
Reduced Computation for Evolutionary Optimization
in Noisy Environment

Maumita Bhattacharya
SOBIT, Charles Sturt University

Australia - 2640

maumita.bhattacharya@ieee.org

ABSTRACT
Evolutionary Algorithms’ (EAs’) application to real world
optimization problems often involves expensive fitness function
evaluation. Naturally this has a crippling effect on the performance
of any population based search technique such as EA. Estimating
the fitness of individuals instead of actually evaluating them is a
workable approach to deal with this situation. Optimization
problems in real world often involve expensive fitness. In [14] and
[15] we presented two EA models, namely DAFHEA (Dynamic
Approximate Fitness based Hybrid Evolutionary Algorithm) and
DAFHEA-II respectively. The original DAFHEA framework [14]
reduces computation time by controlled use of meta-models
generated by Support Vector Machine regression to partly replace
actual fitness evaluation by estimation. DAFHEA-II [15] is an
enhancement to the original framework in that it can be applied to
problems that involve uncertainty. DAFHEA-II, incorporates a
multiple-model based learning approach for the support vector
machine approximator to filter out effects of noise [15]. In this paper
we present further investigation on the performance of DAFHEA
and DAFHEA-II.

Categories and Subject Descriptors
 Computing Methodologies [I.2 Artificial Intelligence]: I.2.8
Problem Solving, Control Methods, and Search.

General Terms: Algorithms, Design, Performance.

Keywords: Evolutionary algorithm, uncertainty, approximation.

1. INTRODUCTION
Many real world optimization problems involve very expensive
function evaluation, making it impractical for a population based
search technique such as EA to be used in such problem domains. In
such problems, the run-time for a single function evaluation could
be in the range from a fraction of a second to hours of
supercomputer time. A suitable alternative is to use approximation
instead of actual function evaluation to substantially reduce the
computation time [8, 10, and 11]. Use of approximate model to
speed up optimization dates all the way back to the sixties [14].
Many regression and interpolation tools could be used to construct
such meta models, (e.g. least square regression, back propagating
artificial neural network, response surface models, etc.) which
provide less accurate, but more efficient (in terms of computational
cost) measures of the merit of the fitness functions. However,
accuracy of the result is a major risk involved in using meta-models
to replace actual function evaluation [23, 25, 26, and 27]. The most

widely used meta-model generators are the Response Surface
Methodology [17], the Krieging models [9] and the artificial neural
network models [5]. The concepts of using approximate model vary
in levels of approximation (Problem approximation, Functional
approximation, and Evolutionary approximation), model
incorporation mechanism and model management techniques [27].
In the multidisciplinary optimization (MDO) community, primarily
response surface analysis and polynomial fitting techniques are used
to build the approximate models [16, 23]. They are not well suited
for high dimensional multimodal problems as they generally carry
out approximation using simple quadratic models. In another
approach, multilevel search strategies are developed using special
relationship between the approximate and the actual model. An
interesting class of such models focuses on having many islands
using low accuracy/cheap evaluation models with small number of
finite elements that progressively propagate individuals to fewer
islands using more accurate/expensive evaluations [7]. As is
observed in [27], this approach may suffer from lower
complexity/cheap islands having false optima whose fitness values
are higher than those in the higher complexity/expensive islands.
Rasheed et al. in [10, 11], uses a method of maintaining a large
sample of points divided into clusters. Least square quadratic
approximations are periodically formed of the entire sample as well
as the big clusters. Problem of unevaluable points was taken into
account as a design aspect. However, it is only logical to accept that
true evaluation should be used along with approximation for reliable
results in most practical situations. Another approach using
population clustering is that of fitness imitation [27]. Here, the
population is clustered into several groups and true evaluation is
done only for the cluster representative [8]. The fitness value of
other members of the same cluster is estimated by a distance
measure. The method may be too simplistic to be reliable, where the
population landscape is a complex, multimodal one. Jin et al. in [25,
26] analysed the convergence property of approximate fitness based
evolutionary algorithm. It has been observed that incorrect
convergence can occur due to false optima introduced by the
approximate model. Two controlled evolution strategies have been
introduced. In this approach, new solutions (offspring) can be (pre)-
evaluated by the model. The (pre)-evaluation can be used to indicate
promising solutions. It is not clear however, how to decide on the
optimal fraction of the new individuals for which true evaluation
should be done [6]. In an alternative approach, the optimum is first
searched on the model. The obtained optimum is then evaluated on
the objective function and added to the training data of the model [1,
22, and 6]. Yet in another approach as proposed in [25], a
regularization technique is used to eliminate false minima.
The DAFHEA (dynamic approximate fitness based hybrid
evolutionary algorithm) framework proposed in our earlier research
[14] replaces expensive function evaluation by its support vector

Copyright is held by the author/owner(s).
GECCO’08, July 12–16, 2008, Atlanta, Georgia, USA.
ACM 978-1-60558-131-6/08/07.

2117

machine (SVM) approximation. The concept of merit function [22]
is borrowed to maintain diversity in the solution space using
approximate knowledge. However, the assumption used in the
original DAFHEA is that the training samples for the meta-model
are generated from a single uniform model. This does not cover
situations, where information from variable input dimensions and
noisy data is involved. DAFHEA-II [15] attempts to correct this by
using a multi-model regression approach. The multiple models are
estimated by successive application of the SVM regression
algorithm. Retraining of the model is done in a periodic fashion.
In our current research, we present an investigation on the
performance of DAAFHEA-II framework as regards to its ability to
reduce computation effort while dealing with expensive problem
domains involving uncertainty.
The paper is organized as follows: The basic concepts and the
implementation details of the hybrid EA frameworks DAFHEA-II
are outlined in Section 2. Experiment results and discussions are
presented in Section 3. Finally the conclusions are drawn in Section
4.

Table 1. Benchmark Test Functions Used in Simulation.

Function Formula

Spherical
() ∑

=

=
M

i
isph xxf

1

2

Ellipsoidal
() ∑

=

=
M

i
ielp ixxf

1

2

Schwefel
() ∑ ∑

= =
− ⎟

⎠

⎞
⎜
⎝

⎛
=

M

i

i

k
ksch xxf

1

2

1
2.1

Rosenbrock
() () ()()∑

−

=
+ −+−=

1

1

222
1 1100

n

i
iiiros xxxxf

Rastrigin
() ()()∑

=

+π−=
n

i
iirtg xxxf

1

2 102cos10

2. THE APPROXIMATION BASED EA
As in the original DAFHEA framework [14], DAFHEA-II [15]
includes a global model of genetic algorithm (GA), hybridised with
support vector machine (SVM) as the approximation tool.
Expensive fitness evaluation of individuals as required in traditional
evolutionary algorithm is partially replaced by SVM approximation
(regression) models. Evolution control is implemented by periodic
true evaluations, leading to considerable speedup without
compromising heavily on solution accuracy. Also the approximate
knowledge about the solution space generated is used to maintain
population diversity to avoid premature convergence.

2.1 Functional Details
The operational detail of DAFHEA-II [15] framework is as
described below:

Step One: Create a random population of cN individuals, where,

ac NN *5= and =aN actual initial population size.

Step Two: Evaluate cN individual using actual expensive function

evaluation. Build the SVM approximate models using the candidate
solutions as input and the actual fitness (expensive function
evaluation values) as targets forming the training set for off-line
training.

Step Three: Select aN best individual out of cN evaluated

individuals to form the initial GA population.

Remarks: The idea behind using five times the actual EA
population size (as explained in Step One) is to make the
approximation model sufficiently representative at least initially.
Since initial EA population is formed with aN best individuals out

of these cN individuals, with high recombination and low mutation

rates, the EA population in first few generations is unlikely to drift
much from its initial locality. Thus it is expected that large number
of samples used in building the approximation model will facilitate
better performance at this stage. Also using the higher fitness
individuals, chosen out of a larger set should give an initial boost to
the evolutionary process.

Step Four: Rank the candidate solutions based on their fitness
value.

Step Five: Preserve the elite by carrying over the best candidate
solution to the next generation.

Step Six: Select parents using suitable selection operator and apply
genetic operators namely recombination and mutation to create
children (new candidate solutions) for the next generation.

Step Seven: The SVM regression models created in Step two are
applied to estimate the fitness of the children (new candidate
solutions) created in Step six. This involves assignment of most
likely or appropriate models to each candidate solution.

Step Eight: The set of newly created candidate solutions is ranked
based on their approximate fitness values.

Step Nine: The best performing newly created candidate solution
and the elite selected in Step five are carried to the population of the
next generation.

 Step Ten: New candidate solutions or children are created as
described in Step six.

Step Eleven: Repeat Step seven to Step ten until either of the
following condition is reached:

i. The predetermined maximum number of generations has been
reached; or

ii. The periodic retraining of the SVM regression models is due.
Step Twelve: If the periodic retraining of the SVM regression
models is due, this will involve actual evaluation of the candidate
solutions in the current population. Based on this training data new
regression models are formed. The algorithm then proceeds to
execute Step four to Step eleven.

Remarks: The idea behind using periodic retraining of the SVM
regression models is to ensure that the models continue to be
representatives of the progressive search areas in the solution space.

2118

3. EXPERIMENTS AND DISCUSSIONS
We have tested the proposed algorithms on a set of popular
benchmark test functions and their noisy versions. These are
Spherical, Ellipsoidal, Schwefel, Rosenbrock and Rastrigin (see

Table 1) functions. These benchmark functions in the test suit are
scalable and are commonly used to assess the performance of
optimization algorithms [12]. For all functions except Rosenbrock
the global

Table 2. Results for Simulations of DAFHEA-II on Benchmark Test Functions (Non-Noisy).

 Best Fitness Worst Fitness Mean Fitness
Median

Fitness

Standard

Deviation

()xfsph 0.091E-60 1.69E-55 1.138E-56 0.932E-57 2.518E-56

()xfelp 3.510E-53 1.71E-48 3.412E-51 1.131E-51 0.198E-50

()xfsch 2.1− 1.186E-50 3.215E-47 1.911E-48 3.391E-49 7.019E-48

()xfros 1.198E-40 2.011E-37 1.998E-38 1.019E-38 2.081E-38

5D

()xfrtg 1.413E-2 0.0109 3.322E-1 1.191E-1 4.114E-1

()xfsph 1.543E-46 1.99E-42 1.588E-43 0.119E-43 0.932E-42

()xfelp 0.912E-41 1.33E-38 2.523E-39 1.038E-39 4.042E-39

()xfsch 2.1− 1.012E-40 1.88E-37 2.971E-38 1.891E-38 3.237E-38

()xfros 1.109E-28 2.190E-25 1.918E-26 1.001E-26 2.097E-26

10D

()xfrtg 1.738E-1 1.998 3.388E-1 3.013E-1 4.133E-1

()xfsph 1.118E-38 1.99E-34 1.388E-35 0.108E-35 2.032E-35

()xfelp 1.112E-34 1.72E-31 1.323E-32 1.11E-32 2.838E-32

()xfsch 2.1− 1.011E-32 1.75E-30 1.989E-31 1.001E-31 2.136E-31

()xfros 1.110E-21 2.101E-18 1.901E-19 1.001E-19 1.996E-19

20D

()xfrtg 5.012 20.113 10.032 11.192 7.732

minimum is () 0=xf at{ } 0=n
ix . Rosenbrock has a global

minimum of () 0=xf at{ } 1=n
ix .

The noisy versions of the above set of functions are defined as:

() () ()2,σμNxfxf Noisy +=
rr

 (1)

where, ()2,σμN = Standard Normal (or Gaussian)

distribution with mean, μ = 0 and variance, 2σ = 1. The

probability density function ()2,; σμxf is given as

below.

() ()
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
−= 2

2
2

2
exp

2
1,;

σ
μ

πσ
σμ xxf (2)

All simulations were carried out using the following experiment
setup: The population size of n10 was used for all the
simulations, where n is the number of variables for the problem;
for comparison purposes three sets of input dimensions are
considered; namely, 10,5=n and 20. For all three cases,
tenfold validation was done with the number of iterations being
1000 for all non-noisy versions of the test problems for the results

2119

reported in Table 2; the SVM regression models were trained with
five times the real EA (GA in this case) population size initially.
However, incase of the noisy versions of the test functions much
larger number of iterations have been used to obtain acceptable level
of accuracy of results.

All the simulation processes were executed using a Pentium
®

4,
2.4GHz CPU processor. Table 2 presents the results obtained with
DAFHEA-II algorithm on non-noisy versions of the benchmark test
problems. Tables 3 presents the comparative results (number of
actual function evaluations) of the various simulations runs using
canonical GA model which uses only actual function evaluations
and the proposed DAFHEA and DAFHEA-II models which use
actual function evaluations sparingly. The results reported in [12]
for a computation effort reduction technique has also been included
for comparison purpose. Please note that, unlike the results reported
in Table 2, these results were obtained by running the algorithms for
variable number of iterations with the goal of achieving certain level
of tolerance in the results. We report the results for the 5-D
(dimension), 10-D (dimension) and 20-D (dimension) scenarios for
both non-noisy and the noisy versions of the test functions. The
reported results were obtained by achieving same level of tolerance
for both canonical GA and DAFHEA and DAFHEA-II models. For
comparison purpose, we have used results reported in [12]. While it
is hard to generalize performance of the algorithms based on a small
set of test functions, it is obvious from the simulation results that

both DAFHEA and DAFHEA-II performs relatively efficiently as
compared to the other techniques reported here.

4. CONCLUSIONS
Application of population based, iterative techniques like EA to
expensive optimization problem domains is realistically feasible
only if the number of actual function evaluations can be kept to a
minimum. This can be achieved by the use of approximation or
surrogate models to replace actual functions. In this paper, we have
investigated the performance of an approximation based
evolutionary algorithm, namely DAFHEA-II [15] as regards to its
applicability to both noisy and non-noisy optimization problems.
Performance of an earlier version of DAFHEA-II, namely
DAFHEA has also been included. The algorithms showed reliable
performance in terms of accuracy for both noisy and non-noisy
versions of commonly used benchmark problems in majority of the
test cases. The overhead cost towards developing and maintaining
the meta-model is not alarmingly high. Since this overhead is
expected not to increase much with increased problem complexity,
both the versions of DAFHEA should lead to considerable speed up
for complex real life problems. The satisfactory performance of
DAFHEA-II in case of the noisy versions of the test functions
validates our claim that the framework is suitable for solving
complex real world optimization problems involving uncertain
environments.

5. REFERENCES
[1] A. Ratle, “Accelerating the convergence of evolutionary

algorithms by fitness landscape approximation”, Parallel
Problem Solving from Nature-PPSN V, Springer-Verlag, pp.
87-96, 1998.

[2] A. Smola and B. Schölkopf, “A Tutorial on Support Vector
Regression”, NeuroCOLT Technical Report NC-TR-98-030,
Royal Holloway College, University of London, UK, 1998.

[3] B. Dunham, D. Fridshal., R. Fridshal and J. North, “Design by
natural selection”, Synthese, 15, pp. 254-259, 1963.

[4] B. Schölkopf , J. Burges and A. Smola, ed., “Advances in
Kernel Methods: Support Vector Machines”, MIT Press, 1999.

[5] C. Bishop, “Neural Networks for Pattern Recognition”, Oxford
Press, 1995.

[6] D. Büche., N. Schraudolph, and P. Koumoutsakos,
“Accelerating Evolutionary Algorithms Using Fitness Function
Models”, Proc. Workshops Genetic and Evolutionary
Computation Conference, Chicago, 2003.

[7] H. D. Vekeria and i. C. Parmee, “The use of a co-operative
multi-level CHC GA for structural shape optimization”, Fourth
European Congress on Intelligent Techniques and Soft
Computing – EUFIT’96, 1996.

[8] H. S. Kim and S. B. Cho, “ An efficient genetic algorithm with
less fitness evaluation by clustering”, Proceedings of IEEE
Congress on Evolutionary Computation, pp. 887-894, 2001.

[9] J. Sacks, W. Welch, T. Mitchell and H. Wynn, “Design and
analysis of computer experiments”, Statistical Science, 4(4),
1989.

[10] K. Rasheed, "An Incremental-Approximate-Clustering
Approach for Developing Dynamic Reduced Models for

Design Optimization", Proceedings of IEEE Congress on
Evolutionary Computation, 2000.

[11] K. Rasheed, S. Vattam and X. Ni., "Comparison of Methods
for Using Reduced Models to Speed Up Design Optimization",
The Genetic and Evolutionary Computation Conference
(GECCO'2002), 2002.

[12] K. Won, T. Roy and K. Tai, “A Framework for Optimization
Using Approximate Functions”, Proceedings of the IEEE
Congress on Evolutionary Computation’ 2003, Vol.3, IEEE
Catalogue No. 03TH8674C, ISBN 0-7803-7805-9.

[13] M. A. El-Beltagy and A. J. Keane, "Evolutionary optimization
for computationally expensive problems using Gaussian
processes", Proc. Int. Conf. on Artificial Intelligence (IC-
AI'2001), CSREA Press, Las Vegas, pp. 708-714, 2001.

[14] M. Bhattacharya and G. Lu, “DAFHEA: A Dynamic
Approximate Fitness based Hybrid Evolutionary Algorithm”,
Proceedings of the IEEE Congress on Evolutionary
Computation’ 2003, Vol.3, IEEE Catalogue No. 03TH8674C,
ISBN 0-7803-7805-9, pp. 1879-1886.

[15] M. Bhattacharya, “Surrogate Based EA for Expensive
Optimization Problem”, Proceedings of the 2007 IEEE
Congress on Evolutionary Computation (CEC 2007),
Singapore, 1-4244-1340-0, 2007 IEEE Press.

[16] P. Hajela and A. Lee., “Topological optimization of rotorcraft
subfloor structures for crashworthiness considerations”,
Computers and Structures, vol.64, pp. 65-76, 1997.

[17] R. Myers and D. Montgomery, “Response Surface
Methodology”, John Wiley & Sons, 1985.

[18] S. Pierret, “Three-dimensional blade design by means of an
artificial neural network and Navier-Stokes solver”,

2120

[19] Proceedings of Fifth Conference on Parallel Problem Solving
from Nature, Amsterdam, 1999.

[20] S. R. Gunn, “Support Vector Machines for Classification and
Regression”, Technical Report, School of Electronics and
Computer Science, University of Southampton, (Southampton,
U.K.), 1998.

[21] T. Hastie, R. Tibshirani, J. Friedman, “The Elements of
Statistical Learning: Data Mining, Inference, and Prediction”,
Springer Series in Statistics, ISBN 0-387-95284-5.

[22] V. Cherkassky and Y. Ma, “Multiple Model Estimation: A
New Formulation for Predictive Learning”, under review in
IEE Transaction on Neural Network.

[23] V. Torczon and M. W. Trosset, “Using approximations to
accelerate engineering design optimisation”, ICASE Report
No. 98-33. Technical report, NASA Langley Research Center
Hampton, VA 23681-2199, 1998.

[24] V. V. Toropov, a. A. Filatov and A. A. Polykin,
“Multiparameter structural optimization using FEM and

 multipoint explicit approximations”, Structural Optimization,
vol. 6, pp. 7-14, 1993.

[25] V. Vapnik, “The Nature of Statistical Learning Theory”,
Springer-Verlag, NY, USA, 1999.

[26] Y. Jin, M. Olhofer and B. Sendhoff, “A Framework for
Evolutionary Optimization with Approximate Fitness
Functions”, IEEE Transactions on Evolutionary Computation,
6(5), pp. 481-494, (ISSN: 1089-778X). 2002.

[27] Y. Jin, M. Olhofer and B. Sendhoff., “On Evolutionary
Optimisation with Approximate Fitness Functions”,
Proceedings of the Genetic and Evolutionary Computation
Conference GECCO, Las Vegas, Nevada, USA. pp. 786- 793,
July 10-12, 2000.

[28] Y. Jin, “A Comprehensive Survey of Fitness Approximation
in Evolutionary Computation”, Soft Computing, 9(1), pp.3-
12, 2005

Table 3. Total Number of Actual Function Evaluations Required.

 Canonical GA DAFHEA DAFHEA-II
Method described

in [12]

()xfsph 49045 21210 21300 21450

()xfsph (noisy) 100,000 59000 58000 -

()xfelp 49045 21000 21200 21051

()xfelp (noisy) 100,000 59000 58000 -

()xfsch 2.1− 49045 25500 26000 25951

()xfsch 2.1− (noisy) 100,000 69000 68000 -

()xfros 18000 7015 7100 7201

()xfros (noisy) 35,000 9500 9000 -

()xfrtg 16500 4550 4570 4601

5D

()xfrtg (noisy) 100,000 5500 5100 -

()xfsph 99150 77520 77535 77567

()xfsph (noisy) 100,000 76000 75000 -

()xfelp 99150 84310 84325 84334

10D

()xfelp (noisy) 100,000 85000 84500 -

2121

()xfsch 2.1− 99150 53755 53800 53834

()xfsch 2.1− (noisy) 100,000 65000 64500 -

()xfros 16500 6990 6999 7001

()xfros (noisy) 100,000 71250 71000 -

()xfrtg 17100 7175 7180 7100

()xfrtg (noisy) 100,000 20500 20000 -

()xfsph 199200 110420 110430 110467

()xfsph (noisy) 500,000 300,500 300,000 -

()xfelp 199200 81450 81480 81534

()xfelp (noisy) 250,000 81550 81500 -

()xfsch 2.1− 199200 144220 144235 144267

()xfsch 2.1− (noisy) 300,000 200,050 200,000 -

()xfros 70447 21170 21180 21201

()xfros (noisy) 500,000 290,500 290,000 -

()xfrtg 101650 28010 28090 28020

20D

()xfrtg (noisy) 500,000 410,500 410,000 -

2122

