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ABSTRACT 
Evolutionary Algorithms’ (EAs’) application to real world 
optimization problems often involves expensive fitness function 
evaluation. Naturally this has a crippling effect on the performance 
of any population based search technique such as EA. Estimating 
the fitness of individuals instead of actually evaluating them is a 
workable approach to deal with this situation. Optimization 
problems in real world often involve expensive fitness. In [14] and 
[15] we presented two EA models, namely DAFHEA (Dynamic 
Approximate Fitness based Hybrid Evolutionary Algorithm) and 
DAFHEA-II respectively. The original DAFHEA framework [14] 
reduces computation time by controlled use of meta-models 
generated by Support Vector Machine regression to partly replace 
actual fitness evaluation by estimation. DAFHEA-II [15] is an 
enhancement to the original framework in that it can be applied to 
problems that involve uncertainty. DAFHEA-II, incorporates a 
multiple-model based learning approach for the support vector 
machine approximator to filter out effects of noise [15]. In this paper 
we present further investigation on the performance of DAFHEA 
and DAFHEA-II. 

Categories and Subject Descriptors 
 Computing Methodologies [I.2 Artificial Intelligence]: I.2.8 
Problem Solving, Control Methods, and Search. 

General Terms: Algorithms, Design, Performance. 

Keywords: Evolutionary algorithm, uncertainty, approximation. 

1. INTRODUCTION 
Many real world optimization problems involve very expensive 
function evaluation, making it impractical for a population based 
search technique such as EA to be used in such problem domains. In 
such problems, the run-time for a single function evaluation could 
be in the range from a fraction of a second to hours of 
supercomputer time. A suitable alternative is to use approximation 
instead of actual function evaluation to substantially reduce the 
computation time [8, 10, and 11]. Use of approximate model to 
speed up optimization dates all the way back to the sixties [14]. 
Many regression and interpolation tools could be used to construct 
such meta models, (e.g. least square regression, back propagating 
artificial neural network, response surface models, etc.) which 
provide less accurate, but more efficient (in terms of computational 
cost) measures of the merit of the fitness functions. However, 
accuracy of the result is a major risk involved in using meta-models 
to replace actual function evaluation [23, 25, 26, and 27]. The most 

widely used meta-model generators are the Response Surface 
Methodology [17], the Krieging models [9] and the artificial neural 
network models [5]. The concepts of using approximate model vary 
in levels of approximation (Problem approximation, Functional 
approximation, and Evolutionary approximation), model 
incorporation mechanism and model management techniques [27]. 
In the multidisciplinary optimization (MDO) community, primarily 
response surface analysis and polynomial fitting techniques are used 
to build the approximate models [16, 23]. They are not well suited 
for high dimensional multimodal problems as they generally carry 
out approximation using simple quadratic models. In another 
approach, multilevel search strategies are developed using special 
relationship between the approximate and the actual model. An 
interesting class of such models focuses on having many islands 
using low accuracy/cheap evaluation models with small number of 
finite elements that progressively propagate individuals to fewer 
islands using more accurate/expensive evaluations [7]. As is 
observed in [27], this approach may suffer from lower 
complexity/cheap islands having false optima whose fitness values 
are higher than those in the higher complexity/expensive islands. 
Rasheed et al. in [10, 11], uses a method of maintaining a large 
sample of points divided into clusters. Least square quadratic 
approximations are periodically formed of the entire sample as well 
as the big clusters. Problem of unevaluable points was taken into 
account as a design aspect. However, it is only logical to accept that 
true evaluation should be used along with approximation for reliable 
results in most practical situations. Another approach using 
population clustering is that of fitness imitation [27]. Here, the 
population is clustered into several groups and true evaluation is 
done only for the cluster representative [8]. The fitness value of 
other members of the same cluster is estimated by a distance 
measure. The method may be too simplistic to be reliable, where the 
population landscape is a complex, multimodal one. Jin et al. in [25, 
26] analysed the convergence property of approximate fitness based 
evolutionary algorithm. It has been observed that incorrect 
convergence can occur due to false optima introduced by the 
approximate model. Two controlled evolution strategies have been 
introduced. In this approach, new solutions (offspring) can be (pre)-
evaluated by the model. The (pre)-evaluation can be used to indicate 
promising solutions. It is not clear however, how to decide on the 
optimal fraction of the new individuals for which true evaluation 
should be done [6]. In an alternative approach, the optimum is first 
searched on the model. The obtained optimum is then evaluated on 
the objective function and added to the training data of the model [1, 
22, and 6]. Yet in another approach as proposed in [25], a 
regularization technique is used to eliminate false minima. 
The DAFHEA (dynamic approximate fitness based hybrid 
evolutionary algorithm) framework proposed in our earlier research 
[14] replaces expensive function evaluation by its support vector 
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machine (SVM) approximation. The concept of merit function [22] 
is borrowed to maintain diversity in the solution space using 
approximate knowledge. However, the assumption used in the 
original DAFHEA is that the training samples for the meta-model 
are generated from a single uniform model. This does not cover 
situations, where information from variable input dimensions and 
noisy data is involved. DAFHEA-II [15] attempts to correct this by 
using a multi-model regression approach. The multiple models are 
estimated by successive application of the SVM regression 
algorithm. Retraining of the model is done in a periodic fashion. 
In our current research, we present an investigation on the 
performance of DAAFHEA-II framework as regards to its ability to 
reduce computation effort while dealing with expensive problem 
domains involving uncertainty. 
The paper is organized as follows: The basic concepts and the 
implementation details of the hybrid EA frameworks DAFHEA-II 
are outlined in Section 2. Experiment results and discussions are 
presented in Section 3. Finally the conclusions are drawn in Section 
4. 

Table 1.  Benchmark Test Functions Used in Simulation. 
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2. THE APPROXIMATION BASED EA 
As in the original DAFHEA framework [14], DAFHEA-II [15] 
includes a global model of genetic algorithm (GA), hybridised with 
support vector machine (SVM) as the approximation tool. 
Expensive fitness evaluation of individuals as required in traditional 
evolutionary algorithm is partially replaced by SVM approximation 
(regression) models. Evolution control is implemented by periodic 
true evaluations, leading to considerable speedup without 
compromising heavily on solution accuracy. Also the approximate 
knowledge about the solution space generated is used to maintain 
population diversity to avoid premature convergence. 

2.1 Functional Details 
The operational detail of DAFHEA-II [15] framework is as 
described below: 

Step One: Create a random population of cN  individuals, where, 

ac NN *5=  and =aN actual initial population size. 

Step Two: Evaluate cN  individual using actual expensive function 

evaluation. Build the SVM approximate models using the candidate 
solutions as input and the actual fitness (expensive function 
evaluation values) as targets forming the training set for off-line 
training. 

Step Three: Select aN  best individual out of cN  evaluated 

individuals to form the initial GA population. 

Remarks: The idea behind using five times the actual EA 
population size (as explained in Step One) is to make the 
approximation model sufficiently representative at least initially. 
Since initial EA population is formed with aN best individuals out 

of these cN individuals, with high recombination and low mutation 

rates, the EA population in first few generations is unlikely to drift 
much from its initial locality. Thus it is expected that large number 
of samples used in building the approximation model will facilitate 
better performance at this stage. Also using the higher fitness 
individuals, chosen out of a larger set should give an initial boost to 
the evolutionary process. 

Step Four: Rank the candidate solutions based on their fitness 
value. 

Step Five: Preserve the elite by carrying over the best candidate 
solution to the next generation. 

Step Six: Select parents using suitable selection operator and apply 
genetic operators namely recombination and mutation to create 
children (new candidate solutions) for the next generation. 

Step Seven: The SVM regression models created in Step two are 
applied to estimate the fitness of the children (new candidate 
solutions) created in Step six. This involves assignment of most 
likely or appropriate models to each candidate solution. 

Step Eight: The set of newly created candidate solutions is ranked 
based on their approximate fitness values. 

Step Nine: The best performing newly created candidate solution 
and the elite selected in Step five are carried to the population of the 
next generation. 

 Step Ten: New candidate solutions or children are created as 
described in Step six. 

Step Eleven: Repeat Step seven to Step ten until either of the 
following condition is reached: 

i. The predetermined maximum number of generations has been 
reached; or 

ii. The periodic retraining of the SVM regression models is due. 
Step Twelve: If the periodic retraining of the SVM regression 
models is due, this will involve actual evaluation of the candidate 
solutions in the current population. Based on this training data new 
regression models are formed. The algorithm then proceeds to 
execute Step four to Step eleven. 

Remarks: The idea behind using periodic retraining of the SVM 
regression models is to ensure that the models continue to be 
representatives of the progressive search areas in the solution space. 
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3. EXPERIMENTS AND DISCUSSIONS 
We have tested the proposed algorithms on a set of popular 
benchmark test functions and their noisy versions. These are 
Spherical, Ellipsoidal, Schwefel, Rosenbrock and Rastrigin (see 

Table 1) functions. These benchmark functions in the test suit are 
scalable and are commonly used to assess the performance of 
optimization algorithms [12]. For all functions except Rosenbrock 
the global 

 

Table 2. Results for Simulations of DAFHEA-II on Benchmark Test Functions (Non-Noisy). 

 Best Fitness Worst Fitness Mean Fitness 
Median 

Fitness 

Standard 

Deviation 

( )xfsph  0.091E-60 1.69E-55 1.138E-56 0.932E-57 2.518E-56 

( )xfelp  3.510E-53 1.71E-48 3.412E-51 1.131E-51 0.198E-50 

( )xfsch 2.1−  1.186E-50 3.215E-47 1.911E-48 3.391E-49 7.019E-48 

( )xfros  1.198E-40 2.011E-37 1.998E-38 1.019E-38 2.081E-38 

5D 

( )xfrtg  1.413E-2 0.0109 3.322E-1 1.191E-1 4.114E-1 

( )xfsph  1.543E-46 1.99E-42 1.588E-43 0.119E-43 0.932E-42 

( )xfelp  0.912E-41 1.33E-38 2.523E-39 1.038E-39 4.042E-39 

( )xfsch 2.1−  1.012E-40 1.88E-37 2.971E-38 1.891E-38 3.237E-38 

( )xfros  1.109E-28 2.190E-25 1.918E-26 1.001E-26 2.097E-26 

10D 

( )xfrtg  1.738E-1 1.998 3.388E-1 3.013E-1 4.133E-1 

( )xfsph  1.118E-38 1.99E-34 1.388E-35 0.108E-35 2.032E-35 

( )xfelp  1.112E-34 1.72E-31 1.323E-32 1.11E-32 2.838E-32 

( )xfsch 2.1−  1.011E-32 1.75E-30 1.989E-31 1.001E-31 2.136E-31 

( )xfros  1.110E-21 2.101E-18 1.901E-19 1.001E-19 1.996E-19 

20D 

( )xfrtg  5.012 20.113 10.032 11.192 7.732 

 

minimum is ( ) 0=xf  at{ } 0=n
ix . Rosenbrock has a global 

minimum of ( ) 0=xf at{ } 1=n
ix . 

The noisy versions of the above set of functions are defined as: 

( ) ( ) ( )2,σμNxfxf Noisy +=
rr

 (1) 

where, ( )2,σμN = Standard Normal (or Gaussian) 

distribution with mean, μ = 0 and variance, 2σ = 1. The 

probability density function ( )2,; σμxf  is given as 

below. 
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All simulations were carried out using the following experiment 
setup: The population size of n10 was used for all the 
simulations, where n  is the number of variables for the problem; 
for comparison purposes three sets of input dimensions are 
considered; namely, 10,5=n  and 20. For all three cases, 
tenfold validation was done with the number of iterations being 
1000 for all non-noisy versions of the test problems for the results 
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reported in Table 2; the SVM regression models were trained with 
five times the real EA (GA in this case) population size initially. 
However, incase of the noisy versions of the test functions much 
larger number of iterations have been used to obtain acceptable level 
of accuracy of results. 

All the simulation processes were executed using a Pentium
® 

4, 
2.4GHz CPU processor. Table 2 presents the results obtained with 
DAFHEA-II algorithm on non-noisy versions of the benchmark test 
problems. Tables 3 presents the comparative results (number of 
actual function evaluations) of the various simulations runs using 
canonical GA model which uses only actual function evaluations 
and the proposed DAFHEA and DAFHEA-II models which use 
actual function evaluations sparingly. The results reported in [12] 
for a computation effort reduction technique has also been included 
for comparison purpose. Please note that, unlike the results reported 
in Table 2, these results were obtained by running the algorithms for 
variable number of iterations with the goal of achieving certain level 
of tolerance in the results. We report the results for the 5-D 
(dimension), 10-D (dimension) and 20-D (dimension) scenarios for 
both non-noisy and the noisy versions of the test functions. The 
reported results were obtained by achieving same level of tolerance 
for both canonical GA and DAFHEA and DAFHEA-II models. For 
comparison purpose, we have used results reported in [12]. While it 
is hard to generalize performance of the algorithms based on a small 
set of test functions, it is obvious from the simulation results that 

both DAFHEA and DAFHEA-II performs relatively efficiently as 
compared to the other techniques reported here. 

4. CONCLUSIONS 
Application of population based, iterative techniques like EA to 
expensive optimization problem domains is realistically feasible 
only if the number of actual function evaluations can be kept to a 
minimum. This can be achieved by the use of approximation or 
surrogate models to replace actual functions. In this paper, we have 
investigated the performance of an approximation based 
evolutionary algorithm, namely DAFHEA-II [15] as regards to its 
applicability to both noisy and non-noisy optimization problems. 
Performance of an earlier version of DAFHEA-II, namely 
DAFHEA has also been included. The algorithms showed reliable 
performance in terms of accuracy for both noisy and non-noisy 
versions of commonly used benchmark problems in majority of the 
test cases. The overhead cost towards developing and maintaining 
the meta-model is not alarmingly high. Since this overhead is 
expected not to increase much with increased problem complexity, 
both the versions of DAFHEA should lead to considerable speed up 
for complex real life problems. The satisfactory performance of 
DAFHEA-II in case of the noisy versions of the test functions 
validates our claim that the framework is suitable for solving 
complex real world optimization problems involving uncertain 
environments. 
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Table 3. Total Number of Actual Function Evaluations Required. 

 Canonical GA DAFHEA DAFHEA-II 
Method described 

in [12] 

( )xfsph  49045 21210 21300 21450 

( )xfsph (noisy) 100,000 59000 58000 - 

( )xfelp  49045 21000 21200 21051 

( )xfelp (noisy) 100,000 59000 58000 - 

( )xfsch 2.1−  49045 25500 26000 25951 

( )xfsch 2.1− (noisy) 100,000 69000 68000 - 

( )xfros  18000 7015 7100 7201 

( )xfros (noisy) 35,000 9500 9000 - 

( )xfrtg  16500 4550 4570 4601 

5D 

( )xfrtg (noisy) 100,000 5500 5100 - 

( )xfsph  99150 77520 77535 77567 

( )xfsph (noisy) 100,000 76000 75000 - 

( )xfelp  99150 84310 84325 84334 

10D 

( )xfelp (noisy) 100,000 85000 84500 - 
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( )xfsch 2.1−  99150 53755 53800 53834 

( )xfsch 2.1− (noisy) 100,000 65000 64500 - 

( )xfros  16500 6990 6999 7001 

( )xfros (noisy) 100,000 71250 71000 - 

( )xfrtg  17100 7175 7180 7100 

( )xfrtg (noisy) 100,000 20500 20000 - 

( )xfsph  199200 110420 110430 110467 

( )xfsph (noisy) 500,000 300,500 300,000 - 

( )xfelp  199200 81450 81480 81534 

( )xfelp (noisy) 250,000 81550 81500 - 

( )xfsch 2.1−  199200 144220 144235 144267 

( )xfsch 2.1− (noisy) 300,000 200,050 200,000 - 

( )xfros  70447 21170 21180 21201 

( )xfros (noisy) 500,000 290,500 290,000 - 

( )xfrtg  101650 28010 28090 28020 

20D 

( )xfrtg (noisy) 500,000 410,500 410,000 - 
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