
Multi-objective Memetic Approach for Flexible Process
Sequencing Problems

Jian-Hong Chen
Department of Computer Science and

Information Engineering
707 Sec. 2 Wu-Fu Road
Hsin-Chu 300, Taiwan

Jian-Hung Chen
Department of Computer Science and

Information Engineering
707 Sec. 2 Wu-Fu Road
Hsin-Chu 300, Taiwan
jh.chen@ieee.org

ABSTRACT
This paper describes a multi-objective memetic approach for
solving multi-objective flexible process sequencing problems
in flexible manufacturing systems (FMSs). FMS can be de-
scribed as an integrated manufacturing system consisting of
machines, computers, robots, tools, and automated guided
vehicles (AGVs).FMSs usually pose complex problems on
process sequencing of operations among multiple parts. An
efficient multi-objective memetic algorithm with fitness in-
heritance mechanism is proposed to solve flexible process
problems (FPSs) with the consideration the machining time
of operations and machine workload load balancing. The
experimental results demonstrate that our approach can ef-
ficiently solve FPSs and fitness inheritance can speed up
the convergence speed of the proposed algorithm in solving
FPSs.

Categories and Subject Descriptors
J.6 [COMPUTER-AIDED ENGINEERING]: Computer-
aided manufacturing (CAM)

General Terms
Algorithms, Design, Performance

Keywords
process planning, flexible manufacturing systems, multi-objective
optimization, memetic algorithms, fitness inheritance

1. INTRODUCTION
Computer-aided process planning (CAPP) is an automated

system for preparation of a plan that specifies machines, ma-
chine conditions, operations, operation sequence, and tools
required to production these components. Traditionally, the
process sequencing has been solved by either the experience
of process planners or a fixed and static process plan con-
sisting of an ordered sequence of operations. However, the

Copyright is held by the author/owner(s).
GECCO’08, July 12–16, 2008, Atlanta, Georgia, USA.
ACM 978-1-60558-131-6/08/07.

traditional mythologies are not suitable in real flexible en-
vironment, because the techniques have a few constraints in
order to cope with dynamic situations of the flexible environ-
ment [7]. Moreover, as the number of operations increase,
it poses more difficulties for decision makers to plan a cost-
effective process sequences for manufacturing.

In this paper, a memetic algorithm using fitness inher-
itance (MEFI) is proposed to solve multi-objective flexible
process sequencing problems (FPSs) having three objectives:
minimizing total machining time, maximum machine work-
load and machine workload unbalance. The proposed ap-
proach can obtain a set of non-dominated solutions for deci-
sion makers in a single run, without the necessary of problem
decomposition and relative preferences. Decision makers can
easily distinguish between the costs of different process se-
quences and choose more than one satisfactory process se-
quences at a time. Six benchmark problems with differ-
ent complexities are used to evaluate the performance of
the proposed approach. A multi-objective genetic algorithm
(MOGA) without local search and fitness inheritance is used
for performance comparisons. It is shown empirically that
MAFI outperforms MOGA in terms of the solution quality.

This paper is organized as follows: Section 2 presents the
background of process sequencing problems, multi-objective
evolutionary optimization. Section 3 introduces the setup
of flexible manufacturing system and the mathematical for-
mulation of FPSs. Section 4 presents the multi-objective
memetic algorithm for solving FPSs. Section 5 presents the
experimental analysis of the proposed algorithm, and Sec-
tion 6 summarizes our conclusions.

2. BACKGROUND

2.1 Process Sequencing Problems
Flexible process sequencing problems are well known among

the combinatorial optimization problems. Previous research
focused on two important key issues of process sequenc-
ing problems, described as follows. The first key issue is
the objective functions of process sequencing. Several ap-
proaches [4, 1] are proposed for process sequencing with
various objectives. Another key issue that arises recently
is the alternative process sequences. In the view of real time
scheduling, alternative process sequences provide additional
capability for the decision maker (DM) to cope with unpre-
dictable events such as machine failures or rush orders. From
the view of off-line scheduling, alternative process sequences
may be used to improve the schedule quality by reducing

2123

the load on bottleneck machines [1]. It is essential but also
a challenge for DM to prepare a set of alternative process
sequences considering the trade-off between schedule qual-
ity and the costs of process sequences. However, traditional
techniques are not able to provide such flexibility for DM.

The above issues lead to flexible process sequencing prob-
lems (FPSs), which simultaneously considers alternative pro-
cess plans with multiple objectives and the flexibility of pro-
cess sequences. Over the past decade, a number of models
have been developed to solve the process sequencing prob-
lems, but only few models [1, 7] have been reported to design
the process sequencing problem considering the above issues.
To date, solving the problem of flexible process sequencing
with multiple objectives that are conflicting in nature is still
a hard task.

2.2 Multi-objective Evolutionary Optimization
Assume all the objective functions Fm are to be mini-

mized. Mathematically, multi-objective optimization prob-
lems (MOOPs) can be represented as the following vector
mathematical programming problems:

Minimize F (X) = {F1(X), F2(X), ..., Fm(X)}, (1)

where X denotes a solution and Fm(X) is generally a nonlin-
ear objective function. When the following inequalities hold
between two solutions X1 and X2, X2 is a non-dominated
solution and is said to dominate X1(X2 � X1):

∀m : Fm(X1) ≥ Fm(X2) and ∃n : Fn(X1) > Fn(X2). (2)

When the following inequality hold between two solutions
X1 and X2, X2 is said to weakly dominate X1(X2 � X1):

∀m : Fm(X1) ≥ Fm(X2). (3)

A feasible solution X∗ is said to be a Pareto-optimal solu-
tion if and only if there does not exist a feasible solution
X where X dominates X∗. The corresponding vector of
Pareto-optimal solutions is called Pareto-optimal front.

By making use of Pareto dominance relationship, multi-
objective evolutionary algorithms (MOEAs) are capable of
performing the fitness assignment of multiple objectives with-
out using relative preferences of multiple objectives. Thus,
all the objective functions can be optimized simultaneously.
As a result, MOEA seems to be an alternative approach to
solving production planning and inspection planning prob-
lems on the assumption that no prior domain knowledge is
available.

3. PROBLEM STATEMENT

3.1 The FMS Environment
An FMS consists of a set of identical and/or complemen-

tary numerically controlled machines and tool systems. All
components are connected through an AGV system. Fig-
ure 1 shows the layout of a simple FMS with several ma-
chines, AGVs and a tool system.

In order to design the production planning of FMSs, the
environment within which the FMS under consideration op-
erates can be described below.

• The term machine is to describe a machine cell. A ma-
chine cell consists of several identical devices/machines.
The types and number of machines are known. There

Figure 1: FMS with several machines, a coordinate
measuring machine (CMM), AGVs and a central
tool magazine.

is a sufficient input/output buffer space at each ma-
chine.

• A part type requires a number of operations. A number
of part types will be manufactured simultaneously in
batches. Parts can choose one or more machines at
each of their operation stages, and the transportation
of the parts within different machines is handled by an
AGV system.

• A machine can perform several types of operations,
and an operation can be performed on alternative ma-
chines.

• A machine can only process an operation at one time.
Operations to be performed in the machine are non-
preemptive. Operation lot splitting is ignored in this
paper.

• A process sequence is a series of machine indices cor-
responding to operations of all parts. Based on a pro-
cess sequence, each operation is operated on its corre-
sponding machine. An illustrative process sequence of
3 parts and 10 operations is presented in Figure 2, and
the operations are operated on 3 different machines.
An example of the series of machine indices to be op-
timized is Y =[1 1 1 3 1 2 2 2 3 3].

• Workload on each machine is contributed by those op-
erations assigned to a machine.

• A load/unload (L/U) station serves as a distribution
center for parts not yet processed and as a collection
center for parts finished. All vehicles start from the
L/U station initially and return to there after accom-
plishing all their assignments. There are sufficient in-
put/output buffer spaces at the L/U station.

• The number of AGVs is given and the transportation
time of AGVs are known. Some machines may not be
linked.

• AGVs carry a limited number of products at a time.
They move along predetermined paths, with the as-
sumption of no delay because of congestion. Preemp-
tion of trips is not allowed.

2124

• It is assumed that all the design, layout and set-up
issues within FMS have already been resolved.

• Real-time issues, such as traffic control, congestion,
machine failure or downtime, scraps, rework, and ve-
hicle dispatches for battery changer are ignored here
and left as issues to be considered during real-time
control.

Part index 1 2 3
Operation index 1 2 3 4 1 2 3 1 2 3
Process Sequence 1 1 1 3 1 2 2 2 3 3
(Machine index)

Figure 2: A process sequence of 3 parts and 10 op-
erations, operated on 3 different machines. For ex-
ample, the operation 4 of the part 1 is assigned to
the machine 3.

3.2 Mathematical Formulation of FPSs

3.2.1 Notations
In order to formulate FPSs, the following notations are

introduced:

• i : part index, i = 1, 2, 3, ..., I.

• j : operation index for part i, j = 1, 2, 3, ..., Ji.

• k, l : machine index k, l = 1, 2, 3, ..., K.

• Y : process sequence.

• pvi : production volume (unit) for part i.

• ptijk : processing time per unit to perform operation
j of part i using machine k.

• mk : maximum workload of machine k.

• twk : workload in machine k, twk = ptijk × pvi.

• rtwk : workload ratio in machine k, rtwk = twk
mk

.

• ew : average workload of machines.

• sikl :

{
1, if part i is to transfer from machine k to l ;

0, otherwise.

• xijk :

1, if machine k is selected to perform

operation j of part i ;

0, otherwise.

• abl : available capacity of AGV per trip, abl is set to
10 in this chapter.

• nikl : the number of trips between machine k and l for
part i,

nikl = sikl × d
pvi

abl
e,

where the bracket represents a ceiling operation.

• tmkl : transportation time from machine k to l. If ma-
chines k and l are not linked, it is set to be a negative
value for constraint handling.

• tikl : total transportation time between machines k
and l for part i,

tikl = nikl × tmkl.

3.2.2 Objectives
There are three objectives to be optimized in flexible pro-

cess sequencing problems, described below.

1. Minimization of total flow time. This objective is to
minimize the processing time and transportation time
for producing the parts. The total machine processing
time (e1) is defined as Equation 4, the transportation
time (e2) is defined as Equation 5, and the total flow
time (f1) is defined as Equation 6. Transportation
between unlinked machines are penalized in e2.

e1 =

I∑
i=1

Ji∑
j=1

K∑
k=1

pvi × ptijk × xijk, (4)

e2 =

I∑
i=1

Ji−1∑
j=1

K∑
k=1

K∑
l=1

tikl × xijk × xi(j+1)l, (5)

f1 = e1 + e2. (6)

2. Minimization of machine workload unbalance. Balanc-
ing the machine workload can avoid creating bottle-
neck machines. The objective function (f2) is defined
as Equation 7.

f2 =

K∑
k=1

(rtwk − ew)2. (7)

3. Minimization of greatest machine workload. Pursuing
this objective also implies attempting to minimize the
total flow time. The objective function (f3) is defined
as Equation 8.

f3 = max{rtwk}. (8)

3.2.3 Multi-objective Mathematical Model
The overall multi-objective mathematical model of FPSs

can be formulated as follows. Given the production vol-
ume pvi, the processing time ptijk, the maximum workload
mk, the available capacity of AGV per trip abl, the trans-
portation time tmkl and the tool costs cijk, find a series of
machine indices, Y , for operations of all parts such that

minimize f1, f2, f3, (9)

subject to

K∑
k=1

xijk = 1, ∀(i, j), (10)

tmkl ≥ 0, ∀(k, l), (11)

rtwk ≤ 1, ∀i. (12)

2125

The constraint, Equation 10, ensures that only one ma-
chine is selected for each operation of a part. Equation 11 en-
sures an AGV path exists between machines k and l. Equa-
tion 12 is to ensure the machine workload twk is smaller or
equal to its maximum machine workload mk.

If the total number of machines is x and the total number
of operations is y, then the complexity of the investigated
problem is O(xy).

4. MULTI-OBJECTIVE MEMETIC ALGO-
RITHM WITH FITNESS INHERITANCE
MEFI

4.1 Schemata-Guided Local Search Strategy
Based on schema theorem and the niche hypothesis [5],

a schemata-guided local search strategy is proposed to be
combined with MOGA for improving the convergence speed
to the Pareto-front. Extended from the niche hypothesis,
it is assumed that, given a MOOP with Q Pareto-optimal
solutions, Q Pareto-optimal solutions can be regarded as Q
niches of the MOOP. In the worst case, to ensure MOEAs
is capable of searching Q Pareto-optimal solutions, it is as-
sumed that the population were divided into Q species (sub-
populations). Thus, each species is expect to optimize its
own niche (Pareto-optimal solution), as shown in Figure 3.
Therefore, the optimal schemata of a species is its Pareto-
optimal solution.

Let the schema of species be Hq, where the fixed positions
are the maximum common string of all individuals in its
species and the others are ”don’t care”(*). Since species are
in the same population, a schemata of a species may be
disrupted by schemata of the other species due to genetic
operators. The disruption between species can be further
classified into the following two types:

1. Species disrupt noise: The fixed schemata of Horigin

are altered to ”don’t care”schemata by the correspond-
ing positions of the schemata Hother. Thus, a species
requires more time for fixing it’s ”don’t care”schemata.

2. Species hitchhiking noise: The ”don’t care”schemata
of Horigin are altered to fixed schema by the corre-
sponding positions of the schema Hother. If the altered
schemata are located in the similarity regions of their
optimal schemata, the change is good for the schemata
Horigin. On the contrary, the change is bad for the
schemata Horigin.

Based on the foregoing inference, it is desired that a species
should keep its good schemata (building blocks) while mak-
ing good efforts to alter its ”don’t care” schemata to its
ideal optimal schemata. As results, a schemata-guided local
search strategy is proposed based on this guideline. Infor-
mation of fixed and ”don’t care” schemata in species are
utilized to guide local search. However, the key question of
this local search strategy is that how do we classify popula-
tion to different species when true Pareto-optimal solutions
of MOOPs are unknown. To deal with this question, it is as-
sumed that the best individuals in each objective functions
are the pioneers of each species. These pioneers will be used
to classify all individuals in population to different species.

Given a maximum local search times MaxLS and a tem-
porary elite set E′, the procedure of the used schemata-
guided local search strategy is written as follows:

*00011****

****1011**

f 2

f
1

Figure 3: The population were divided into several
species, and each species optimizes its own niche
(Pareto-optimal solution).

Step 1: (Identification) Identify the best individuals Bq, q =
1, 2, ..., Q, in each objective from the current popula-
tion. For FPSs, Q=3.

Step 2: (Classification) Classify the current population into Q
species by the best solutions in each objective.

Step 3: (Schemata computation) For each species, compute its
schemata Hq. Both fixed and ”don’t care” schemata
are identified.

Step 4: (Parameter setting) Let q = 1, counter = 0.

Step 5: (Perturbation) Perturb Bq into a new solution B′q. Ac-
cording to Hq, apply the mutation operator only on
”don’t care” locations of Bq with a mutation probabil-
ity pm.

Step 6: (Evaluation) Evaluate the objective functions of B′q.
Let counter = counter + 1.

Step 7: (Comparison) There is 3 cases in comparisons of Bq

and B′q. Case 1: If Bq dominates B′q and counter <
MaxLS, go to Step 5. Case 2: If Bq is dominated by
B′q, replace Bq by B′q. Case 3: If Bq and B′q doesn’t
dominated each other. Stored B′q in a temporary elite
set E′.

Step 8: (Termination test) Let q = q + 1 and counter=0, if
q>Q, stop the local search strategy. Otherwise, go to
Step 5.

4.2 Fitness Inheritance
An efficiency enhancement techniques called fitness inher-

itance [2] is used for speedup of MEFI. During the evolution
of EAs, the fitness of some proportion of individuals in the
subsequent population is inherited. This proportion is called
the inheritance proportion, pi.

Mathematically, for a multi-objective problem with z ob-
jective, the used fitness inheritance is defined as

fz =
w1fz,p1 + w2fz,p2

w1 + w2
, (13)

where fz is the fitness value in objective z, w1, w2 are the
weights for the two parents p1, p2, and f(z, p1), f(z, p2) is

2126

the fitness values of p1, p2 in objective z, respectively. In
this paper, w1 and w2 are set to 1.

According the literature of fitness inheritance, the pop-
ulation size of FIEA should be bigger than the population
size used for MOGA, as shown in the following equation:

Npop,FIEA =
Npop,MOGA

1− p3
i

(14)

4.3 MEFI for solving FPSs

4.3.1 Representation and Operators
A series of machine indices Y for operations of all parts

is directly encoded as a integer chromosome. The range of
each gene of Y is [1, K]. Each gene of Y stands for a machine
index.

The selection operator of MEFI uses a binary tourna-
ment selection which works as follows. Choose two indi-
viduals randomly from the population and copy the better
individual into the intermediate population. The one-point
crossover is used in MEFI. A simple mutation operator is
used to alter genes. For each gene, randomly generate a real
value from the range [0, 1] with the probability pm.

MEFI uses a generalized Pareto-based scale-independent
fitness function GPSIFF [6] by the following function:

F (X) = p− q + c, (15)

where p is the number of individuals which can be dominated
by the individual X, and q is the number of individuals
which can dominate the individual X in the objective space.
c is the number of all participant individuals.

Based on the proposed chromosome representation, Equa-
tion 10 is always satisfied. If Equation 11 is violated, the
transportation time between machines k and l, tmkl, is set
to be a large value, 107. In this way, f2 will be penalized.
For each machine k, if Equation 12 is not satisfied, one is
added to rtwk, as follows:

rtwk =

{
twk
mk

, if twk ≤ mk;
twk
mk

+ 1, otherwise.
(16)

4.4 Procedure of MEFI
Since it has been recognized that the incorporation of

elitism may be useful in maintaining diversity and improv-
ing the performance of multi-objective EAs [3], MEFI se-
lects a number of elitists from an elite set E in the selection
step. The elite set E with capacity Emax maintains the best
non-dominated solutions generated so far. In addition, an
external set E with no capacity is used to store all the non-
dominated solutions ever generated so far. The procedure
of MEFI is written as follows:

Step 1: (Initialization) Randomly generate an initial popula-
tion of Npop individuals and create two empty elite
sets E, E and an empty temporary elite set E′.

Step 2: (Evaluation) For each individual Y in the population,
excluding the inherited individuals, compute the value
of objective functions f1(Y), f2(Y), and f3(Y).

Step 3: (Fitness assignment) Assign each individual a fitness
value by using GPSIFF.

Table 1: The parameter settings of MEFI and
MOGA.

Parameters MEFI MOGA
Npop 115 100
Emax 115 100
ps 0.25 0.25
pi 0.5 N/A
pc 0.6 0.6
pm 0.05 0.05
MaxLS 3 N/A

Step 4: (Local search) Apply the proposed schemata-guided lo-
cal search strategy. Non-dominated solutions obtained
by the local search strategy will be stored in temporary
elite set E′.

Step 5: (Update elite sets) Add the non-dominated individu-
als in both the population and E′ to E, and empty
E′. Considering all individuals in E, remove the dom-
inated ones in E. Add E to E, remove the dominated
ones in E. If the number of non-dominated individu-
als in E is larger than Emax, randomly discard excess
individuals.

Step 6: (Selection) Select Npop−Nps individuals from the pop-
ulation using the binary tournament selection and ran-
domly select Nps individuals from E to form a new
population, where Nps = Npop × ps and ps is a selec-
tion proportion. If Nps is greater than the number NE

of individuals in E, let Nps = NE .

Step 7: (Recombination) Perform the one-point crossover op-
eration with a recombination probability pc.

Step 8: (Fitness inheritance) Perform fitness inheritance on
the selected Npop × pi individuals. The inherited ob-
jective values are calculated according to Equation 13.

Step 9: (Mutation) Apply the mutation operator to each gene
in the individuals with a mutation probability pm.

Step 10: (Termination test) If a stopping condition is satisfied,
stop the algorithm and output E. Otherwise, go to
Step 2.

5. RESULTS AND DISCUSSION
Six benchmark problems: m3o10, m4o20, m5o100, m5o200,

m10o100 and m10o200, where mxoy stands for the x ma-
chine and y operation problem. A MOGA, MEFI without
the local search strategy and fitness inheritance, is imple-
mented to solve FPSs as the baseline performance. The pa-
rameter settings of MEFI and MOGA are given in Table 1.
Thirty independent runs with the same number of function
evaluations 100xy were performed per test problems.

The coverage metric C(A, B) of two solution sets A and
B [8] used to compare the performance of two corresponding
algorithms considering the six objectives:

C(A, B) =
|{a ∈ A, b ∈ B, a � b}|

|B| , (17)

Fig. 4 depicts the coverage metrics of C(MEFI, MOGA)
and C(MOGA, MEFI) from 30 runs. In solving the small
problem m3o10, Fig. 4 shows that the performance of MEFI

2127

m3o10 m4o20 m5o100 m5o200 m10o100 m10o200
0

0.2

0.4

0.6

0.8

1

(b) C(MOGA, MEFI)

m3o10 m4o20 m5o100 m5o200 m10o100 m10o200
0

0.2

0.4

0.6

0.8

1

(a) C(MEFI, MOGA)

Figure 4: Box plots based on the cover metric. (a)
C(MEFI, MOGA), (b) C(MOGA, MEFI).

and MOGA are almost the same. For another small prob-
lem m4o20, the non-dominated solutions obtained by MEFI
dominates 80% of the solutions obtained by MOGA in aver-
age, while the non-dominated solutions obtained by MOGA
only dominates 60% of the non-dominated solutions obtained
by MEFI in average. As the complexity of problems in-
creases, Fig. 4 shows that 80%-90% of the non-dominated
solutions obtained by MOGA are weakly dominated by the
non-dominated solutions obtained by MEFI in solving the
problems m4o20, m5o100, m5o200, m10o100 and m10o200.
On the contrast, the non-dominated solutions of MOGA
dominate nearly 3-10% of the non-dominated solutions ob-
tained by MEFI. Fig. 5 shows the non-dominated solutions
obtained by thirty runs of MEFI and MOGA in solving the
m10o200 problem. The results indicate that MEFI can con-
verge to better solutions more quickly than MOGA. It re-
veals that the proposed schemata-guided local search strat-
egy and fitness inheritance plays an important role in obtain-
ing good solutions and accelerating the convergence speed.

6. CONCLUSION
In this paper, a novel approach to solve flexible process

sequencing problems using an multi-objective memetic al-
gorithm MEFI is proposed. A schemata-guided local search
strategy and fitness inheritance are integrated in the pro-
posed algorithm for enhancing the performance. Experimen-
tal results demonstrated that the quality of non-dominated
solutions obtained by MEFI is better than that of MOGA
in terms of convergence speed and accuracy using the same
number of function evaluations. While prior domain knowl-
edge for the decomposition of problems or relative prefer-
ences of multiple objectives are not available, the proposed
approach is an expedient method to solve flexible process
sequencing problems. Moreover, the proposed approach can
obtain a set of non-dominated solutions for decision mak-
ers in a single run. Decision makers can easily distinguish
between the costs of different process sequences and choose
more than one satisfactory process sequences at a time.

4
4.5

5
5.5

6
6.5

x 105

0

0.01

0.02

0.03

0.04
0.3

0.32

0.34

0.36

0.38

0.4

0.42

0.44

f1
f2

f 3

MOGA
MEFI

Figure 5: The non-dominated solutions obtained by
MEFI and MOGA in solving the m10o200 problem,
merged from 30 runs.

7. ACKNOWLEDGMENTS
This work was supported by the National Science Council

of Taiwan, R.O.C. under Contract NSC-96-2221-E-216-037-
MY2 and NSC-095-SAF-I-564-616-TMS, and Chung-Hua Uni-
versity under Contract CHU-96-2221-E-216-037-MY2.

8. REFERENCES
[1] P. Brandimarte. Exploiting process plan flexibility in

production scheduling: A multi-objective approach.
European Journal of Operational Research, (114):59–71,
1999.

[2] J.-H. Chen, D. E. Goldberg, S.-Y. Ho, and K. Sastry.
Fitness inheritance in multi-objective optimization. In
GECCO ’02: Proceedings of the Genetic and
Evolutionary Computation Conference, pages 319–326,
San Francisco, CA, USA, 2002. Morgan Kaufmann
Publishers Inc.

[3] K. Deb. Multi-objective optimization using evolutionary
algorithms. Wiley-Interscience series in systems and
optimization. John Wiley & Sons, 2001.

[4] M. Gen and R. Cheng. Genetic algorithms and
engineering design. John Wiley, New York, 1997. 1944-
Mitsuo Gen, Runwei Cheng. ill. ; 24 cm.

[5] D. E. Goldberg. Genetic algorithms in search,
optimization, and machine learning. Addison-Wesley
Pub. Co., 1989.

[6] S.-Y. Ho, L.-S. Shu, and J.-H. Chen. Intelligent
evolutionary algorithms for large parameter
optimization problems. IEEE Transaction on
Evolutionary Computation, 8(6):522–541, Dec. 2004.

[7] C. Moon, Y.-Z. Li, and M. Gen. Evolutionary algorithm
for flexible process sequencing with multiple objectives.
In Proceeding of IEEE International Conference on
Computational Intelligence, pages 27–32, 1998.

[8] E. Zitzler and L. Thiele. Multiobjective evolutionary
algorithms: A comparative case study and the
strengthen Pareto approach. IEEE Transaction on
Evolutionary Computation, 4(3):257–271, 1999.

2128

