
Towards Memoryless Model Building

David Iclănzan
david.iclanzan@gmail.com

D. Dumitrescu
ddumitr@cs.ubbcluj.ro

Department of Computer Science
Babeş-Bolyai University, Koglniceanu no. 1

Cluj-Napoca, 400084, Romania

ABSTRACT
Probabilistic model building methods can render difficult
problems feasible by identifying and exploiting dependen-
cies. They build a probabilistic model from the statistical
properties of multiple samples (population) scattered in the
search space and generate offspring according to this model.
The memory requirements of these methods grow along with
the problem size as the population must be large enough to
guarantee proper initial-supply, decision-making and accu-
rate model-building.

The paper presents a novel model based trajectory method,
which samples only one point at the time and infers the prob-
lem structure online by means of Artificial Neural Network
based machine learning technique.

As case study we show how the proposed method can very
efficiently address hard, non-separable building-block prob-
lems, specially designed to be solvable only by population
based recombinative methods.

The small memory requirement and fast convergence of
the proposed method comes at the cost of a tradeoff: the
complexity of an accurate model building is bounded by the
exponential of the order of dependencies detected by the
online learning.

Categories and Subject Descriptors
G.1.6 [Mathematics of Computing]: Global Optimiza-
tion—Analyze; I.2.8 [Artificial Intelligence]: Problem Solv-
ing, Control Methods and Search

General Terms
Algorithms, Design, Theory

Keywords
Model based local-search, online model building, adaptive
neighborhood structure

Copyright is held by the author/owner(s).
GECCO’08, July 12–16, 2008, Atlanta, Georgia, USA.
ACM 978-1-60558-131-6/08/07.

1. INTRODUCTION
Estimation of Distribution Algorithms (EDAs) extend the

classical framework of Evolutionary Algorithms (EAs) by
building and using probability functions and generating sam-
ples accordingly, which enables them to represent and learn
the structure between the search variables. These methods
can detect dependencies spread over the entire length of the
genome and solve modular problems, which are intractable
using fixed, problem independent operators [12].

EDAs able to exploit hierarchical structure can solve prob-
lems with higher order dependencies, where many or even
all variables may be non-linearly interdependent. However,
in these problems, like the Hierarchical IFF [17] or the Hi-
erarchical Trap function [13], the dependencies are limited
such that efficient problem solving is possible due to the
hierarchical module organization.

EDAs usually search for a model which fit an existing
population according to some criteria, like the Minimum
Description Length Principle [3] or Bayesian-Dirichlet met-
ric [12]. The size of the population must be large enough
to guarantee proper initial-supply, decision-making and ac-
curate model-building. Model building may require many
model evaluations with regard to the population, resulting
in a significant computational burden which can even exceed
the bound for the number of evaluations [2].

In this paper a novel Online Model Based Local-Search
(OMBLS) framework is presented, similar in approach with
[5] in the sense that it employs an adaptive neighborhood
structure which facilitates the operation directly on mod-
ules. Nevertheless, this approach does not use a memory to
store semi-converged solutions for later analysis, one point
is sampled at the time and the search experience is accu-
mulated and information about the problem structure is in-
ferred from a single data structure.

The online learning is achieved by means of an Artificial
Neural Network (ANN) model that can be efficiently trained
adaptively, namely Self Organizing Maps (SOM) based on
unsupervised learning. ANNs in general and SOMs in partic-
ular are known to have the capability to automatically learn
the hidden structure of an input space; they have the abil-
ity to preprocess input patterns to produce simpler patterns
with fewer components [7].

A great advantage of online learning, besides the low mem-
ory requirements, is that the model inferring process is au-
tomatic; there is no model search and repeated costly eval-
uation against a set of samples (population).

The following section presents hierarchically decompos-
able, non-separable building-block test problems. Section

2147

3 describes the model based trajectory method with SOM
based online unsupervised learning. The performance of the
proposed algorithm is discussed and empirical results are
presented in Section 4. Finally, the paper is concluded in
Section 5.

2. THE CLASS OF HIERARCHICAL PROB-
LEMS

Although having a gross-scale building-block structure, hi-
erarchical problems are hard to solve without proper prob-
lem decomposition as the blocks from these functions are
not separable. These problems are formed by a hierarchy
of modules where a module consists of a number of smaller,
non-overlapping modules, and smallest modules at the bot-
tom of the hierarchy are the variables of the problem. A
module may be defined as a subset of the variables in the
problem for which it holds that only part of the variable
settings are near-optimal for some context setting [2].

The fundamental of hierarchically decomposable problems
is that there is always more than one way to solve a (sub-)
problem [16] leading to the separation of building-blocks“fit-
ness” i.e. contribution to the objective function, from their
meaning. This conceptual separation induces the non-linear
dependencies between building-blocks: providing the same
objective function contribution, a building-block might be
completely suited for one context whilst completely wrong
for another one. Thus the“fitness”of a building-block can be
misleading if it is incompatible with its context. However,
the contribution of the building-blocks indicate how can the
dimensionality of the problem be reduced by expressing one
block in a lower level as one variable in the upper level.
Recursively forming higher order modules from lower level
ones reduces the problem dimensionality; if the problem is
decomposable the number of optimal settings for a module
is lower than its total number of settings [15].

Hierarchical problems are very hard for mutation based
hill-climbers as they exhibit a fractal like structure in the
Hamming space with many local optima [18]. This bit-wise
landscape is fully deceptive; the better is a local optimum
the further away is from the global ones. At the same time
the problem can be solved quite easily in the building-block
or “crossover space”, where the block-wise landscape is fully
non deceptive [16]. The forming of higher order building-
blocks from lower level ones reduces the problem dimen-
sionality.

In this paper three standard and well known hierarchical
test functions are used: the hierarchical IFF [16], the hier-
archical XOR [17] and the hierarchical trap function [13].
These problems are defined on binary strings of the form
x ∈ {0, 1}kp

, where k is the number of sub-blocks in a block,
and p is the number of hierarchical levels. The meaning of
sub-blocks is separated from their fitness by the means of
a boolean function h, which determines if the sub-block is
valid in the current context or not. In the shuffled version
of these problems the tight linkage is disrupted by randomly
reordering the bits. The functions with their particularities
are detailed as follows.

2.1 Hierarchical if and only if (hIFF)
The hIFF has k = 2 and it is provided by the if and only

if relation, or equality. Let L = x1, x2, . . . , x2p−1 be the first
half of the binary string x and R = x2p−1+1, x2p−1+2, . . . , x2p

the second one. Then h is defined as:

hiff (x) =

⎧⎨
⎩

1 , if p = 0;
1 , if hiff (L) = hiff (R) = 1 and L = R;
0 , otherwise.

(1)
Based on hiff the hierarchical iff is defined recursively:

Hiff (x) = Hiff (L)+Hiff (R)+

{
length(x), if hiff (x) = 1;
0 , otherwise.

(2)
At each level p > 0 the Hiff (x) function rewards a block

x if and only if the interpretation of the two composing sub-
blocks are both either 0 or 1. Otherwise the contribution is
zero.

The hIFF has two global optima: strings formed only by
0’s or only by 1’s. At the lowest level the problem has 2l/2

local optima where l is the problem size.

2.2 Hierarchical XOR (hXOR)
The global optima of hIFF are formed by all 1’s or all

0’s, which may ease the task of some methods biased to
replicate particular allele values. To prevent the exploitation
of this particular problem property the hXOR was designed
[17]. This problem is much more difficult due to its reduced
potential for exploiting repetitiveness.

The definition of hXOR is analogous with the hIFF, hav-
ing only a modification in the validation function h, where
instead of equality we do a complement check:

hxor(x) =

⎧⎨
⎩

1 , if p = 0;
1 , if hxor(L) = hxor(R) = 1 and L = R̄;
0 , otherwise.

(3)
R̄ stands for the bitwise negation of R.

The two global optima of hXOR are composed by half
zeros and half ones. Having the same problem structure,
one would expect that an algorithm which applies problem
decomposition to perform equally well on both problems.
As already mentioned, this is not always the case as some
methods may be biased to replicate particular alleles, solving
the hIFF in an easier manner.

2.3 The Hierarchical Trap Function (hTrap)
The underlying structure of the hTrap is a balanced k-ary

tree, where k ≥ 3. Blocks from lower level are interpreted
by a mapping function similar to the one from the hIFF: a
block of all 0’s and 1’s is mapped to 0 and 1 respectively,
and everything else is interpreted as ‘-’ or null.

The contribution function is a trap function of unitation
(its value depends only by the numbers of 1’s in the input
string) of order k, based on two parameters fhigh and flow

which define the degree of deception.
Let u be the unitary of the input string. Then the trap

function is defined as:

trapk(u) =

{
fhigh , if u = k;
flow × k−1−u

k−1
, otherwise.

(4)

If any position in the input string is null (‘-’) then the
contribution is zero.

In this paper we use hTrap function based on k = 3 and
fhigh and flow set to 1 for all except the highest level. The

2148

decision between competing BBs can be carried out only on
the highest level, where fhigh = 1 and flow = 0.9.

In the next section we detail the Online Model Based
Local-Search (OMBLS) method, which will be used to ad-
dress these hierarchical problems.

3. ONLINE MODEL BASED LOCAL-SEARCH
In Model Based Local-Search [14, 11, 5] the changing of

the fixed problem representation with a problem structure
aware description, leads to an efficient modular search and
can even lead to the solving of hierarchical problems by re-
peated decomposition.

In non-separable building-block problems, to reduce the
search space and make the search efficient, the particular
modular structure of the problem must be detected and the
representation of the solution prototype must be evolved
to reflect the gained knowledge about the building-blocks
and their context-optimal settings. Promising sub-solutions
must be kept until the method advances to upper levels
where a correct decision can be made

The adaptive representation which express detected mod-
ules as new variables of the search is the key to conquer
hierarchical problems: by exploring the neighborhood of the
current module configuration the next level of modules can
be revealed.

3.1 Module aware representation
Let us denote the current module knowledge at state s by

M(s) = (m1, m2, . . . , mn) (5)

where mi-s are the modules or building-blocks and n is the
number of detected modules.

Each module mi can have multiple configurations relating
to different context-optimal settings:

Vi = {v|v ∈ {0, 1}l} (6)

where l is the length of mi. This allows the sustenance and
parallel processing of competing context-optimal schemata.

The current state s is formed by particular context-optimal
settings of the known modules:

s = (v(m1), v(m2), . . . , v(mn)) (7)

where n is the number of known modules and v(mi) ∈
[1, |Vi|] ∩ �∗ gives the index of a candidate configuration
of the building-block mi from the set Vi. For example, hav-
ing n = 3 the state s = (1, 2, 1) is translated as being formed
from the combination of the first context-optimal setting of
module one, the second context-optimal setting of the sec-
ond module and the first candidate configuration of the third
module.

In the case of binary problems, the representation is ini-
tialized with each variable as a basic module mi. The initial
Vi context-optimal settings for each basic module are {0, 1}.

3.2 Employed local-search
The modules of the hierarchical problems under investi-

gations have only two context-optimal settings at each level.
As the module sizes are small (pairwise combinations in the
case of hIFF and hXOR, respectively combination of three
elements in the case of hTrap) one of the two context-optimal
setting (locally optimal) is easily reached from a randomly
initialized module configuration, requiring at maximum the

setting of one variable to the value that will form a context-
optimal setting.

As locally optimal setting of modules are in immediate
vicinity of randomly initialized module configurations, we
use a simple greedy search among these configurations, alike
the method used in [5]. Nevertheless, one should note that
for harder problems, where context-optimal setting are harder
to reach a more powerful local-search method is required.
A model based local-search, built upon macro-mutation [9]
search, had shown the ability to identify and exploit much
larger module sizes [6].

The building-block hill-climbing employed in this paper
is rather straightforward: instead of flipping bits, the search
focuses on the best local context-optimal building-block con-
figuration. Each module is processed systematically by test-
ing its configurations and selecting the one which provides
the best objective function value. While the search for
the optimal configuration of a particular block is carried
out, the configurations of the other building-blocks are hold
still. The search for context-optimal module settings can be
schematized as follows:

Function MWGS(M,V)

/* Generate a random state s according to the

current building-block knowledge M(s) */

s← RandomState(M);1

/* Randomly permute the order of modules and

their related settings for unbiased greedy

search. */

[MR V R]← RandPerm(M,V);2

foreach module mi from MR do3

foreach setting vj from V Rmi do4

set v(mi) in s to vj;5

if the change results in a decrease of the6

objective function then
undo change;7

3.3 Learning the structure within OMBLS
When applying the greedy search on the presented hierar-

chical problems, the method will always discover a context-
optimal setting for each module, but due to the non-linear
interdependencies between the modules organized hierarchi-
cally, it will converge to a local optima in most of the cases.

As there are only two context-optimal settings for each
module, the variables of the converged solutions will be
grouped in a subspace which has lower dimensionality than
the dimensionality of the data. Certain ANN models have
the ability to adaptively process input patterns and to pro-
duce simpler patterns with fewer components in accordance
with the topology of the input space. On longer term, by
training the network with multiple solutions, the modular
structure of the problem can be inferred.

A network which seeks to preserve the topological proper-
ties of the input space is the Self Organizing Map (SOM) [10].
The network is trained using unsupervised learning to pro-
duce a two dimensional, discretized representation of the
input space, called a map.

The SOM weight adapting algorithm is based on the com-
petitive learning paradigm; vector quantization is used to
model probability density functions by the distribution of
prototype vectors. Concretely, when a sample s is presented
to the network, the following steps are executed:

2149

1. The Euclidean distance to all weight vectors is com-
puted.

2. The neuron with weight vector most similar to the in-
put is nominated as the best matching unit (BMU).

3. The weights of the BMU and neurons in the neigh-
borhood are adjusted towards the input vector. The
magnitude of the change decreases with time and with
distance from the BMU.

This algorithm can be very well iteratively updated online
with “live” data, directly inputting the results (locally con-
verged states) of the model based local-search, rather than
training with samples from a memory.

In the proposed method we use a SOM with a lattice of
5 ∗ 5 neurons, which are arranged in a rectangular grid with
regular spacing. A weight vector of size n where n is the
number of known modules and a position in the map space
is associated with each neuron. To induce a symmetric neg-
ative bias into the adjustment of the weights, the network is
trained with half of the values from the input ranges moved
into the negative domain. Thus, the two possible values of
a variable are inputted as {−1, 1}, for a Vi with cardinality
of three the inputs are recoded as {−1, 1, 2} and so on.

The network can be trained with data from an apriori
settled number of epochs or one can use a dynamic stopping
condition which checks if the change in the values of weights
in the last few epochs is bellow a certain threshold.

After training the SOM online, dependencies are deduced
form the internal representation of the network based on the
heuristic that similar inputs should produce similar patterns
in their associated weights i.e dependent inputs have roughly
the same values for their weights.

Accordingly, we use the following metric for detecting the
dependency between variables xi and xj :

d(xi, xj) =
r∑

l=1

||Wil| − |Wjl||2 (8)

where r is the number of neurons on the rectangular lattice
and W represents the weights of the SOM. This relation
measures the closeness of different variables by taking into
account the weights related to them.

We consider xi and xj as being dependent if the following
relation holds for a predefined ε threshold.:

d(xi, xj) ≤ ε (9)

Dependent modules will be merged into the same compos-
ite module for the next phase of the search.

Analyzing the weights of the network we are able to de-
cide which variables are linked but in order to collapse the
search space we need their context-optimal setting also. As
a consequence, provided with only the variable relationships,
for each new composite block the method exhaustively eval-
uates all the possible combinations of sub-modules in the
context of randomly generated states and retain the best λ
ones.

The module knowledge is updated with M(s) contain-
ing the modules according defined by relation 9, whilst the
context-optimal settings Vi of each new module is filled with
the λ best configurations found by the exhaustive search.

The following section summarizes the Online Model Based
Local-Search.

Algorithm 2: Online Model Based Local-Search

Data: M, V, nS , λ, ε,@stopping cond.
while not @stopping cond do1

/* Phase I */
/* Build the SOM */

net← InitializeSOM |M(s)|);2

for i = 1, nS do3

/* Generate a random state s according to

the current building-block knowledge

M(s) */

s← RandomState(M);4

/* Apply module-wise search */

s←MWGS(M, V);5

/* Train the network online using vector

quantization */

net← Train(net, s);6

/* Phase II */
/* Detect possible modules via weight

analysis */

nm← GetLinkages(net.Weights, ε);7

/* Identify best settings for new modules by

exhaustive search */

COset ← SearchForBestSettings(nm,λ);8

/* Collapse the search space and update the

building-block configuration according to

the detected modules and their

context-optimal settings */

[M, V]← UpdateModuleKnowledge(nm,COset);9

3.4 OMBLS algorithm
Starting from a representation in concordance with the

original problem, in a first phase search experience is accu-
mulated by training the SOM online with the “live” states
provided by repeated local-search working on the current
representation. The local-search strategy used must be pow-
erful enough to discover fully optimized modules at a single
hierarchical level.

After convergence of the network, in the second phase the
structure of the input space is inferred from the weights of
the network and expressed by variable linkages. Further-
more, an exhaustive search is performed according to the
detected linkages, to find the best context-optimal settings
for each new module.

The search space is collapsed as the module aware repre-
sentation is updated according to the detected linkages and
their most fit context-optimal settings.

After these steps, the search enters again phase one, with
the local-search operating on the newly derived representa-
tion, further exploring their combinative neighborhood.

The method stops when the search space can not be col-
lapsed anymore or a predefined number of objective function
evaluations is exceeded.

Formally the OMBLS is outlined in Algorithm 2.

4. PERFORMANCE
Assuming that the used machine learning technique suc-

cessfully detects the correct dependencies, the global con-
vergence of the OMBLS on the studied test suites can be
proven by showing that there is a path towards the global
optima, easily followed by the method.

2150

As mentioned in Section 3.2, on the test suites under in-
vestigation the numbers of sub-blocks in a block at each hi-
erarchical level is maximally three and there are two context
optimal settings for each module. If the partial knowledge
about the problem structure is correct, starting from a ran-
dom combinations of sub-blocks, if the global optima have
not yet been attained, one of the two context-optimal set-
ting at the next level is always reached by the greedy search.
As fully-optimized modules are found they are expressed as
variables in the next phase of the search, which leads to a
simple recursive solving of all hierarchical levels as in [5].

In the case of hIFF and hXOR proving that the greedy
search will find the variable and its settings that are context-
optimal is trivial. Let m1 and m2 be two dependent mod-
ules, each with two context-optimal settings Vi = {1, 2}. No
matter which random combination of module setting we take
from Cm1,m2 = {(1, 1), (1, 2), (2, 1), (2, 2)} possible ones and
which module relation rule we apply (IFF or XOR), it is
obvious that by testing all possible values for m1 one will
match up with the setting of m2 and will increase the num-
ber of fully-optimized modules.

The same reasoning extends to hTrap also. Having three
modules each with two context-optimal setting and suppos-
ing without loosing generality that the two context-optimal
setting at the next level are given by c1 = {1, 1, 1} and
c2 = {2, 2, 2}, when randomly choosing a combination of
modules we can have the following situation:

• the random combination is c1 or c2 – we are done;

• we have a combination containing two “1’s” and one
module with setting “2”; when the greedy search sets
the module setting from“2”to“1”a fitness increase will
signal the formation of a new fully optimized module
and the new state is accepted;

• we have a combination containing two “2’s” and one
module with setting “1”; same reasoning as above ap-
ply.

Provided that the SOM indicates the correct dependen-
cies, the correct partial knowledge about the problem struc-
ture is guaranteed by the fact that the methods performs an
exhaustive search in order to determine the most suitable
settings for each module.

Due to the deterministic nature of the greedy search and
following the above mentioned path, a tight upper bound on
the performance of OMBLS can be given.

At one hierarchical level, the module-wise greedy search
will use a number of objective function evaluations in concor-
dance with the number of modules l, their context-optimal
setting λ and number of epochs used to feed the network
nS :

TMWGS = nS · λ · l (10)

The search for the context-optimal settings will take a
number of objective function evaluations exponential in the
size (denoted by ki) of the newly discovered modules M ′ and
the number of context-optimal settings:

TCOS =

|M′|∑
i=1

λki (11)

If we have p hierarchical levels and the number of sub-
modules in each composite module is k, the upper bound of

64 81 128 243 256
0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2 x 10
4

Problem Size

N
r.

ob
j.

fu
nc

. e
va

ls
.

T
b=2

hIFF, hXOR
T

b=3

hTrap

Figure 1: Scaling of OMBLS with module-wise
greedy local-search strategy on hIFF, hXOR and
hTrap.

the whole method is given by the summation of the greedy
search TMWGS and the search for context-optimal settings
TCOS on each hierarchical level:

T =

kp∑
l=k

l=l∗b

(nS · λ · l +
l

k
· λk) (12)

To empirically confirm this result and to test the efficiency
of the SOM based online linkage detection technique, the
scalability of the OMBLS have been tested on 64-bit, 128-bit
and 256-bit shuffled hIFF and hXOR problems, respectively
on 81-bit and 243-bit shuffled hTrap problem instances. A
total number of 100 independent runs were averaged.

As the samples inputted to the network are high-quality
converged states, we restricted the number of module-wise
local-search epochs to nS = 20. The settings for other pa-
rameters were λ = 2 and ε = 1.0e − 8.

The method found one of the global optima in all cases
confirming the efficiency of the online SOM based linkage
learning.

The scaling of the method on the different test suites is
depicted in Fig. 1 along with the upper bound given by
the base module sizes. As results on hIFF and hXOR were
very similar due to the identical problem structure (complete
binary tree), they are depicted in a single graph.

Potentially, the most costly operation of OMBLS is rep-
resented by the search for context-optimal settings, which
is exponential in the order of dependencies revealed by the
SOM based learning. This phenomena is not particular for
our method. The size of population in EDAs (implicitly
the number of objective function evaluations in each gener-
ation) is also lower bounded by the exponential of the order
of dependencies covered by the probabilistic model.

Nevertheless, for boundedly difficult problems, when the
order of dependencies is low compared to the problem size
(k << n) as in the problems studied here, the computa-
tional cost of the search for context-optimal settings can
be approximated with a constant. Then, the total cost is
dominated by the computational burden of the employed
local-search. In our case, as the greedy search is linear in
the number of modules, from Eq. 12 results a very efficient
sub-linearithmic running time, confirmed empirically by our
experiments (see Fig. 1).

The memory requirements of the OMBLS are very low,
being linear in the problem size.

2151

5. CONCLUSIONS AND FURTHER WORK
The paper presents a model based trajectory framework,

namely the Online Model Based Local-Search (OMBLS) that
learns the problem structure online by means of topology
preserving SOMs. OMBLS operates via hierarchical decom-
position, detected modules are used to collapse the search
space and reformulate the optimization problem with dis-
covered modules and their context-optimal settings as new
search variables.

The continuous update of the module knowledge and rep-
resentation of the solution prototype implicitly results in the
adaptation of the neighborhood structure to the combinative
neighborhood of the current building-blocks. This is why
the OMBLS can very efficiently address hard, non-separable
building-block problems, specially designed to be solvable
only by population based recombinative methods. In these
problems, modeled after the intuition of the Building Block
Hypothesis [4], moving the search to the combinative vicin-
ity of the current module aware representation facilitates the
discovery of new blocks, as the Building Block Hypothesis
implies that low-order building-blocks can be combined to
form higher-order ones.

As training is done online, the memory requirements of
the method are limited to storing one solution at the time,
the knowledge about modules and a SOM which is also pro-
portional with the number of input variables. Nevertheless,
the network can only reveal variable dependencies; a fur-
ther search for context-optimal settings must be employed,
resulting in a model building complexity bounded by the
exponential of the order of dependencies detected by the
online learning. This computational cost is similar with the
population requirement of classic EDAs, where the number
of samples is also lower bounded by the exponential of the
order of dependencies covered by the probabilistic model.

If context-optimal settings can be discovered by a module-
wise local-search strategy in linear time and the order of
dependencies is limited to small k, the proposed framework
holds a qualitative advantage over other methods as it scales
at most linearithmicaly.

We look to exploit the fast automatic model building and
low memory requirement of the proposed methods on prob-
lems with million(s) of variables, where the classical solv-
ing with population based methods would imply very large
memory requirements and huge computational costs for model
building.

Acknowledgments
This work was sponsored by MEdC-CNCSIS and by the
Sapientia Institute for Research Programs (KPI).

6. REFERENCES
[1] D. Dasgupta and Z. Michalewicz, editors.

Evolutionary Algorithms in Engineering Applications.
Springer-Verlag New York, Inc., Secaucus, NJ, USA,
2001.

[2] E. D. de Jong, R. A. Watson, and D. Thierens. On the
complexity of hierarchical problem solving. In H.-G.
Beyer and U.-M. O’Reilly, editors, GECCO ’05, pages
1201–1208. ACM, june 2005.

[3] P. Grünwald, I. J. Myung, and M. Pitt. Advances in
Minimum Description Length. MIT Press, Apr. 01
2005.

[4] J. H. Holland. Adaptation in natural artificial systems.
University of Michigan Press, Ann Arbor, 1975.

[5] D. Iclanzan and D. Dumitrescu. Overcoming
hierarchical difficulty by hill-climbing the building
block structure. In D. T. et al., editor, GECCO ’07:
Proceedings of the 9th annual conference on Genetic
and Evolutionary Computation, volume 2, pages
1256–1263, London, 7-11 July 2007. ACM Press.

[6] D. Iclanzan and D. Dumitrescu. Going for the big
fishes: Discovering and combining large neutral and
massively multimodal building-blocks with model
based macro-mutation. In GECCO ’08: Proceedings of
the 10th annual conference on Genetic and
Evolutionary Computation. ACM Press, 12-16 July
2008. (accepted).

[7] J. Jiang. Image compression with neural networks: A
survey. SP:IC, 14(9):737–760, July 1999.

[8] R. Johnston and H. Cartwright, editors. Applications
of Evolutionary Computation in Chemistry. Springer,
2004.

[9] T. Jones. Evolutionary Algorithms, Fitness Landscapes
and Search. PhD thesis, University of New Mexico,
Albuquerque, NM, 1995.

[10] T. Kohonen. Self-organized formation of topologically
correct feature maps. Biological Cybernetics, 43:59–69,
1982.

[11] C. F. Lima, K. Sastry, D. E. Goldberg, and F. G.
Lobo. Combining competent crossover and mutation
operators: a probabilistic model building approach. In
GECCO ’05, pages 735–742, NY, USA, 2005. ACM.

[12] M. Pelikan. Hierarchical Bayesian optimization
algorithm: Toward a new generation of evolutionary
algorithms. Springer Verlag, 2005.

[13] M. Pelikan and D. E. Goldberg. Escaping hierarchical
traps with competent genetic algorithms. In L. S.
et al., editor, GECCO ’01:, pages 511–518, San
Francisco, California, USA, 7-11 2001. Morgan
Kaufmann.

[14] K. Sastry and D. E. Goldberg. Designing competent
mutation operators via probabilistic model building of
neighborhoods. In GECCO ’04, pages 114–125.
Springer, LNCS, vol. 3103, June 26–30, 2004.

[15] R. A. Watson. Compositional Evolution:
Interdisciplinary Investigations in Evolvability,
Modularity, and Symbiosis. PhD thesis, Apr. 01 2002.

[16] R. A. Watson, G. Hornby, and J. B. Pollack. Modeling
building-block interdependency. In PPSN V: Proc. of
the 5th International Conference on Parallel Problem
Solving from Nature, pages 97–108, London, UK, 1998.
Springer, LNCS.

[17] R. A. Watson and J. B. Pollack. Hierarchically
consistent test problems for genetic algorithms:
Summary and additional results. In S. Brave, editor,
GECCO ’99: Late Breaking Papers, pages 292–297,
Orlando, Florida, USA, 13 July 1999.

[18] R. A. Watson and J. B. Pollack. Symbiotic
composition and evolvability. In J. Kelemen and
P. Sosik, editors, Advances in Artificial Life, 6th
European Conf., (ECAL 2001), pages 480–490, Berlin,
2001. Springer.

2152

	Introduction
	The Class of Hierarchical Problems
	Hierarchical if and only if (hIFF)
	Hierarchical XOR (hXOR)
	The Hierarchical Trap Function (hTrap)

	Online Model Based Local-Search
	Module aware representation
	Employed local-search
	Learning the structure within OMBLS
	OMBLS algorithm

	Performance
	Conclusions and Further Work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

