarchical 
population structure. In two different levels, the proposed technique 

employs the COUNTER_NICHING_EA or the 
COMMUNITY_GA for the main population, while maintaining the 
hierarchical, co-evolving sub-populations with less fit individuals. 
The major building blocks of this model are presented in subsequent 
sections (Section 2.1 and Section 2.2). The mechanisms of 
procedure GRID_NICHING and procedure INFORMED_OP are as 
described in our earlier research [13, 14]. The technique also 
ensures quicker convergence as large populations are not evolved 
and also less memory is required to store the population. 

2.1 Exploration with Informed Operator 
The parent population of POPULATION_GA model evolves the 
population with COMMUNITY_GA technique as described in [13, 
14]. The evolutionary mechanism here first extracts information 
about the population landscape before deciding on introduction of 
diversity through informed mutation. The aim is to identify locally 
converging regions or donor communities in the landscape that 
could spare less fit individuals those could be replaced by more 
promising members sampled in un-explored or under-explored 
sections of the decision space. The existence of such communities is 
purely based on the position and spread of individuals in the 
decision space at a given point in time. Once such regions are 
identified, random sampling is done on yet to be explored sections 
of the landscape. Best representatives replace the worst members of 
the identified regions. Regular mutation and recombination takes 
place in the population as a whole. The COMMUNITY_GA 
algorithm probabilistically and randomly samples the global search 
space and explores for promising regions while concentrating search 
on the hyperplanes that are likely to contain good solutions. 

GRID_NICHING (see [13, 14]) is the mechanism used to extract 
information about the search space. Here, we have used the term 
niching, simply to identify environments of individuals in the 
population, based on their spatial information. In other words, we 
try to identify the gross individual clusters in the decision space 
based on their genotypic proximity. This method organizes the 
space around the patterns and not the patterns themselves. It finds 
the spatial distribution information of the individuals in the decision 
space. First, in each generation, the population members are placed 
on a multidimensional grid data structure. 

This block partitioning of the decision space is done to identify 
initial signs of cluster formation. Once adequate number of 
individuals is found in any block, it is considered to be part of a 
potential cluster. Bounds of the identified blocks are expanded in all 
N  dimensions in order to find a community or cluster. 

GRID-NICHING returns information about community or cluster 
formation in the population for the current generation. 

The INFORMED_OP algorithm identifies locally converging 
communities with too many members of similar fitness. The idea is 
to explore greater part of the solution space at the expense of these 
extra members.  This algorithm uses the pseudo-niching 
information obtained from GRID-NICHING to guide the genetic 
operators as above. 

However, INFORMED_OP operates on selected communities 
only. Regular mutation and recombination is performed as usual 
on the entire population. 
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Table 1. Description of Test Functions. 

Function Type Global Minimum 

( ) ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−−+= ∑

=

n

i
iack x

n
exf

1

212.0exp2020  

( )⎟
⎠

⎞
⎜
⎝

⎛
⋅− ∑

=

n

i
ix

n 1
2cos1exp π where 3030 ≤≤− ix  

Multimodal ( ) 00 ==xfack  

( ) ( ) −−= ∑
=

2

1
100

4000
1 n

i
igri xxf  

1
100

cos
1

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −∏
=

n

i

i

i
x

 where 600600 ≤≤ ix-  

Multimodal, 

Medium 

epistasis 

( ) 00 ==xf gri  

( ) ( )( )∑
=

+−=
n

i
iirtg xxxf

1

2 102cos10 π  where 

12.512.5 ≤≤ ix-  

Multimodal, 

No epistasis 
( ) 00 ==xf rtg  

( ) ( ) ( )( )∑
−

=
+ −+−=

1

1

222
1 1100

n

i
iiiros xxxxf  where 

100100 ≤≤ ix-  

Unimodal, 

High epistasis 
( ) 01 ==xf ros  

( ) ∑
=

=
M

i
ielp ixxf

1

2  where 12.512.5 ≤≤ ix-  
Unimodal ( ) 00 ==xfelp  

( ) ∑ ∑
= =

− ⎟
⎠

⎞
⎜
⎝

⎛
=

M

i

i

k
ksch xxf

1

2

1
2.1  where 64564 ≤≤ ix-  

Unimodal, 

High epistasis 
( ) 002.1 ==− xf sch  

( ) ( )( )∑
=

−+=
M

i
iirrtg yyMxf

1

2 2cos1010 π where xy A=  

with 5/4, =iiA , 5/31, =+iiA  (i odd), 5/31, −=−iiA  (i 

even), 0, =kiA  (the rest) 

Multimodal ( ) 00 ==xf rrtg  

2107



2.2 Exploitation with Hierarchical Population 
Structure 
While the COMMUNITY_GA guides EA search based on the 
information on current population, the hierarchical population 
scheme allow the apparently under-performing individuals to 
grow. Although the COMMUNITY_GA tries to confront 
crowding around fitter individuals, selection pressure will 
eventually force the less-fit individuals in other parts of the 
decision space to die. Hence, in the multi-tier population scheme, 
a set of sub-populations exist alongside the main population. 
Individuals are moved into these sub-populations according to  

 
their fitness level. These co-evolving subpopulations hold 
individuals within specific fitness ranges and thus prevent unfair 
competition among individuals belonging to different fitness 
levels. See [14] for further details on hierarchical population 
structure. 

3. SIMULATION DETAILS AND 
DISCUSSIONS 
Simulations were carried out to apply the proposed 
POPULATION_GA with the following set up: real-valued 
encoding for the candidate solutions in the population; parameters 
N  (population size) =200, mp (mutation probability) =0.01 and 

rp (recombination probability) =0.9, to the following benchmark 
function optimization problems as described in Table 1: Ackley’s 
Path Function ( ( )xfack ), Griewank’s Function ( )xf gri , 

Rastrigin’s Function ( )xf rtg , Generalized Rosenbrock’s 

function ( )xf ros , Axis parallel Hyper-Ellipsoidal Function or 

Weighted Sphere Model ( )xfelp , Schwefel Function 1.2 

( )xf sch 2.1− and a rotated Rastrigin Function ( )xf rrtg . 

Three variants of the above problems were considered: 20 
dimensional, 50 dimensional and 100 dimensional. Reported 
results were averaged over 30 independent runs. The maximum 
number of generations in each run are only 500, 1000 and 2000 
for the 20, 50 and 100 dimensional problem variants respectively, 
as against 1000, 2500 and 5000 generations in [6] for the same set 
of test cases. 

Table 2 presents the error values, ( ( ) ( )*xfxf − ) where, 

( )*xf is the optimum. Each column corresponds to a test 
function. The error values have been presented for the three 
dimensions of the problems considered, namely 20, 50 and 100. 
As each test problem was simulated over 30 independent runs, we 
have recorded results from each run and sorted the results in 
ascending order. Table 2 presents results from the representative 
runs: 1st (Best), 7th, 15th (Median), 22nd and 30th (Worst), Mean 
and Standard Deviation (Std). The interesting, observation here is 
that POPULATION_GA tends to have rather steady performance 
across different dimension ranges and also across the various 
simulation runs. This is an indicator of reliability of performance 
of the algorithm.  

The observed results have been compared with the following 
techniques as reported by Ursem in [6]: (i) SEA (Standard EA), 
(ii) SOCEA (Self-organized criticality EA), (iii) CEA (The 
Cellular EA), and (iv) DGEA (Diversity guided EA).  Simulation 
results ascertain POPULATION_GA’s superior performance as 
regards solution precision for all four test cases, across their three 
variants, as can be observed from Table 3. This may be attributed 
to POPULATION_GA’s ability to strike a better balance between 
exploration and exploitation. Interestingly the performance of 
POPULATION_GA [14] is very close to that of 
COMMUNITY_GA [13] for the test cases in their 20 dimensional 
and 50 dimensional variants. However, the POPULATION_GA 
outperforms COMMUNITY_GA when tested on the 100 
dimensional variants of all the four test cases compared. 

4. CONCLUSIONS 
The POPULATION_GA algorithm investigated in this paper 
basically incorporates three key processes.  Firstly, the 
population’s spatial information is obtained with a 
computationally inexpensive GRID_NICHING algorithm. 
Secondly, the information is used to identify potential local 
convergence and community formations and then   diversity is 
intelligently introduced with informed genetic operations, aiming 
at two objectives: (a) Promising samples from unexplored regions 
are introduced replacing redundant less fit members of over-
populated communities. (b) While local entrapment is 
discouraged, representative members are still preserved to 
encourage exploitation. While the current focus of the research 
was to introduce and to maintain population diversity to avoid 
local entrapment, this community-based algorithm can also be 
adapted to serve as an inexpensive alternative for niching GA, to 
identify multiple solutions in multimodal problems as well as to 
suit the diversity requirements of a dynamic environment. 

Finally, a multi-tier hierarchical population scheme has been used 
to prevent premature death of promising but initially under-
performing individuals. The strong emphasis on exploration of the 
COMMUNITY_GA has been balanced in the 
POPULATION_GA with the help of the multi-population 
structure. 

The empirical results obtained from the simulation runs revealed  
some interesting trends. While there was no significant differnce 
in the performance of the COMMUNITY_GA and the 
POPULATION_GA in the 20 dimensional and 50 dimensional 
test cases, POPULATION_GA showed superior performance in 
the higher dimensional test case (100 dimensional in the current 
research). One drawback of the proposed POPULATION_GA is 
the additional computational overhead of maintaining multiple 
populations. However this can be easily taken care of by parallel 
implementation of the framework. Also the synergistic GA 
framework i.e. the POPULATION_GA has delivered a relatively 
steady performance across different dimension ranges, including 
the higher dimensional test cases. This is a very welcome trait as 
most real life optimization problems tend to be complex and high 
dimensional. 
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Table 2. Error Values Achieved for the Test Problems with POPULATION_GA**. 

 ( )xfack  ( )xf gri  ( )xf rtg  ( )xf ros  ( )xfelp  ( )xf sch 2.1−  ( )xf rrtg  

1st (Best) 1.00E-6 4.0E-10 1.01E-8 0.5E-10 1.01E-20 1.05E-4 1.03E-1 

7th  1.00E-6 4.01E-10 1.911E-8 1.05E-10 1.01E-20 1.11E-4 1.59E-1 

15th 

(Median) 

1.01E-6 4.91E-10 1.950E-8 1.11E-10 1.11E-20 1.15E-4 2.01E-1 

22nd  1.90E-6 5.01E-10 2.001E-8 1.91E-10 1.90E-20 2.01E-4 2.90E-1 

30th 

(Worst) 

3.01E-6 8.11E-10 3.00E-8 1.92E-10 2.00E-20 2.29E-4 4.01E-1 

Mean 1.11E-6 5.01E-10 1.99E-8 1.51E-10 1.29E-20 1.29E-4 3.00E-1 

20D 

Std. 5.04E-7 9.20E-11 4.09E-09 5.07E-11 4.07E-21 4.05E-05 0.07 

1st (Best) 0.59E-5 4.73E-7 1.1E-7 1.11E-4 1.11E-20 1.03E-2 1.01 

7th  0.60E-5 4.81E-7 1.1E-7 1.12E-4 1.11E-20 1.04E-2 1.01 

15th 

(Median) 

0.61E-5 4.81E-7 1.1E-7 1.14E-4 1.11E-20 1.04E-2 1.11 

22nd  0.69E-5 4.85E-7 1.19E-7 1.14E-4 1.12E-20 1.09E-2 1.11 

30th 

(Worst) 

0.99E-5 5.1E-7 1.3E-7 1.20E-4 1.21E-20 1.19E-2 1.19 

Mean 0.65E-5 4.82E-7 1.17E-7 1.14E-4 1.12E-20 1.05E-2 1.12 

50D 

Std. 4.01E-07 4.01E-09 4.05E-09 1.03E-06 4.05E-23 0.00023 0.049 

1st (Best) 1.99E-5 8.92E-6 1.21E-6 1.2E-2 1.15E-19 1.09E-2 1.50 

7th  1.99E-5 8.93E-6 1.21E-6 1.2E-2 1.15E-19 1.09E-2 1.50 

15th 

(Median) 

1.99E-5 8.93E-6 1.21E-6 1.2E-2 1.16E-19 1.09E-2 1.51 

22nd  1.99E-5 8.94E-6 1.21E-6 1.2E-2 1.16E-19 1.09E-2 1.52 

30th 

(Worst) 

2.00E-5 8.95E-6 1.22E-6 1.21E-2 1.18E-19 1.09E-2 1.53 

Mean 1.99E-5 8.93E-6 1.21E-6 1.2E-2 1.16E-19 1.09E-2 1.51 

100D 

Std. 1.70E-06 7.09E-08 2.09E-08 2.10E-05 5.02E-22 0.0002 0.00095 
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Table 3. Average Fitness Comparison For SEA, SOCEA, The CEA, DGEA, COMMUNITY_GA* And 

POPULATION_GA**. Dimension of Each Function considered are 20, 50 and 100. 

Function SEA SOCEA CEA DGEA P_GA** C_GA* 

( )xfack 20D 2.494 0.633 0.239 3.36E-5 1.00E-6 1.08E-6 

( )xfack 50D 2.870 1.525 0.651 2.52E-4 0.59E-5 1.07E-5 

( )xfack 100D 2.893 2.220 1.140 9.80E-4 1.99E-5 1.08E-4 

( )xf gri 20D 1.171 0.930 0.642 7.88E-8 4.0E-10 4.6E-10 

( )xf gri 50D 1.616 1.147 1.032 1.19E-3 4.73E-7 3.31E-6 

( )xf gri 100D 2.250 1.629 1.179 3.24E-3 8.92E-6 6.71E-4 

( )xf rtg 20D 11.12 2.875 1.250 3.37E-8 1.01E-8 1.21E-5 

( )xf rtg 50D 44.674 22.460 14.224 1.97E-6 1.1E-7 7.5E-5 

( )xf rtg 100D 106.212 86.364 58.380 6.56E-5 1.21E-6 9.99E-5 

( )xf ros 20D 8292.32 406.490 149.056 8.127 0.5E-10 1.0E-10 

( )xf ros 50D 41425.674 4783.246 1160.078 59.789 1.11E-4 0.01E-3 

( )xf ros 100D 91251.300 30427.63 6053.870 880.324 1.2E-2 1.032 
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