
A Comparison Of Multiobjective Evolutionary Algorithms
with Informed Initialization and Kuhn-Munkres Algorithm

For The Sailor Assignment Problem

Dipankar Dasgupta, German Hernandez, Deon Garrett, Pavan Kalyan Vejandla,
Aishwarya Kaushal, Ramjee Yerneni

Dept. of Computer Science, University of Memphis
Memphis, TN 38152

{ddasgupt,gjhrnndz,jdgarrtt,pvejandl,kaushal1,ryerneni}@memphis.edu

James Simien
Research Analyst

Navy Personnel Research, Studies, and Technology
Millington, TN 38055

james.simien@navy.mil

ABSTRACT
This paper examines the performance of two multiobjec-
tive evolutionary algorithms, NSGA-II and SPEA2, with
informed initialization on large instances of United States
Navy’s Sailor Assignment Problem. The informed initializa-
tion includes in the initial population special solutions ob-
tained by an extension of the Kuhn-Munkres algorithm. The
Kuhn-Munkres algorithm, a classical algorithm that solves
in O(n3) time instances of the single valued linear assign-
ment problem, is extended here to render it applicable on
single objective instances of the sailor assignment problem
obtained using weight vectors to scalarize the natural multi-
objective formulation. The Kuhn-Munkres extension is also
used to provide a performance benchmark for comparison
with the evolutionary algorithms.

Categories and Subject Descriptors
I.2.8 [Problem Solving, Control Methods, and Search]

General Terms
Algorithms,Management

1. INTRODUCTION
According to the United States Navy’s personnel policies,

roughly every three years sailors serving on active duty are
reassigned to a different job. As a result, at any given time
there exists a sizable population of sailors to be reassigned

Copyright is held by the author/owner(s).
GECCO’08, July 12–16, 2008, Atlanta, Georgia, USA.
ACM 978-1-60558-131-6/08/07.

to available jobs. Currently, more than 300,000 sailors serve
in the Navy and more than 120,000 are reassigned each year
[6]. Sailors must be reassigned in such a way as to satisfy
their individual preferences and the needs of the Navy. The
Navy’s goal is to identify sailor and job matches that max-
imizes some criterion of desirability and referred to as the
Sailor Assignment Problem (SAP).

Currently the Navy employs approximately 200“detailers”
that are responsible for assigning sailors to a particular job
[8]. Depending on the season, there are differing numbers of
sailors to be assigned; in a time of low peak activity there
usually some hundreds of sailors to be assigned, compared to
possibly ten thousand sailors during periods of high activity.

In reality, the desirability of a possible assignment is not
determined by a single measure since several factors in com-
bination determine what constitutes a suitable match. The
Navy would like to maximize the satisfaction of the sailors
with the jobs they have been assigned, while also best uti-
lizing the available talent at the least cost.

In previous work [4], genetic algorithms were tested on sin-
gle objective versions of the sailor assignment problem and
compared against results of the Gale-Shapley algorithm that
solves in O(n2) time the stable marriage problem. Also, in
[5], it was shown that when NSGA-II [3] or SPEA2 [11] were
applied to multiobjective instances of the sailor assignment
problem, the results lack diversity. In that work, adequate
diversity was achieved by combining the evolutionary algo-
rithms with a rudimentary local search operator.

In this work work we show that similar results may be
obtained using only an informed initialization that includes
in the initial population some reduced number of special
solutions obtained by the application of the Kuhn-Munkres
algorithm extension presented here.

2. LINEAR ASSIGNMENT PROBLEM
The matching or assignment problems are one the funda-

mental classes of combinatorial optimization problems. In
its most general form, a matching or assignment problem

2129

Figure 1: Linear Assignment Problem. cij denotes
the cost of assigning agent i to task j.

can be stated as follows: a number of agents n and a num-
ber m of tasks are given, possibly with some restrictions on
which agents can perform each particular task. A cost is
incurred for each agent performing some task, and the goal
is to perform all tasks in such a way that the total cost of
the assignment is minimized.

The Linear Assignment Problem (LAP) is the simplest of
the assignment problems. In the canonical LAP, the num-
ber of agents and tasks is the same, and any agent can be
assigned to perform any task. LAP is thus equivalent to the
problem of finding an optimum weight vertex matching in
an n × n cost-weighted complete bipartite graph, as shown
in Figure 1.

Formally LAP can be formulated as follows: Given a set
of agents A = {a1, a2, ...an} and a set with same number of
tasks T = {t1, t2, ...tn} and the cost function C : A×T → R.
Find a bijection (matching) m : A → T such that the cost
function: X

a∈A

C(a, m(a))

is minimized or maximized. Usually the cost function is
also viewed as square real-valued matrix C with elements
Cij = C(ai, tj).

This problem can be expressed as a integer linear program
with the objective function

nX
i=1

nX
j=1

Cijxij

subject to the constraints

•
Pn

i=1 xij = 1 ∀j ∈ {1, 2, ...n}

•
Pn

j=1 xij = 1 ∀i ∈ {1, 2, ...n}

• xij ∈ {0, 1} ∀i, j ∈ {1, 2, ...n}

2.1 The Kuhn-Munkres Algorithm
The Kuhn-Munkres Algorithm, also known as the Hun-

garian algorithm, is an algorithm that solves LAP instances
in polynomial time (O(n3)). It was first published in 1955
by H. Kuhn [7] and later improved by J. Munkres in 1957
[9]. An extension of this algorithm for rectangular matrices
was introduced by Bourgeois and Lassalle in 1971 [1]. The
extension to rectangular matrices allows the algorithm to
operate in situations where the numbers of agents and tasks
are unequal. A compact description of the steps of this al-
gorithm, adapted from [2], is given below, and an example
is shown in Figure 2.

Figure 2: Kuhn-Munkres example

Step 1: For each row of the matrix, find the smallest ele-
ment and subtract it from each element in its row.

Step 2: Find a zero in the resulting matrix. If there is
no starred zero in its row or column, star that zero.
Repeat for each zero in the matrix.

Step 3: Cover each column containing a starred zero. If
n columns are covered, the starred zeros describe a
complete set of unique assignments. In this case, stop,
otherwise continue with step 4.

Step 4: Find an uncovered zero and prime it. If there is
no starred zero in the row containing this primed zero,
go to Step 5. Otherwise, cover this row and uncover
the column containing the starred zero. Repeat this
process until there are no uncovered zeros left. After
saving the smallest uncovered value go to Step 6.

Step 5: Construct a path of alternating primed and starred
zeros as follows. Let Z0 represent the uncovered primed
zero found in Step 4. Let Z1 denote the starred zero in
the column of Z0 (if any). Let Z2 denote the primed
zero in the row of Z1 (there will always be one). Con-
tinue until the series terminates at a primed zero that
has no starred zero in its column. Un-star each starred
zero of the series, star each primed zero of the series,
erase all primes and uncover every line in the matrix,
return to Step 3.

Step 6: Add the value found in Step 4 to every element of
each covered row, and subtract it from every element
of each uncovered column. Return to Step 4 without
altering any stars, primes, or covered lines.

3. THE SAILOR ASSIGNMENT PROBLEM
The United States Navy’s Sailor Assignment Problem (SAP)

exhibits several complications compared to the canonical
LAP.

• There are more tasks (jobs) than agents (sailors).

2130

• Not every sailor can perform every possible job. Each
sailor has a list of possible of jobs for which he is qual-
ified, and from that list he chooses a subset that he
wants to apply for and then ranks them according to
his preferences.

• SAP is a multiobjective problem, requiring the simul-
taneous maximization of the satisfaction of the sailors
and commanders, maximization of the training score
over each assigned sailor/job combination, and mini-
mization of the cost of relocating the sailor.

Formally SAP can be formulated as follows: Given

• S = {s1, s2, ...sn} the set of sailors(agents) ,

• J = {j1, j2, ...jm} the set of jobs, with m > n ,

• L = {L1, L2, ..., Ln} the set of lists of of jobs for the
sailors, with Li =

˘
ji
1, j

i
2, ..., j

i
ki

¯
the list of jobs that

sailor si is qualified and applied for,

• TS : S×J → R for the training score, PCS : S×J →
R for permanent change of cost, SR : S × J → R for
the sailor ranking, CR : S×J → R for the commander
ranking — the four goal functions for each sailor-job
pair,

find the set of assignments or matchings A∗ that are Pareto
optimal,

A∗ = {a | a : S → J, a Pareto optimal injection} .

In this case the assignments are injections due to the fact
that there can be unassigned sailors.

3.1 Kuhn-Munkres Algorithm Extension
The application of the Kuhn-Munkres algorithm to SAP

instances thus has three problems. First, SAP cannot be
represented as a complete bipartite graph. The canonical
form of the algorithm assumes that any sailor may be as-
signed to any job. In the SAP, this assumption is not true,
and the algorithm must be modified to ensure that only
qualified sailors may be assigned to each job. Additionally,
the sparseness of the graph can allow for improvements to
the efficiency of the algorithm. Second, SAP is a multiobjec-
tive problem, whereas the Kuhn-Munkres is defined only on
problems exhibiting a single objective function. Finally, the
Kuhn-Munkres requires the existence of a complete match.
These problems and their solutions are discussed in detailed
in following section.

3.1.1 SAP cannot be represented as a complete
bipartite graph

As mentioned above, the Kuhn-Munkres Algorithm will
only work on a complete bipartite graph that is represented
by a matrix with all finite values, as shown in Figure 3.
On the other hand, the graph resulting from the SAP is
an incomplete bipartite graph and the intuitive strategy is
to assign the nonexistent edges infinite cost, thus preventing
the algorithm from choosing these infeasible edges. As there
are generally only a small number of jobs that a sailor can
perform when compared to the total pool of jobs, storing
the full matrix is unnecessary. A sparse matrix represen-
tation requires only those values corresponding to feasible
sailor/job combinations. Figure 4 shows the resulting rep-
resentation. Two lists are thus maintained – one containing

Figure 3: Figure(a) represents complete bipartite
graph figure (b) shows incomplete graph

Figure 4: Row and Column Representation of
Sparse Matrix

sailors and the information of jobs that he can perform and
the other containing jobs and information of sailors who can
perform each job.

In addition, Figure 4 demonstrates the representation in
which the objective function values are stored. Each value
in one of these lists contains the pertinent information re-
garding the utility of assigning the sailor to the given job. In
particular, the values of each of the four objective functions
is stored, as well as the ”Reduced rating,” obtained by mul-
tiplying the objective function vector by a given weight vec-
tor. By storing only the eligible sailor/job combinations, the
computational and storage requirements of the algorithm
may be greatly decreased.

3.1.2 SAP is Multiobjective
The Kuhn-Munkres Algorithm is defined only for a single

objective function, whereas SAP requires the simultaneous
consideration of multiple objectives (training score, perma-
nent change of station cost, commander choice, and sailor
choice). To resolve this incompatibility, single objective in-
stances of SAP are obtained using weight vectors, with the
resulting goal to optimize

w1 × TS + w2 × PCS + w3 × SR + w4 × PCS

with wi ∈ [0, 1] and w1 + w2 + w3 + w4 = 1. To obtain a
diverse set of Pareto optimal solutions, the single objective
problem is solved for each one of the weight vectors obtained
via recursively subdividing the weight space, as shown in
Figure 5 for two and three objective problems.

2131

Figure 5: Weight vectors samples

Figure 6: Addition of dummy jobs

3.1.3 Incomplete matching
In SAP instances, we can have the situation in which no

feasible solution exists with all sailors successfully matched.
To solve this problem, dummy jobs were added, as shown
in Figure 6, for each sailor with low Training Score, high
PCS cost, low Command Rank and low Sailor Rank, each
guaranteed to be worse than any feasible sailor/job match,
which can be chosen as a last resort. This allows the algo-
rithm to successfully complete, even when conflicts prevent
all sailors from being assigned feasible jobs.

From experimental analysis of SAP instances, it was esti-
mated that the number of jobs that a particular sailor can
perform is typically approximated by log m and that number
of sailors that can perform a particular job by log n. Thus
this extension of the Kuhn-Munkres algorithm has to update
log n × log m elements at most n times and accessing each
element takes logm jumps in the lists then time complexity
is O(n log2 m log n).

Figure 7: Informed Initialization

4. MOEA WITH INFORMED
INITIALIZATION

4.1 Representation and initialization
The search space of this algorithms is the set of all feasible

assignments

A∗ = {a | a : S → J, a feasible injection} ,

a injection is feasible assignment if

• a(si) ∈ Li and

• a(si) 6= a(sj) for i 6= j.

An assignment can be represented in the form of a vector

a =
`
j1, j2, j3....., jn

´
where ji = a(si) is the job assigned to si.

4.1.1 Informed Initialization
Five nondominated solutions (solutions from weight-vectors

[1,0,0,0], [0,1,0,0], [0,0,1,0], [0,0,0,1], and [0.25,0.25,0.25,0.25])
were obtained from the Kuhn-Munkres algorithm and fed
into the initial populations of NSGA-II. As demonstrated in
Figure 7, this provides the MOEA with extreme solutions
along the Pareto front, from which the evolutionary opera-
tors may work to fill in gaps along the front. The remainder
of the population was initialized uniformly at random. The
random initialization procedure is described in Algorithm 1.

Algorithm 1 Algorithm for Initialization of the population

1: P ← size of the population
2: Let ak [] ← an array representing the kth assign-

ment(individual) in the population.
3: Let F []← an array having boolean variable which rep-

resents wheather the job is free or not
4: for i = 1 to P do
5: initialize all variable of F [] to true.
6: for j = 1 to n do
7: Let J ← a free job in Li

8: Mark the job that is not free
9: if there is not then

10: set J : = -1
11: end if
12: end for
13: end for

2132

Figure 8: NSGA-II

4.2 Operators

4.2.1 Mutation:
The mutation operator first tries to assign a free job to

a sailor if available, and tries to assign the current job of
the sailor to an unassigned sailor this we call as SHIFT. If
not it goes through the list of sailors that can perform the
current job and tries to swap the job with some sailor which
we call SWAP. It does this until a SWAP or a SHIFT. The
procedure of mutation can be found in Algorithm 2.

Algorithm 2 Algorithm for Mutation

1: S ← Pick a sailor at random
2: J ← Job that sailor S is currently performing
3: repeat
4: if there is at least one job that a sailor S can do then
5: if S is unassigned then
6: assign one of the free jobs to S
7: else
8: mark J as free
9: {SHIFT}assign one of the free jobs to S

10: end if
11: else
12: {SWAP} Go through the list of sailors that can

perform the job J
13: Collect the jobs that sailor S can swap with the

sailors that can perform J .
14: Swap job J with any other sailor who can perform

J
15: end if
16: until a SWAP or SHIFT or it can not perform mutation

4.2.2 Crossover:
Unlike [4, 5], the crossover operator used here does not re-

quire a repair operator, as it always produces an assignment
that is feasible. The crossover operator picks a position at
random and swaps the jobs of two parents at that position
and checks for a possible conflict (repetition of a job), we
call this a CYCLE, not to be confused with the well-known
cycle crossover operator defined over permutations, some-
times denoted by CX. If a conflict does appear, the operator
attempts to resolve the conflict by swapping the jobs at the

Figure 9: Multiple runs of scalarized Kuhn-
Munkres.

conflicting position. It does this until a random number of
cycles. The procedure of crossover operator is explained in
Algorithm 3.

Algorithm 3 Algorithm for Crossover

1: P1 ← Parent-1
2: P2 ← Parent-2
3: repeat
4: Select a point at random
5: Swap the jobs of P1 and P2 at random point
6: Check P1 and P2 for repetitions
7: if Repetitions then
8: Swap the jobs of P1 and P2 to resolve the repetitions
9: end if

10: until number of cycles

5. EXPERIMENTAL RESULTS AND
CONCLUSIONS

The open-source software package Jmetal [10] was used for
all MOEA experiments. Jmetal is a java based framework
for genetic algorithms which includes several metaheuris-
tic algorithms as well as several benchmark problems. The
package was modified to include the sailor assignment prob-
lem.

Ten trials of each algorithm were performed, and the re-
sults displayed using a parallel plot method which displays
each solution as a polyline connecting five points – one each
along five vertical lines representing each objective. As all
objectives were converted to minimization, a hypothetical
perfect solution would be represented by a horizontal line
along the x-axis of plots such as Figures 8, 9 and 10.

Comparing NSGA-II with the Kuhn-Munkres algorithm,
the LAP method produces more diverse and much better
solutions. As Kuhn-Munkres is a complete search, this per-
formance is expected. However, the runtime required by the
Kuhn-Munkres algorithm is much larger than the MOEA.
To attempt to combine the fast performance of the MOEA
with the superior results of the LAP algorithm, the five
best solutions obtained from the Kuhn-Munkres (using the
weight vectors described above) were integrated into the ini-

2133

Figure 10: NSGA-II (K-M Initialization).

Table 1: Run time in hours for the included algo-
rithms. * indicates inclusion of KM5 solutions.

Problems Algorithms
Sailors Jobs K-M(287) NSGA-II* SPEA2*

1000 1100 0.6686 0.48280 0.64695
2000 2100 2.4980 1.13692 1.60305
4000 4100 31.245 3.02488 4.47682
8000 10,000 383.432 8.89397 13.69670

tial population of the NSGA-II. Figure 10 shows the re-
sults, which provide essentially equivalent performance to
the full Kuhn-Munkres algorithm with much lower compu-
tation time. Table 1 and Figure 11 present the required
computation time for the different algorithms.

This work has shown that one may achieve substantial
performance improvements in the performance of standard
multiobjective evolutionary algorithms through the injection
of high-quality solutions into the initial population. In the
case of the Sailor Assignment Problem, a polynomial time
algorithm was used to generate a small number of Pareto
optimal solutions for this initial seeding, and the evolution-
ary algorithm started from this seed was shown to provide
excellent performance in a fraction of the time required by
the classical algorithm alone.

6. ACKNOWLEDGEMENTS
This project is funded under the Scientific Services Pro-

gram (Task No. 07192), which is sponsored by the US Army
Research Office and is managed by Battelle under Prime
Contract No. W911NF-07-D-0001.The views and conclu-
sions of this paper in no way reflect the opinions or positions
of NPRST or the U.S. Government.

7. REFERENCES
[1] F. Bourgeois and J. C. Lassalle. An extension of the

munkres algorithm for the assignment problem to
rectangular matrices. Communications of the ACM,
14(12):802–804, December 1971.

[2] A. D. Doty, Iowa State University.
http://www.public.iastate.edu/
∼ddoty/HungarianAlgorithm.html.

Figure 11: Comparision of Execution Times(in
Hours)

[3] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan. A
fast and elitist multiobjective genetic algorithm:
NSGA-II. IEEE Transactions on Evolutionary
Computation, 6(2):182–197, 2002.

[4] J. D. Garrett, J. Vannucci, R. Silva, D. Dasgupta, and
J. Simien. Genetic algorithms for the sailor assignment
problem. In Proceedings of the 2005 Genetic and
Evolutionary Computation Conference (GECCO-05).
ACM press, 2005.

[5] J. D. Garrett, J. Vannucci, R. Silva, D. Dasgupta, and
J. Simien. Applying hybrid multiobjective
evolutionary algorithms to the sailor assignment
problem. In L. Jain, V. Palade, and D. Srinivasan,
editors, Advances in Evolutionary Computing for
System Design. Springer Verlag, 2007.

[6] A. Holder. Navy personnel planning and optimal
partition. Operations research, 53(1):77–89,
January-February 2005.

[7] H. W. Kuhn. The hungarian method for the
assignment problem. Naval Research Logistic
Quarterly, 2:83–97, 1955.

[8] L. McCauley and S. Franklin. A large multi-agent
system for navy personnel distribution. Connection
Science, 14(4):371–385, December 2002.

[9] J. Munkres. Algorithms for the assignment and
transportation problems. Journal of the Society of
Industrial and Applied Mathematics, 5(1):32–38,
March 1957.

[10] Networking and S. Emerging Optimization (NEO),
University of Malaga. JMetal: Metaheuristic
algorithms java library.
http://mallba10.lcc.uma.es/wiki/index.php/JMetal.
Version 1.5, april 2008.

[11] E. Zitzler, M. Laumanns, and L. Thiele. SPEA2:
Improving the strength pareto evolutionary algorithm.
Technical Report 103, Computer Engineering and
Networks Laboratory (TIK), Swiss Federal Institute of
Technology (ETH), Gloriastrasse 35, CH-8092 Zurich,
Switzerland, May 2001.

2134

