
Handling Uncertainty with a Real-coded EA
Maumita Bhattacharya

SOBIT, Charles Sturt University
Australia - 2640

maumita.bhattacharya@ieee.org

ABSTRACT
Presence of uncertainty in the search environment of Evolutionary
algorithms (EA) interferes with the evaluation and the selection
process of EA and adversely affects the performance of the
algorithm. Presence of noise also means fitness function can not
be evaluated and it has to be estimated instead. Of the various
approaches which been tried to handle uncertainty in EA search
environment, the more familiar approaches are: introduction of
diversity (hyper mutation, random immigrants, special operators);
and incorporation of memory of the past (diploidy, case based
memory) [6]. In [2], we proposed a method, DPGA (distributed
population evolutionary algorithm) that uses a distributed
population architecture to simulate a distributed, self-adaptive
memory of the solution space. Local regression is used in each
sub-population to estimate the fitness. In the current research, we
further investigate performance of DPGA for noisy fitness
function i.e. fitness of any solution is altered by the addition of a

noise term ()2,σμN . ‘Noisy’ versions of few standard
benchmark problems have been considered in the simulation runs
of the DPGA algorithm.

Categories and Subject Descriptors
 Computing Methodologies [I.2 Artificial Intelligence]: I.2.8
Problem Solving, Control Methods, and Search.

General Terms
Algorithms, Design, Performance.

Keywords
Premature convergence, evolutionary algorithm, uncertainty.

1. BACKGROUND
Many real world problems have to deal with certain degree of
randomness or noise. Noise arises from different sources such as:

- Measurement errors in experiments. For example, in case
of online adaptation of real world systems, some of the
design parameters can be measured only real time.

- Stochastic nature of simulation processes. For example,
simulation based optimization of large and complex
systems that uses random numbers in the simulation. Use
of random numbers causes fluctuation of the fitness value
obtained by simulation.

- Use of small sample collected from a very large search
space.

Evolutionary algorithms are known to be robust in presence of
noise compared to other conventional search methods. This notion
is also supported by the fact that evolutionary algorithms and
genetic algorithm in particular have metaphor in natural evolution
and that nature does not necessarily deal with perfect fitness.
Population based search techniques such as evolutionary
algorithms are robust in single objective problem domain in
presence of noise as an EA possesses a high amount of knowledge
of the search space and in turn the average performance of the
population acts as a filter for the noise. Despite these positive
traits, evolutionary algorithm’s applications to optimization
problems involving noisy or uncertain fitness functions pose
problems that require special attention. Presence of noise in the
fitness function could mean ‘overestimation’ of fitness of inferior
candidates and similarly ‘underestimation’ of fitness of superior
candidates at the time of selection. This is likely to result in
reduced learning rate, inability to retain learnt information,
limited exploitation and absence of gradual monotonous
improvement of fitness with generations.

Considering EA’s natural noise-resistant properties, the effects of
noise can be minimized by simple methods such as re-sampling
and adaptation of population size. More recent approaches use
efficient averaging techniques, based on statistical tests, or local
regression methods for fitness estimation. The major techniques
used to curb the effect of uncertainty in EA can be summarized
as: Re-sampling [7, 5, 6], Conventional EA with increased
population size [5, 7], Rescaled mutation [1], Thresholding [7, 6],
Fitness value based on neighbouring individuals [7, 10, 4, 9] and
Reduced resampling [8, 7]. A comprehensive survey of various
techniques to handle noisy environment with EA, including
distributed population approach similar to our current work can be
found in [6].

Despite being one of the most common approaches to cope with
noise, re-sampling is computationally expensive and as Darwen
points out in [5] improvement through re-sampling may reach a
point of stagnation and may even be harmful in case of small
population. Adaptive or large population size is computationally
expensive due to additional solution evaluations. Techniques such
as Thresholding require estimation of additional parameters such
as the threshold, τ in case of Thresholding, which is not feasible
in all cases.

Our proposed DPGA algorithm [2] focuses on uncertain problem
domains where accuracy and robustness of solution are the major
concerns. The DPGA framework involves a distributed population
architecture with local regression employed in the sub-
populations.

Copyright is held by the author/owner(s).
GECCO’08, July 12–16, 2008, Atlanta, Georgia, USA.
ACM 978-1-60558-131-6/08/07.

2111

The organization of the paper is as follows. To make this paper
self-sufficient, Section 2 briefly outlines the DPGA framework.
Simulation details and discussions of results are given in Section
3. Finally, Section 4 concludes the paper along with some future
research directions.

2. THE DPGA ALGORITHM

Algorithm 1: Procedure DISTRIBUTED_POPULATION_GA

1: begin

2: 0t =

3: Initialize population ()tP

4: Evaluate population ()tP

5: while (not<termination condition>)

6: begin

7: 1tt +=

8: if (reorganizing generation)

9: begin

10: Evaluate population ()tP using re-sampling

11: Evolve population ()tP to create new generation with
canonical GA mechanism
12: Self-organize new population to create pseudo-populations

13: end if

14: for (each eligible one of n pseudo-populations
() nN ,,2,1 K=tP)

15: begin

16: Evaluate population ()NtP partly by local regression

17: Evolve canonical as per population GA

18: end for

19: end main

The DPGA framework uses distributed population architecture
with local regression in the pseudo-populations. Distribution of

the population allows tracking multiple peaks in the search space.
Each pseudo-population maintains information about a separate
region in the search space, thus acting as a distributed self
adaptive memory. We use the term pseudo-population instead of
subpopulation to emphasize on the fact that each one of these sub
groups may not actually act as self-sufficient evolving
populations. Two basic ideas guide the functioning of the
proposed model:

• Retention of memory with distributed pseudo-populations in
the search space i.e., the pseodo-populations should be able
to track their moving peaks through time.

• Estimation of time variant noisy fitness by local regression in
each subpopulation. Quadratic regression is used in the

present work. However, linear regression could be used to
reduce computation time.

The basic algorithm structure of DPGA is as described in Fig. 1.

Specific features of the proposed distributed population GA are as
below:

• Unlike conventional multipopulation EAs [5] the distributed
population GA does not maintain a main population
alongside the subpopulations. Instead, DPGA switches from
single population to multipopulation periodically.

• At reorganizing generation the pseudo-populations are
merged together to regain the main population and evolution
is carried out as per canonical GA mechanism. To correct the
adverse effects of noise, actual fitness evaluation along with
resampling is used at this stage.

• Next the regenerated main population dissolves into pseudo-
populations by self-organization. This is essentially
distribution of the candidate solutions into pseudo-
populations based on specific criteria. A factor of fitness and
population size decides the eligibility of a pseudo-population
to obtain evolution right. An eligible pseudo-population then
evolves by the canonical GA mechanism. Local regression is
used to estimate the fitness values. Mutation rate depends on
a factor of fitness and population size as well.

• Members of the non-eligible pseudo-populations either
survive or eventually disappear after reorganizing
generations.

• Retention of memory about the moving peaks in case of non-
static functions is achieved through the pseudo-populations
over specific durations until reorganizing generations. This
is logical considering the dynamic nature of the phenotypic
solution space.

Simulation details for DPGA are presented in Section 3 and
Section 4.

3. SIMULATION DETAILS
This research investigates the performance of the DPGA model as
against standard GA, differential evolution, particle swarm
optimization for a set of benchmark functions with noise
incorporated. For analysis purpose, experiments have been
conducted on the non-noisy versions of the same set of
benchmark functions as well.

3.1 Test Functions
We have used the following benchmark functions to test the
algorithms: Sphere function (5D), Griewank’s function (50D),
Rastrigin’s function 1 (50D) and the Rosenbrock’s function (50d).
These benchmark functions have previously been used by
researchers to test performance of evolutionary algorithm for
noisy optimization problems [4]. All the benchmarks used are
minimization problems. The descriptions of the functions are as
given in [2].

The noisy versions of the above set of functions are defined as:

() () ()2,σμ+= Nxfxf Noisy
rr

 (1)

where, ()2,σμN = Standard Normal (or Gaussian) distribution

with mean, μ = 0 and variance, 2σ = 1 in Stage 1 of the

Figure 1. The DPGA algorithm.

2112

experiments. The probability density function ()2,; σμxf is
given as below,

() ()
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
−= 2

2
2

2
exp

2
1,;

σ
μ

πσ
σμ xxf (2)

In Stage 2 of the experiments, we have expanded the simulation

with various values of the noise’s standard deviationσ .

3.2 Experiment Settings
We have conducted two sets of experiments. For the first set of
experiments, the parameter settings used for the algorithms are as
shown in Table 1. For comparison purpose we have used the
results reported in [7] for conventional GA, differential evolution
(DE) and particle swarm optimization (PSO). Hence similar
parameter settings have been used. As Krink et al. in [7] have
reported, the parameters of the heuristic algorithms were not
tuned for each test problem. The reason stated is that in case of
real life problems such tuning can be infeasible due to time
constraints.

Let totalEval = total number of function evaluations,
popSize = population size, totalIT = total number of

iterations, rs = total number of candidate solution resampling,
and angedtotalIUnch =total number of individuals that
remained unchanged (such as the elites) and were not reevaluated
in the various generations. Then,

totalEval = popSize * totalIT * rs -

angedtotalIUnch (3)

The total number of function evaluations in [7] in case of
conventional GA, differential evolution and PSO is kept constant

by keeping
rs

totalIT 1
∞ . However, this has not been followed

for the proposed method. We have used a fixed number of
iteration in these experiments. The experiments were run with
different values of rs such as rs =1, 5, 20, 50 and 100, to
eradicate the effects of noise and find the ‘true’ fitness. The ‘true’
fitness here refers to the fitness value obtained by evaluation of
the non-noisy versions of the same functions.

In the second set of experiments, the population size has been
increased as follows: 200 for the five dimensional problems and
600 for the fifty dimensional problems respectively, with rs =1.
As before, the experiments were run for a fixed number of
iterations.

3.3 Discussions
Table 2 presents the final results obtained for the chosen
benchmark functions (both noisy and non-noisy versions) with the
first set of experiments. The results for the non-noisy versions of
the functions have been reported here mainly as ‘standards’ to
judge the impact of noise. For comparison purpose we have used
the results reported in [7] for the following methods: differential

evolution, particle swarm optimization (PSO) and conventional
EA (CGA). As mentioned earlier, the total number of function
evaluations has been kept fixed for the experiments with
differential evolution, PSO and conventional EA [7]. The
proposed method used variable number of function evaluations.

Not surprisingly all the heuristics have performed considerably
better on the non-noisy benchmark functions compared to the
noisy versions of the same functions. As can be observed from the
results (Table 2), while the proposed method has performed better
for majority of the test cases, the difference is not necessarily
significant in all cases of the low dimensional Sphere function.

Table 1. Parameter settings** of the algorithms.

Proposed
Method

Canonical
GA

Differential
Evolution PSO

popSize=100 popSize=100 popSize=5
0

popSize=20

cp =1.0 cp =1.0 CF =0.8 w =
1.0→ 0.7

mp =0.3 mp =0.3 f =0.5 minϕ =0.0

n =10 n =10
maxϕ =2.0

mσ =0.01 mσ =0.01

**popSize=Population Size, cp = Crossover rate (EA), mp =

Mutation Rate (EA), n = Number of Elites, mσ = Mutation

Variance, CF = Crossover Factor (in differential Evolution),
f =Scaling Factor, w =Inertia Weight (the value is linearly

decreased from 1.0 to 0.7 during the run), minϕ , maxϕ = Lower
and Upper Bounds of the Random Velocity Rule Weights.

However, for the high dimensional (50D) Griewank, Rastrigin
and Rosenbrock functions the differences are clearly significant.
In case of the noisy versions, similar to the observation reported
in [7], resampling has prevented stagnation in all the four test
functions, regardless of whether the mean final result has been
improved. However, the effect of rate of resampling is rather
inconclusive as it varied from case to case rather randomly. Only
conclusion that can be drawn is that the effect of rate of
resampling may be problem dependent. From the results reported
in [7] it is obvious that in case of conventional EA, increased
number of resampling can not improve the performance when
number of iterations is inversely proportional to number of
resampling to keep the total number of function evaluations
constant. However, interestingly enough, for most of the test
cases moderate rate of resampling has helped to improve the
solution, while high to very high rate of resampling has rather a
deteriorating effect on the solutions.

In case of the second set of experiments, the success rates of
DPGA algorithm for simulations with noisy functions for various
values of noise’s standard deviation are summarized in Table 3.

2113

Table 2. Performance (Average Best Fitness) Comparison for DPGA, CGA, Differential Evolution and PSO. rs =number

of candidate solution resampling.

 DPEA CGA Differential
Evolution

PSO

1f 4.21334E-75±0 6.71654E-20±0 4.12744E-152±0 2.51130E-8±0

1,*
1 =rsf 0.00103E-

2±0.003
0.04078±0.00543 0.25249±0.02603 0.36484±0.05182

=rsf ,*
1 5 0.00023E-

2±0.001
0.02690±0.00363 0.13315±0.01266 0.16702±0.03072

=rsf ,*
1 20 0.00018E-

2±0.023
0.02205±0.00290 0.07364±0.00811 0.11501±0.01649

=rsf ,*
1 50 0.00001E-

2±0.0031
0.01765±0.00233 0.07004±0.00686 0.06478±0.00739

1f =Sphere function
(5D non-noisy)
And
 1

*f =Sphere
function (5D noisy)

=rsf ,*
1 100 0.00011E-

2±0.0009
0.03929±0.00396 0.08165±0.00800 0.07135±0.00938

2f 4.00E-7±0.001 0.00624±0.00138 0±0 1.54900±0.06695

=rsf ,*
2 1 0.00211E-

1±0.001
1.14598±0.00307 3.31514±0.07388 11.2462±0.50951

=rsf ,*
2 5 0.00211E-

1±0.001
1.10223±0.00342 2.42183±0.03616 16.6429±0.70800

=rsf ,*
2 20 0.00011E-

1±0.021
1.44349±0.01381 2.67093±0.03895 85.4865±2.13148

=rsf ,*
2 50 0.00200E-

1±0.323
3.69626±0.13127 46.8197±0.96449 143.021±2.33228

2f =Griewank
function (50D non-
noisy)
And

*
2f =Griewank

function (50D noisy)

=rsf ,*
2 100 0.00301E-

1±0.481
18.0858±0.99646 233.802±6.25840 194.188±4.90959

3f 1.219E-
7±0.0013

32.6679±1.94017 0±0 13.1162±1.44815

=rsf ,*
3 1 0.03011E-

1±0.031
30.7511±1.32780 2.35249±0.06062 55.9704±2.19902

=rsf ,*
3 5 0.01071E-

1±0.011
31.4725±2.02356 14.0355±0.47935 160.500±2.67500

=rsf ,*
3 20 0.01171±0.111 39.1777±2.11529 167.628±2.12569 313.184±3.93659

=rsf ,*
3 50 0.01092±0.100 74.8577±2.69437 314.762±2.88650 380.178±4.88706

3f =Rastrigin’s
function 1 (50D non-
noisy)
And
 *

3f =Rastrigin’s
function 1 (50D
noisy)

=rsf ,*
3 100 0.01232±0.190 147.800±2.93208 438.036±3.67504 418.265±5.35434

4f 1.4011E-
14±0.0011

79.8180±10.4477 35.3176±0.27444 5142.45±2929.47

=rsf ,*
4 1 1.4201E-

4±0.0021
118.940±13.2322 47.6188±0.15811 4884.68±886.599

=rsf ,*
4 5 1.1201E-

4±0.0091
341.788±49.6738 47.0404±0.13932 368512±39755.5

=rsf ,*
4 20 1.0001±0.2191 1859.06±261.844 7917.46±352.851 1.61E+7±1.18E+6

=rsf ,*
4 50 1.0091±0.1393 35477.7±4656.17 1.65E+7±903677 5.57E+7±2.38E+6

4f =Rosenbrock’s
function (50D non-
noisy)
And

*
4f =Rosenbrock’s

function (50D noisy)

=rsf ,*
4 100 2.0028±2.1999 257488±19371.2 2.98E+8±1.04E+7 1.17E+8±7.38E+6

2114

Table 3. Analysis of Success Rates of the DPGA Algorithm for
the Noisy Versions of the Test Functions with Various Values

of Noise’s Standard Deviationσ .

σ
*

1f

rs =1

*
2f

rs =1

*
3f

rs =1

*
4f

rs =1

0 100% 100% 100% 100%

0.1 75% 70% 65% 100%

0.2 88% 85% 75% 100%

0.3 88% 75% 75% 95%

0.4 76% 70% 65% 95%

0.5 58% 55% 58% 95%

0.7 40% 50% 53% 90%

0.9 75% 70% 69% 95%

Simulations were repeated 100 times for each noise standard

deviation σ value. The reported results are for the rs =1
simulation cases. Here ‘success’ has been defined slightly
differently for the different test functions. The performance
(Average best Fitness) obtained with DPGA, in the second set of
experiments is as summarized in Table 4. As can be observed,
DPGA has shown a significant improvement in performance in all
the four test cases with the increase in population size. However,
the rate of improvement in performance is different for the
various test cases.

4. CONCLUSIONS
Various methods have been proposed in literature to deal with
problem of uncertainty in search environment. One such approach
is that of the multi-population approach where the subpopulations
are used to retain information about the changes in the search
environment. The DPGA framework [2] investigated in this paper
is similar to the multi-population approach in that it divides the
search or solution space into multiple pseudo-populations and
retains information about the changes in them. However, the
DPGA algorithm applies superior mechanism in that this reduces
the computational expense of maintaining the main population
along with the subpopulations by switching between main and
subpopulations at regular intervals. Also just enough retention of
memory is allowed by dissolving the subpopulations periodically.
Performance of the framework has been found to be satisfactory.
However, further investigation is needed to resolve issues such as:

- How to ensure the optimal number and size of the pseudo-
populations?

- The interval for the reorganizing generation is currently
based on statistical information about the benchmark test
functions. How to base this on the characteristics of the
evolving phenotypic solution space keeping the
computational overhead within acceptable limits.

 Further investigation will also be conducted to reach some
definitive conclusion on the optimal rate of re-sampling.

5. REFERENCES
[1] A. Ratle.., “Accelerating the convergence of evolutionary

algorithms by fitness landscape approximation”, Parallel
Problem Solving from Nature-PPSN V, Springer-Verlag, pp.
87-96, 1998.

[2] M. Bhattacharya, “DPGA: a Simple Distributed Population
Approach to Tackle Uncertainty”, accepted to be published
in Proceedings of the 2008 IEEE Congress on Evolutionary
Computation (CEC 2008), Hong Kong.

[3] M. Bhattacharya, “Exploiting Landscape Information to
Avoid Premature Convergence in Evolutionary Search”,
Proceedings of the 2006 IEEE Congress on Evolutionary
Computation, Vancouver, Canada, 0-7803-9487-9/06, IEEE
Press, 2006 , pp. 2575-2579.

[4] J. Branke, C. Schmidt, and H. Schmeck, “Efficient fitness
estimation in noisy environments”, Proceedings of the
Genetic and Evolutionary Computation Conference 2001,
GECCO2001, Morgan Kaufman, 2001, pp. 243 – 250.

[5] P. J. Darwen, “Computationally intensive and noisy tasks:
co-evolutionary learning and temporal difference learning
on Backgammon”, Proceedings of the 2000 Congress On
Evolutionary Computation, CEC2000, Volume 1, 2000, pp.
872 – 879.

[6] Y. Jin, and J. Branke, “Evolutionary optimization in
uncertain environments - A survey”, IEEE Transactions on
Evolutionary Computation, 9(3), 2005, pp. 303 – 317.

[7] T. Krink, B. Filipic, and G. B. Fogel, “Noisy optimization
problems - a particular challenge for differential
evolution?”, Proceedings of IEEE Congress on Evolutionary
Computation, CEC2004, Volume 1, 2004, pp.332 – 339.

[8] G. Rudolph, “A partial order approach to noisy fitness
functions”, Proceedings of the Congress on Evolutionary
Computation, CEC2001, IEEE Press, USA, 2001, pp. 318 –
325.

[9] Y. Sano, and H. Kita, “Optimization of noisy fitness
functions by means of genetic algorithms using history of
search with test of estimation”, Proceedings of the 2002
Congress on Evolutionary Computation, CEC2002, IEEE
Press, USA, pp. 360 – 365.

[10] H. Tamaki, and T. A. Arai, “A genetic algorithm approach
to optimization problems in an uncertain environment”,
Proceedings of International Conference on Neural
Information Processing and Intelligent Information Systems,
Volume 1, 1997, pp. 436-439.

2115

Table 4. Performance (Average Best Fitness) Obtained with DPGA. In Case of the experiments with Noisy Versions of the

Problems rs =1 has been used. Here, rs is the number of candidate solution resampling.

 Non-noisy Noisy

Sphere function (5D)
4.0019E-78±0 0.00115E-36±0.001

Griewank function (50D)
4.00E-39±0.001 0.00101E-21±0.001

Rastrigin’s function 1 (50D)
3.115E-39±0.0011 0.01501E-21±0.011

Rosenbrock’s function (50D)
1.911E-30±0.0011 1.5101E-18±0.0011

2116

