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ABSTRACT 
Presence of uncertainty in the search environment of Evolutionary 
algorithms (EA) interferes with the evaluation and the selection 
process of EA and adversely affects the performance of the 
algorithm. Presence of noise also means fitness function can not 
be evaluated and it has to be estimated instead. Of the various 
approaches which been tried to handle uncertainty in EA search 
environment, the more familiar approaches are: introduction of 
diversity (hyper mutation, random immigrants, special operators); 
and incorporation of memory of the past (diploidy, case based 
memory) [6]. In [2], we proposed a method, DPGA (distributed 
population evolutionary algorithm) that uses a distributed 
population architecture to simulate a distributed, self-adaptive 
memory of the solution space. Local regression is used in each 
sub-population to estimate the fitness. In the current research, we 
further investigate performance of DPGA for noisy fitness 
function i.e. fitness of any solution is altered by the addition of a 

noise term ( )2,σμN . ‘Noisy’ versions of few standard 
benchmark problems have been considered in the simulation runs 
of the DPGA algorithm.  

Categories and Subject Descriptors 
 Computing Methodologies [I.2 Artificial Intelligence]: I.2.8 
Problem Solving, Control Methods, and Search. 

General Terms 
Algorithms, Design, Performance. 

Keywords 
Premature convergence, evolutionary algorithm, uncertainty. 

1. BACKGROUND 
Many real world problems have to deal with certain degree of 
randomness or noise. Noise arises from different sources such as: 

- Measurement errors in experiments. For example, in case 
of online adaptation of real world systems, some of the 
design parameters can be measured only real time. 

- Stochastic nature of simulation processes. For example, 
simulation based optimization of large and complex 
systems that uses random numbers in the simulation. Use 
of random numbers causes fluctuation of the fitness value 
obtained by simulation. 

- Use of small sample collected from a very large search 
space. 

Evolutionary algorithms are known to be robust in presence of 
noise compared to other conventional search methods. This notion 
is also supported by the fact that evolutionary algorithms and 
genetic algorithm in particular have metaphor in natural evolution 
and that nature does not necessarily deal with perfect fitness.  
Population based search techniques such as evolutionary 
algorithms are robust in single objective problem domain in 
presence of noise as an EA possesses a high amount of knowledge 
of the search space and in turn the average performance of the 
population acts as a filter for the noise. Despite these positive 
traits, evolutionary algorithm’s applications to optimization 
problems involving noisy or uncertain fitness functions pose 
problems that require special attention. Presence of noise in the 
fitness function could mean ‘overestimation’ of fitness of inferior 
candidates and similarly ‘underestimation’ of fitness of superior 
candidates at the time of selection. This is likely to result in 
reduced learning rate, inability to retain learnt information, 
limited exploitation and absence of gradual monotonous 
improvement of fitness with generations.  

Considering EA’s natural noise-resistant properties, the effects of 
noise can be minimized by simple methods such as re-sampling 
and adaptation of population size. More recent approaches use 
efficient averaging techniques, based on statistical tests, or local 
regression methods for fitness estimation. The major techniques 
used to curb the effect of uncertainty in EA can be summarized 
as: Re-sampling [7, 5, 6], Conventional EA with increased 
population size [5, 7], Rescaled mutation [1], Thresholding [7, 6], 
Fitness value based on neighbouring individuals [7, 10, 4, 9] and 
Reduced resampling [8, 7]. A comprehensive survey of various 
techniques to handle noisy environment with EA, including 
distributed population approach similar to our current work can be 
found in [6]. 

Despite being one of the most common approaches to cope with 
noise, re-sampling is computationally expensive and as Darwen 
points out in [5] improvement through re-sampling may reach a 
point of stagnation and may even be harmful in case of small 
population. Adaptive or large population size is computationally 
expensive due to additional solution evaluations. Techniques such 
as Thresholding require estimation of additional parameters such 
as the threshold, τ in case of Thresholding, which is not feasible 
in all cases. 

Our proposed DPGA algorithm [2] focuses on uncertain problem 
domains where accuracy and robustness of solution are the major 
concerns. The DPGA framework involves a distributed population 
architecture with local regression employed in the sub-
populations. 
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The organization of the paper is as follows. To make this paper 
self-sufficient, Section 2 briefly outlines the DPGA framework. 
Simulation details and discussions of results are given in Section 
3. Finally, Section 4 concludes the paper along with some future 
research directions. 

2. THE DPGA ALGORITHM 
 

Algorithm 1: Procedure DISTRIBUTED_POPULATION_GA 

1: begin 

2: 0t =  

3: Initialize population ( )tP  

4: Evaluate population ( )tP  

5: while (not<termination condition>) 

6: begin 

7:      1tt +=  

8: if (reorganizing generation) 

9: begin 

10: Evaluate population ( )tP  using re-sampling 

11: Evolve population ( )tP  to create new generation with 
canonical GA mechanism 
12: Self-organize new population to create pseudo-populations 

13: end if 

14: for (each eligible one of n  pseudo-populations 
( ) nN ,,2,1 K=tP ) 

15: begin 

16: Evaluate population ( )NtP  partly by local regression 

17: Evolve canonical as per population GA 

18: end for 

19: end main 
 
The DPGA framework uses distributed population architecture 
with local regression in the pseudo-populations. Distribution of 

the population allows tracking multiple peaks in the search space. 
Each pseudo-population maintains information about a separate 
region in the search space, thus acting as a distributed self 
adaptive memory. We use the term pseudo-population instead of 
subpopulation to emphasize on the fact that each one of these sub 
groups may not actually act as self-sufficient evolving 
populations. Two basic ideas guide the functioning of the 
proposed model: 

• Retention of memory with distributed pseudo-populations in 
the search space i.e., the pseodo-populations should be able 
to track their moving peaks through time. 

• Estimation of time variant noisy fitness by local regression in 
each subpopulation. Quadratic regression is used in the 

present work. However, linear regression could be used to 
reduce computation time. 

The basic algorithm structure of DPGA is as described in Fig. 1. 

Specific features of the proposed distributed population GA are as 
below: 

• Unlike conventional multipopulation EAs [5] the distributed 
population GA does not maintain a main population 
alongside the subpopulations. Instead, DPGA switches from 
single population to multipopulation periodically. 

• At reorganizing generation the pseudo-populations are 
merged together to regain the main population and evolution 
is carried out as per canonical GA mechanism. To correct the 
adverse effects of noise, actual fitness evaluation along with 
resampling is used at this stage. 

• Next the regenerated main population dissolves into pseudo-
populations by self-organization. This is essentially 
distribution of the candidate solutions into pseudo-
populations based on specific criteria. A factor of fitness and 
population size decides the eligibility of a pseudo-population 
to obtain evolution right. An eligible pseudo-population then 
evolves by the canonical GA mechanism. Local regression is 
used to estimate the fitness values. Mutation rate depends on 
a factor of fitness and population size as well. 

• Members of the non-eligible pseudo-populations either 
survive or eventually disappear after reorganizing 
generations. 

• Retention of memory about the moving peaks in case of non-
static functions is achieved through the pseudo-populations 
over specific durations until reorganizing generations. This 
is logical considering the dynamic nature of the phenotypic 
solution space. 

Simulation details for DPGA are presented in Section 3 and 
Section 4. 

3. SIMULATION DETAILS 
This research investigates the performance of the DPGA model as 
against standard GA, differential evolution, particle swarm 
optimization for a set of benchmark functions with noise 
incorporated. For analysis purpose, experiments have been 
conducted on the non-noisy versions of the same set of 
benchmark functions as well. 

3.1 Test Functions 
We have used the following benchmark functions to test the 
algorithms: Sphere function (5D), Griewank’s function (50D), 
Rastrigin’s function 1 (50D) and the Rosenbrock’s function (50d). 
These benchmark functions have previously been used by 
researchers to test performance of evolutionary algorithm for 
noisy optimization problems [4]. All the benchmarks used are 
minimization problems. The descriptions of the functions are as 
given in [2]. 

The noisy versions of the above set of functions are defined as: 

( ) ( ) ( )2,σμ+= Nxfxf Noisy
rr

 (1) 

where, ( )2,σμN = Standard Normal (or Gaussian) distribution 

with mean, μ = 0 and variance, 2σ = 1 in Stage 1 of the 

Figure 1. The DPGA algorithm. 
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experiments. The probability density function ( )2,; σμxf  is 
given as below, 

( ) ( )
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2
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In Stage 2 of the experiments, we have expanded the simulation 

with various values of the noise’s standard deviationσ . 

3.2 Experiment Settings 
We have conducted two sets of experiments. For the first set of 
experiments, the parameter settings used for the algorithms are as 
shown in Table 1.  For comparison purpose we have used the 
results reported in [7] for conventional GA, differential evolution 
(DE) and particle swarm optimization (PSO). Hence similar 
parameter settings have been used. As Krink et al. in [7] have 
reported, the parameters of the heuristic algorithms were not 
tuned for each test problem. The reason stated is that in case of 
real life problems such tuning can be infeasible due to time 
constraints. 

Let totalEval = total number of function evaluations, 
popSize = population size, totalIT  = total number of 

iterations, rs = total number of candidate solution resampling, 
and angedtotalIUnch =total number of individuals that 
remained unchanged (such as the elites) and were not reevaluated 
in the various generations. Then, 

totalEval = popSize * totalIT * rs - 

angedtotalIUnch          (3) 

The total number of function evaluations in [7] in case of 
conventional GA, differential evolution and PSO is kept constant 

by keeping
rs

totalIT 1
∞ . However, this has not been followed 

for the proposed method. We have used a fixed number of 
iteration in these experiments. The experiments were run with 
different values of rs  such as rs =1, 5, 20, 50 and 100, to 
eradicate the effects of noise and find the ‘true’ fitness. The ‘true’ 
fitness here refers to the fitness value obtained by evaluation of 
the non-noisy versions of the same functions. 

In the second set of experiments, the population size has been 
increased as follows: 200 for the five dimensional problems and 
600 for the fifty dimensional problems respectively, with rs =1. 
As before, the experiments were run for a fixed number of 
iterations. 

3.3 Discussions 
Table 2 presents the final results obtained for the chosen 
benchmark functions (both noisy and non-noisy versions) with the 
first set of experiments. The results for the non-noisy versions of 
the functions have been reported here mainly as ‘standards’ to 
judge the impact of noise. For comparison purpose we have used 
the results reported in [7] for the following methods: differential 

evolution, particle swarm optimization (PSO) and conventional 
EA (CGA). As mentioned earlier, the total number of function 
evaluations has been kept fixed for the experiments with 
differential evolution, PSO and conventional EA [7]. The 
proposed method used variable number of function evaluations. 

Not surprisingly all the heuristics have performed considerably 
better on the non-noisy benchmark functions compared to the 
noisy versions of the same functions. As can be observed from the 
results (Table 2), while the proposed method has performed better 
for majority of the test cases, the difference is not necessarily 
significant in all cases of the low dimensional Sphere function. 

Table 1. Parameter settings** of the algorithms.  

Proposed 
Method 

Canonical 
GA 

Differential 
Evolution PSO 

popSize=100 popSize=100 popSize=5
0 

popSize=20 

cp =1.0 cp =1.0 CF =0.8 w = 
1.0→ 0.7 

mp =0.3 mp =0.3 f =0.5 minϕ =0.0 

n =10 n =10  
maxϕ =2.0 

mσ =0.01 mσ =0.01   

**popSize=Population Size, cp = Crossover rate (EA), mp =  

Mutation Rate (EA), n = Number of Elites, mσ = Mutation 

Variance, CF = Crossover Factor (in differential Evolution), 
f =Scaling Factor, w =Inertia Weight (the value is linearly 

decreased from 1.0 to 0.7 during the run), minϕ , maxϕ = Lower 
and Upper Bounds of the Random Velocity Rule Weights. 

However, for the high dimensional (50D) Griewank, Rastrigin 
and Rosenbrock functions the differences are clearly significant. 
In case of the noisy versions, similar to the observation reported 
in [7], resampling has prevented stagnation in all the four test 
functions, regardless of whether the mean final result has been 
improved. However, the effect of rate of resampling is rather 
inconclusive as it varied from case to case rather randomly. Only 
conclusion that can be drawn is that the effect of rate of 
resampling may be problem dependent. From the results reported 
in [7] it is obvious that in case of conventional EA, increased 
number of resampling can not improve the performance when 
number of iterations is inversely proportional to number of 
resampling to keep the total number of function evaluations 
constant. However, interestingly enough, for most of the test 
cases moderate rate of resampling has helped to improve the 
solution, while high to very high rate of resampling has rather a 
deteriorating effect on the solutions. 

In case of the second set of experiments, the success rates of 
DPGA algorithm for simulations with noisy functions for various 
values of noise’s standard deviation are summarized in Table 3. 
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Table 2. Performance (Average Best Fitness) Comparison for DPGA, CGA, Differential Evolution and PSO. rs =number 

of candidate solution resampling. 

 DPEA CGA Differential 
Evolution 

PSO 

1f  4.21334E-75±0 6.71654E-20±0 4.12744E-152±0 2.51130E-8±0 

1,*
1 =rsf  0.00103E-

2±0.003 
0.04078±0.00543 0.25249±0.02603 0.36484±0.05182 

=rsf ,*
1 5 0.00023E-

2±0.001 
0.02690±0.00363 0.13315±0.01266 0.16702±0.03072 

=rsf ,*
1 20 0.00018E-

2±0.023 
0.02205±0.00290 0.07364±0.00811 0.11501±0.01649 

=rsf ,*
1 50 0.00001E-

2±0.0031 
0.01765±0.00233 0.07004±0.00686 0.06478±0.00739 

1f =Sphere function 
(5D non-noisy)  
And 
 1

*f =Sphere 
function (5D noisy) 

=rsf ,*
1 100 0.00011E-

2±0.0009 
0.03929±0.00396 0.08165±0.00800 0.07135±0.00938 

2f  4.00E-7±0.001 0.00624±0.00138 0±0 1.54900±0.06695 

=rsf ,*
2 1 0.00211E-

1±0.001 
1.14598±0.00307 3.31514±0.07388 11.2462±0.50951 

=rsf ,*
2 5 0.00211E-

1±0.001 
1.10223±0.00342 2.42183±0.03616 16.6429±0.70800 

=rsf ,*
2 20 0.00011E-

1±0.021 
1.44349±0.01381 2.67093±0.03895 85.4865±2.13148 

=rsf ,*
2 50 0.00200E-

1±0.323 
3.69626±0.13127 46.8197±0.96449 143.021±2.33228 

2f =Griewank 
function (50D non-
noisy) 
And  

*
2f =Griewank 

function (50D noisy) 

=rsf ,*
2 100 0.00301E-

1±0.481 
18.0858±0.99646 233.802±6.25840 194.188±4.90959 

3f  1.219E-
7±0.0013 

32.6679±1.94017 0±0 13.1162±1.44815 

=rsf ,*
3 1 0.03011E-

1±0.031 
30.7511±1.32780 2.35249±0.06062 55.9704±2.19902 

=rsf ,*
3 5 0.01071E-

1±0.011 
31.4725±2.02356 14.0355±0.47935 160.500±2.67500 

=rsf ,*
3 20 0.01171±0.111 39.1777±2.11529 167.628±2.12569 313.184±3.93659 

=rsf ,*
3 50 0.01092±0.100 74.8577±2.69437 314.762±2.88650 380.178±4.88706 

3f =Rastrigin’s 
function 1 (50D non-
noisy) 
And 
 *

3f =Rastrigin’s 
function 1 (50D 
noisy) 

=rsf ,*
3 100 0.01232±0.190 147.800±2.93208 438.036±3.67504 418.265±5.35434 

4f  1.4011E-
14±0.0011 

79.8180±10.4477 35.3176±0.27444 5142.45±2929.47 

=rsf ,*
4 1 1.4201E-

4±0.0021 
118.940±13.2322 47.6188±0.15811 4884.68±886.599 

=rsf ,*
4 5 1.1201E-

4±0.0091 
341.788±49.6738 47.0404±0.13932 368512±39755.5 

=rsf ,*
4 20 1.0001±0.2191 1859.06±261.844 7917.46±352.851 1.61E+7±1.18E+6 

=rsf ,*
4 50 1.0091±0.1393 35477.7±4656.17 1.65E+7±903677 5.57E+7±2.38E+6 

4f =Rosenbrock’s 
function (50D non-
noisy) 
And 

*
4f =Rosenbrock’s 

function (50D noisy) 

=rsf ,*
4 100 2.0028±2.1999 257488±19371.2 2.98E+8±1.04E+7 1.17E+8±7.38E+6 
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Table 3. Analysis of Success Rates of the DPGA Algorithm for 
the Noisy Versions of the Test Functions with Various Values 

of Noise’s Standard Deviationσ . 

σ  
*

1f  

rs =1 

*
2f  

rs =1 

*
3f  

rs =1 

*
4f  

rs =1 

0 100% 100% 100% 100% 

0.1 75% 70% 65% 100% 

0.2 88% 85% 75% 100% 

0.3 88% 75% 75% 95% 

0.4 76% 70% 65% 95% 

0.5 58% 55% 58% 95% 

0.7 40% 50% 53% 90% 

0.9 75% 70% 69% 95% 

 

Simulations were repeated 100 times for each noise standard 

deviation σ  value. The reported results are for the rs =1 
simulation cases. Here ‘success’ has been defined slightly 
differently for the different test functions. The performance 
(Average best Fitness) obtained with DPGA, in the second set of 
experiments is as summarized in Table 4. As can be observed, 
DPGA has shown a significant improvement in performance in all 
the four test cases with the increase in population size. However, 
the rate of improvement in performance is different for the 
various test cases. 

4. CONCLUSIONS 
Various methods have been proposed in literature to deal with 
problem of uncertainty in search environment. One such approach 
is that of the multi-population approach where the subpopulations 
are used to retain information about the changes in the search 
environment. The DPGA framework [2] investigated in this paper 
is similar to the multi-population approach in that it divides the 
search or solution space into multiple pseudo-populations and 
retains information about the changes in them. However, the 
DPGA algorithm applies superior mechanism in that this reduces 
the computational expense of maintaining the main population 
along with the subpopulations by switching between main and 
subpopulations at regular intervals. Also just enough retention of 
memory is allowed by dissolving the subpopulations periodically. 
Performance of the framework has been found to be satisfactory. 
However, further investigation is needed to resolve issues such as: 

- How to ensure the optimal number and size of the pseudo-
populations? 

- The interval for the reorganizing generation is currently 
based on statistical information about the benchmark test 
functions. How to base this on the characteristics of the 
evolving phenotypic solution space keeping the 
computational overhead within acceptable limits. 

 Further investigation will also be conducted to reach some 
definitive conclusion on the optimal rate of re-sampling. 
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Table 4. Performance (Average Best Fitness) Obtained with DPGA. In Case of the experiments with Noisy Versions of the 

Problems rs =1 has been used. Here, rs  is the number of candidate solution resampling. 

 Non-noisy Noisy 

Sphere function (5D) 
4.0019E-78±0 0.00115E-36±0.001 

Griewank function (50D) 
4.00E-39±0.001 0.00101E-21±0.001 

Rastrigin’s function 1 (50D) 
3.115E-39±0.0011 0.01501E-21±0.011 

Rosenbrock’s function (50D) 
1.911E-30±0.0011 1.5101E-18±0.0011 
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