Multi-Task Code Reuse in Genetic Programming

Wojciech Jaskowski, Krzysztof Krawiec, and Bartosz Wieloch
Institute of Computing Science, Poznan University of Technology
. Piotrowo 2, 60965 Poznan, Poland
{WJaskowskl,kkraW|ec,bmeloch}@cs.put.poznan.pI

ABSTRACT

We propose a method of knowledge reuse between evolution-
ary processes that solve different optimization tasks. We
define the method in the framework of tree-based genetic
programming (GP) and implement it as code reuse between
GP trees that evolve in parallel in separate populations dele-
gated to particular tasks. The technical means of code reuse
is a crossbreeding operator which works very similar to stan-
dard tree-swapping crossover. We consider two variants of
this operator, which differ in the way they handle the incom-
patibility of terminals between the considered problems. In
the experimental part we demonstrate that such code reuse
is usually beneficial and leads to success rate improvements
when solving the common boolean benchmarks.

Categories and Subject Descriptors

1.2.8 [Problem Solving, Control Methods, and Search]:

Heuristic methods

General Terms
Algorithms

Keywords

Genetic Programming, Code Reuse, Multi-Task Learning

1. INTRODUCTION

An important lesson we learn from Wolpert’s ‘No free
lunch’ theorem [24] is that the space of all possible prob-
lems (optimization tasks) is vast, even if we fix the number
of variables involved in problem definition. An indirect con-
clusion from that all-important study is that the heuristic
search algorithms usually perform better than the random
search not only thanks to designer’s wit, but also due to the
fact that the tasks they usually face are located in a tiny
fragment of that space. Thus, such tasks (often identified
with real-world tasks) must exhibit some form of similarity.
More formally, their mutual similarity has to be on aver-
age greater than the mutual similarity of a pair of problems
drawn randomly from the space of all possible problems.

Particular search algorithms exploit that commonality of
problems to a different extent. However, they usually do it

Copyright is held by the author/owner(s).
GECCO’08, July 12-16, 2008, Atlanta, Georgia, USA.
ACM 978-1-60558-131-6/08/07.

2159

only implicitly, by defining some features (conditions) a par-
ticular problem must possess to be solvable within a given
framework. Typical examples of such features are the as-
sumptions that the objective function is differentiable, or
that all good solutions are close to each other (a.k.a. global
convexity). Addressing and exploiting the issue of mutual
problem similarity in a more direct way, by an explicit reuse
of knowledge between the algorithms that solve different
tasks, is much more seldom.

As a consequence, current research is focused on algo-
rithms which ‘lifecycle’ is limited to solving a single task.
Within evolutionary computation framework, such a task
typically boils down to an evolutionary run on a particular
problem and takes place in perfect isolation from the other
experiments. The algorithm is not enabled to refer to the
knowledge pertaining to other problems. Because of that,
knowledge reuse is still listed among the most challenging
issues in machine learning [17].

It has been hypothesized that explicit reuse of knowledge
may bring us many benefits, including faster search con-
vergence and lower risk of overfitting in problems that in-
volve dividing data into training set and testing set. This
applies in particular to machine learning, where the multi-
task learning paradigm has a relatively long history [2|. Fol-
lowing the positive accounts from that domain, we propose
here a simple yet effective approach to knowledge reuse for
tree-based genetic programming [10]. In our variant, knowl-
edge reuse boils down to code reuse that operates between
the evolutionary runs that solve different problems in paral-
lel. The technical means for that is a crossbreeding operator
that crosses over individuals from populations evolving for
different problems. As population usually comprises a spe-
cific species, we think the term crossbreeding reflects well
the character of this operator by analogy to its biological
meaning—the act of mixing the different species or varieties
of animals or plants.

The following Section [2]reviews the related work and mo-
tivations for knowledge reuse. Section [3|is the core part of
this paper and presents the proposed method of code reuse
within the genetic programming paradigm. Section [4] de-
scribes the computational experiment, and Section [5| draws
conclusions and outlines the future research directions.

2. MOTIVATIONS AND RELATED WORK

In |11], Koza made the key point that the reuse of code is
a critical ingredient to scalable automatic programming. In
the context of genetic programming, code reuse is often con-
nected with knowledge encapsulation. The canonical result

in this field are Automatically Defined Functions, defined
by Koza in [10} section 6.5.4]. Since then, more research on
encapsulation [20] and code reuse [12] has been done within
the genetic programming community. Proposed approaches
include reuse of assemblies of parts within the same indi-
vidual 6], identifying and re-using code fragments based on
the frequency of occurrences in the population [7], or ex-
plicit expert-driven task decomposition using layered learn-
ing [1} 8]. Among other prominent approaches, Rosca and
Ballard [21] utilized the genetic code in form of evolved sub-
routines, Haynes [5]| integrated a distributed search of ge-
netic programming-based systems with collective memory,
and Galvan Lopez et al. [3] reused code using a special en-
capsulation terminal.

In the research cited above, the code was reused only
within a single evolutionary run. Surprisingly little work
has been done in genetic programming to reuse the code be-
tween multiple tasks. To our knowledge, the first to notice
this gap was Seront |22], who investigated code reuse by ini-
tializing an evolutionary run with individuals from the con-
cept library consisting of solutions taken from other, similar
tasks. He also mentioned the possibility of introducing a
special mutation operator that would replace some subtrees
in population by subtrees taken from the concept library,
in a way similar to our contribution, but did not formal-
ized nor computationally verified it. An example of other
approach to reusing the knowledge between different tasks
is Kurashige’s work on gait generation of six-legged robot
[13], where the evolved motion control code is treated as a
primitive node in other motion learning task.

In machine learning, the research on issues related to
knowledge reuse, i.e., meta-learning, knowledge transfer, and
lifelong learning, seem to attract more attention than in
evolutionary computation (see [23| for a survey). Among
these, the closest machine learning counterpart of the ap-
proach presented in this paper is multitask learning, meant
as simultaneous or sequential solving of a group of learning
tasks. Following [2] and [4], we may name several potential
advantages of multitask learning: improved generalization,
reduced training time, intelligibility of the acquired knowl-
edge, accelerated convergence of the learning process, and
reduction of the number of examples required to learn the
concept(s). The ability of multitask learning to fulfill some
of these expectations was demonstrated, mostly experimen-
tally, in different machine learning scenarios, most of which
used artificial neural networks as the underlying learning
paradigm [19; |18].

In the field of genetic algorithms, the work done by Louis
et al. resembles our contribution the most. In their Case
Injected Genetic Algorithms (CIGAR) described in [14], the
experience is stored in a form of solutions to problems solved
earlier (‘cases’). When confronted with a new problem,
CIGAR evolves a new population of individuals and peri-
odically enriches it with such remembered cases. The ex-
periments demonstrated CIGAR’s superiority to genetic al-
gorithm in terms of search convergence. However, CIGAR
injects complete solutions only and requires the ‘donating’
task to be finished before starting the ‘receiving’ task, which
makes it significantly different from our approach.

In [9] we proposed a similar method of code reuse to this
presented in this paper and evaluated it on a set of com-
plicated pattern recognition problems. The method intro-
duced in this paper has the advantage over the previous one

2160

of being parameterless. Also, here we prove the concept of
reusing the code on pairs of simple digital logic design tasks
which are typical genetic programming benchmarks.

3. CODE REUSE

Genetic programming is well suited to take advantage
from code reuse between evolutionary runs solving differ-
ent problems. The tree-like structure of individuals allows
to isolate code fragments in a form of subtrees that can be
treated as partial solutions to the problem and/or solutions
of some subproblems. The subtrees can then be used as par-
tial solutions for other problems. This property of tree-based
genetic programming is exploited by the method proposed
in this paper.

Intuitively, code reuse is likely to work for problems that
exhibit some similarity. However, it is not clear what prob-
lem similarity exactly means and how to measure it basing
only on the problems definitions. It was argued that there
is correlation between problem similarity and solution sim-
ilarity [14]. Thus, one method to measure the similarity of
two problems is to measure the similarity of their solutions,
but then the knowledge of similarity is not useful anymore,
since we already have the solutions. Other method to assess
the similarity between two problems is to somehow compare
their search spaces, but, again, it is easier to solve the prob-
lem on its own. Therefore, we think that the only reasonable
way to assess the similarity between problems is to use one’s
intuition and domain knowledge or a trial-and-error method.

Although we never know if the code reuse between two
particular tasks will work, for some pairs of problems we
can definitely say it will not work. The prerequisite for reuse
code is that the problems’ search spaces have to overlap. For
genetic programming, that implies intersection of primitive
sets; ideally they should be the same.

Primitives in genetic programming are typically subdi-
vided into functions and terminals. Within this study we
assume that, to participate in and benefit from knowledge
reuse, the two problems of interest have to use the same
function set. Fortunately, this condition is relatively easy to
fulfill as functions usually embody general knowledge and
are quite often shared between problems. Terminals, on the
contrary, represent function arguments and constants and
are problem-dependent to much higher degree than func-
tions. Let us, for example, consider two digital circuit design
problems: 6-bit multiplexer problem and 6-bit even-parity.
In both problems the number of terminals is the same, but
their meaning is different, thus using a subtree from a 6-bit
multiplexer solution in a 6-bit even-parity problem should
involve changing the meaning of terminals. Imposing the re-
quirement that the set of terminals in both problems should
be the same would seriously limit the applicability of code
reuse. We also claim that it is unnecessary, as the terminals
(function arguments) may be easily substituted without af-
fecting the functionality of the subtree (function body).

In order to make code reuse possible, we introduced a new
genetic operator named crossbreeding. Crossbreeding swaps
subtrees from two individuals coming from evolutionary runs
that solve two problems A and B. From the internal per-
spective of an evolutionary run that solves A, crossbreeding
is a mutation (macromutation) operator, as it replaces a
subtree in an individual in A by another subtree; the only
difference is that the ‘imported’ genetic material comes from
a randomly selected individual from the run that solves B.

Technically, however, crossbreeding is more similar to the
tree-swapping crossover because it involves two individuals.
The important difference between crossbreeding and stan-
dard genetic programming crossover operators is that cross-
breeding must swap also some terminals if the terminal sets
in the two problems are different.

The terminal substitution in crossbreeding proceeds in the
following way. Let us denote the terminals in problem A as
t1...t, and terminals in problem B as si...Spm,. In general, we
cannot assume any semantic (meaningful) correspondence
of terminals between these two problems. Therefore when
trying to put a subtree from individual in A to individual
in B, each terminal ¢; must be replaced by some terminal
s;. Our crossbreeding operator performs this replacement
change randomly.

In this work, we provide a proof of concept that evolv-
ing solutions for two different problems in parallel using the
crossbreeding operator that exchanges the genetic material
between them may lead to better results than evolving a so-
lution for a single problem. The exchange of genetic material
between two evolutionary runs via crossbreeding takes place
in every generation, thus the evolutionary runs are synchro-
nized and work in parallel. This setup has the advantage
of having only one parameter (the probability with which
crossbreeding is engaged), however, other setups are also
possible (see e.g. [9)]).

4. THE EXPERIMENT

We tested the code reuse on three classes of boolean prob-
lems: even-parity, comparator and num-ones. In the k-bit
even-parity problem (even-k) the goal is to test if the num-
ber of 1’s in k input bits is even. A solution of the compara-
tor problem (cmp-k) returns true if an integer value coded
on k/2 more significant bits is less than the second integer
coded on the other less significant bits. In the third problem
called num-ones (m-ones-k) the aim is to return true if there
are exactly m 1’s in the k input bits (regardless of their posi-
tions). We run our experiments on nine tasks in total: 3, 4,
and 5-bit variants of the even-parity problem (even-3, even-
4, and even-5), 4 and 6-bit comparator (cmp-4 and cmp-6),
which compare 2 or 3-bits integers respectively, and finally
3, 4, and 5-bit 2-ones (2-ones-3, 2-ones-4, and 3-ones-5), and
one 6-bit 3-ones (3-ones-6).

To solve all the above problems we use genetic program-
ming with the same four logical functions: And, Or, Nand
and Nor. The terminals correspond to the consecutive input
bits and their number depends on the dimensionality of the
problem.

The control experiments use standard Koza-I-like GP [10]
and start from the initial population created using ramped
half-and-half operator with ramp from 2 to 6. The popula-
tion contains 500 individuals and evolves for 200 generations
using crossover with probability 0.9 and mutation (substi-
tuting subtree with a new random one) with probability 0.1.
We use tournament selection of size 7 and lexicographic par-
simony pressure [16] that promotes smaller trees if there is
no difference in their fitnesses.

The main experiments examining the influence of code
reuse are a bit more complicated. In this case, for each pair
of problems we perform a separate experiment, evolving si-
multaneously two populations, each of them containing 500
individuals and dedicated to solving one problem from the
pair. The only difference in setup with respect to the con-

2161

trol experiment is that we replace mutation with crossbreed-
ing (still with probability 10%). The crossbreeding operator
produces new individuals for the n-th generation in the tar-
get population using subtrees taken from individuals from
the previous ((n—1)th) generation of the source population.
This requires evolving both problems in parallel.

The crossbreeding operator exchanging genetic material
between the two tasks has to cope with the possibility of dif-
ferent sets of terminals used in these tasks (in all nine prob-
lems the function set is the same). We tested two strategies
that handle this problem:

e relabeling only terminals which not exist in the target
problem (relabeling when needed),

e relabeling randomly all terminals in the transferred
subtree (forced relabeling).

In this process we do not substitute terminals independently.
By relabeling we mean changing all original terminals corre-
sponding to the same input bit i to a terminal corresponding
to a randomly chosen j-th input bit. In other words, all in-
stances of the same terminal from the source problem are
replaced by the instances of one terminal from the target
problem. In this way we preserve the semantic relations
between the inputs of the transferred subtree.

Our experiments were implemented in the ECJ framework
|15]. The table below summarizes the basic parameters of
evolution of a single task:

Parameter name | Control experiment | Code reuse
generations 200 200
population size 500 500
max tree depth 17 17
tournament size 7 7
crossover rate 90% 90%
mutation rate 10% -
crossbreeding rate - 10%

Each experiment was repeated 300 times for different ran-
dom generator’s seeds to provide statistical significance. In
Tables [I| and [2| we present the success rate for each task
evolved independently (the control experiment, the leftmost
table column) and with the other problem in a pair. For
instance, the value 0.68 in Table [I]at the intersection of row
‘2-ones-4’ and column ‘2-ones-5’ is the success rate of the
former problem when reusing code from the latter problem.

Figures [1] and [2] visualize the gain in success rate for the
runs that used code reuse compared to runs without code
reuse. The area of circle is proportional to the difference
between the success rates of the code reuse experiment and
the control experiment. A filled circle means gain, a hol-
lowed one means loss. As we can see, when terminals are
always relabeled (Fig. , the gain for m-ones-k and cmp-k
problems is in most cases profitable (except the very easy
and the very hard problems). Unfortunately, at the same
time the problems from the even-k family lose the most.
This effect is less prominent when terminals are relabeled
only when it is necessary (Fig. ; in that case, code reuse
is never statistically worse on the even-k problems.

It seems therefore that the ‘aggressive’ forced relabeling
may lead to greater gains of success rate. On the other
hand, it is also more risky, as for some problems (even-k)

Task - || 2-ones-3 2-ones-4 2-ones-5 3-ones-6 cmp-4 cmp-6 even-3 even-4 even-5 Mean
2-ones-3 || 0.9900 - >1.0000 0.9967 0.9833 0.9933 0.9933 >1.0000 0.9967 >1.0000 0.9954
2-ones-4 || 0.4533 0.4700 - >0.6800 0.5000 0.4933 0.4800 >0.5233 >0.7800 >0.5733 | >0.5625
2-ones-5 || 0.1033 0.1033 0.1233 - 0.1233 0.1200 0.1100 0.1367 >0.1533 >0.2067 | >0.1346
3-ones-6 || 0.0000 0.0000 0.0000 0.0033 - 0.0000 0.0000 0.0000 >0.0133 0.0000 | >0.0021

cmp-4 0.7000 0.7500 0.7433 0.7133 0.7333 - >0.7633 0.7500 >0.7900 >0.7600 | >0.7504
cmp-6 0.3067 || <0.2233 0.3067 0.3033 0.2900 >0.4000 - <0.1933 0.3500 0.3333 0.3000
even-3 0.9900 0.9900 0.9967 0.9967 0.9867 0.9900 0.9967 - >1.0000 >1.0000 0.9946
even-4 0.7733 0.7633 >0.8400 0.7733 0.7200 0.7433 0.7367 0.7400 - >0.8667 0.7729
even-5 0.1467 || >0.2000 0.1533 0.1900 0.1200 0.1233 0.1333 0.1633 0.1567 - 0.1550

Table 1: The success rates when relabeling terminals only when needed (target tasks in rows, source tasks
in columns). >’ and ’<’ mark statistical significance (t-test, 0.05).

Task - || 2-ones-3 2-ones-4 2-ones-5 3-ones-6 cmp-4 cmp-6 even-3 even-4 even-5 Mean
2-ones-3 || 0.9900 - >1.0000 0.9967 0.9867 0.9900 0.9967 >1.0000 >1.0000 0.9900 0.9950
2-ones-4 || 0.4533 || >0.5233 - >0.7000 >0.5333 >0.5333 0.4967 0.5067 >0.7767 >0.6200 | >0.5863
2-ones-5 || 0.1033 0.1367 0.1367 - 0.1267 0.1233 0.1400 0.1233 0.1433 >0.2367 | >0.1458
3-ones-6 || 0.0000 0.0000 0.0033 0.0033 - 0.0000 0.0000 0.0000 0.0000 0.0033 | >0.0012

cmp-4 0.7000 0.7433 0.7367 >0.7933 >0.7733 - >07767 >0.7933 >0.7967 >0.7900 | >0.7754

cmp-6 0.3067 || >0.4133 >0.4400 >0.4333 >0.4100 >0.4600 - >0.4067 >0.3967 >0.4667 | >0.4283
even-3 0.9900 0.9933 0.9900 0.9900 0.9767 0.9867 0.9900 - 0.9933 0.9867 0.9883
even-4 0.7733 0.7167 0.7967 0.7367 <0.6100 <0.6800 <0.6800 0.7367 - 0.8233 | <0.7225
even-5 0.1467 || <0.0633 0.1033 <0.0833 <0.0700 <0.0767 <0.0600 0.1167 0.1500 - | <0.0904

Table 2: The success rates with terminals always relabeled (target tasks in rows, source tasks in columns).

’>’ and ’<’ mark statistical significance (t-test, 0.05).

2-ones—3 ° (] o . . °) [
2-ones-4 -{ @ ‘ ® 0 o .‘.
2-ones-5 —) e o 0 O ‘
3-ones-6 — . []
mil @@ e 0 00 e
cmp-6 — O o O . O o o
even-3 — (] (] o . [})
even-4 { o @ O o O O .
een5- @ o @ O O O @ e
T T T T T T T T I
N A S S (S G (S N |
0 (%] (%] [%] Q. Q. c c c
¢ © © © £ g€ © © O
c c c c > > >
A A AL L
N N N ™
Figure 1: The gain in success rate resulting

from code reuse (terminals relabeled only when
needed)—target tasks in rows, source tasks in
columns. Filled and empty circles indicate gains and
losses, respectively.

2-0nes—3 [} ° o [[]
2-ones-4 | @ ‘ . . ") ‘.
2-ones5- @ @ e o & o O ’

3-ones—6] U .

cmp—4

even-3 — . o o . °

een-44 O @ O Q O O O o

een-s4 O O O O O O O -
I I I I I I I I I
G S N S G (N N |
[%] [%] (%] [%] Q. [oX c c c
@ © © © £ £ © © O
c c c c > > =
° $p g s
N N N 3]

Figure 2: The gain in success rate resulting from
code reuse (terminals always relabeled)—target
tasks in rows, source tasks in columns. Filled and
empty circles indicate gains and losses, respectively.

2162

it never brings significant profit and sometimes leads to sig-
nificant deterioration. On the contrary, the more moder-
ate technique of relabeling the terminals when needed pro-
duces less spectacular gains but fails only twice: for the task
pair (cmp-6, 2-ones-3) and for the task pair (cmp-6, even-3)
(cf. Table[I). The overall rate of failure is therefore 2 in
72 (the total number of task pairs), i.e., less than 3%. In
other words, assuming our pool of problems is representa-
tive enough, an experimenter’s risk of losing due to the use
of our code reuse method is less than 1 in 30. The analo-
gously defined rate of gain amounts to 19 in 72, over 26%.
For the forced relabeling, these figures amount to 11% and
33%, respectively.

These estimates are however only partially valid, as it may
be easily seen that entire families of target tasks are in gen-
eral less likely to benefit from code reuse, no matter what
the source task is. It seems for instance that any code im-
ported into an even-k task is detrimental for it. This may be
due to the fact that in our setup the crossbreeding operator
replaces the mutation operator. We hypothesize therefore
that crossbreeding does not provide for enough genotypic
variation. However, more evidence is needed to verify this
supposition.

5. CONCLUSIONS

In this paper, we presented and verified experimentally
a straightforward method of code reuse between different
simultaneously solved tasks. The results obtained by solving
nine different problems using this technique are encouraging
and thought-provoking.

The major conclusion is that the crossbreeding operator as
a tool of knowledge reuse has usually positive impact on the
performance of the evolutionary runs delegated to involved
problems. The ‘aggresive’ forced relabeling of terminals in-
creases the chance of outperforming the standard approach
without code reuse, but unfortunately involves significant
risk of failure. The technique of relabeling when needed is
more ‘reserved’, offering slightly smaller chance of success
and almost negligible risk of failure. In both cases however,
the probability of success rate improvement is much higher
than the probability of success rate deterioration.

Though this study has preliminary character, the promis-
ing results prompt us to examine also other possible settings
and scenarios of applying code reuse in GP. One of such set-
tings, mentioned in the previous section, would involve us-
ing a mutation operator together with crossbreeding. This
would diversify the population and intensify the exploration
of the search space, which seems to be not intense enough
for some problems (this is probably the reason why code
reuse fails on the even-k problems). Another possibility is to
test the scenario when the source population contains well-
developed solutions, instead of transferring the genetic code
from individuals which are still evolving and may have poor
quality. Finally, the method may be elegantly extended to
more than two tasks that participate in the code reuse pro-
cess in parallel.

In a more general perspective, we demonstrated that the
paradigm of genetic programming, thanks to symbolic rep-
resentation of solutions and the ability of abstraction from
a specific context, offers an excellent platform for knowledge
transfer. Furthermore, analogously to evolving evolvability,
this could lead to the concept of evolving reusability, where

2163

the objective for the evolutionary process would be to evolve
individuals’ encoding that promotes code reusability.

We think that utilization of knowledge reuse will be the
key to solving the really sophisticated and challenging prob-
lems in the future. The research areas of multi-task prob-
lem solving and knowledge reuse seem to be underexploited,
which is puzzling, given the encouraging results that may
be obtained using even straightforward means, as we have
demonstrated in this study.

6. ACKNOWLEDGMENT

This research has been supported by the Ministry of Sci-
ence and Higher Education grant # N N519 3505 33.

7. REFERENCES

[1] A. Bajurnow and V. Ciesielski. Layered learning for
evolving goal scoring behavior in soccer players. In
Proceedings of the 2004 IEEE Congress on
Evolutionary Computation, pages 1828-1835,
Portland, Oregon, 20-23 June 2004. IEEE Press.

R. Caruana. Multitask learning. Mach. Learn.,
28(1):41-75, 1997.

E. Galvan Lopez, R. Poli, and C. A. Coello Coello.
Reusing code in genetic programming. In M. Keijzer,
U.-M. O’Reilly, S. M. Lucas, E. Costa, and T. Soule,
editors, Genetic Programming 7th Furopean
Conference, FuroGP 2004, Proceedings, volume 3003
of LNCS, pages 359-368, Coimbra, Portugal, 5-7 Apr.
2004. Springer-Verlag.

J. Ghosn and Y. Bengio. Bias learning, knowledge
sharing. #jcnn, 01:1009, 2000.

T. Haynes. On-line adaptation of search via knowledge
reuse. In J. R. Koza, K. Deb, M. Dorigo, D. B. Fogel,
M. Garzon, H. Iba, and R. L. Riolo, editors, Genetic
Programming 1997: Proceedings of the Second Annual
Conference, pages 156-161, Stanford University, CA,
USA, 13-16 July 1997. Morgan Kaufmann.

G. S. Hornby and J. B. Pollack. Creating high-level
components with a generative representation for
body-brain evolution. Artif. Life, 8(3):223-246, 2002.
D. Howard. Modularization by multi-run frequency
driven subtree encapsulation. In R. L. Riolo and

B. Worzel, editors, Genetic Programming Theory and
Practise, chapter 10, pages 155-172. Kluwer, 2003.
W. H. Hsu, S. J. Harmon, E. Rodriguez, and

C. Zhong. Empirical comparison of incremental reuse
strategies in genetic programming for keep-away
soccer. In M. Keijzer, editor, Late Breaking Papers at
the 2004 Genetic and Evolutionary Computation
Conference, Seattle, Washington, USA, 26 July 2004.
W. Jaskowski, K. Krawiec, and B. Wieloch.
Knowledge reuse in genetic programming applied to
visual learning. In D. Thierens, editor, Genetic and
Evolutionary Computation Conference GECCO, pages
1790-1797. Association for Computing Machinery,
2007.

J. Koza. Genetic Programming. MIT Press,
Cambridge, MA, 1992.

J. R. Koza. Genetic Programming II: Automatic
Discovery of Reusable Programs. MIT Press,
Cambridge Massachusetts, May 1994.

2]

3]

[4]

[5]

(6]

7]

8]

[9]

(10]

(11]

[12]

[13]

[17]

J. R. Koza, F. H. Bennett III, D. Andre, and M. A.
Keane. Reuse, parameterized reuse, and hierarchical
reuse of substructures in evolving electrical circuits
using genetic programming. In T. H. et al., editor,
Proceedings of International Conference on Evolvable
Systems: From Biology to Hardware (ICES-96),
volume 1259 of Lecture Notes in Computer Science.
Springer-Verlag, 1996.

K. Kurashige, T. Fukuda, and H. Hoshino. Reusing
primitive and acquired motion knowledge for gait
generation of a six-legged robot using genetic
programming. Journal of Intelligent and Robotic
Systems, 38(1):121-134, Sept. 2003.

S. Louis and J. McDonnell. Learning with
case-injected genetic algorithms. Fvolutionary
Computation, IEEE Transactions on, 8(4):316-328,
2004.

S. Luke. ECJ evolutionary computation system, 2002.
(http://cs.gmu.edu/ eclab/projects/ecj/).

S. Luke and L. Panait. Lexicographic parsimony
pressure. In W. B. Langdon, E. Cantu-Paz,

K. Mathias, R. Roy, D. Davis, R. Poli,

K. Balakrishnan, V. Honavar, G. Rudolph,

J. Wegener, L. Bull, M. A. Potter, A. C. Schultz, J. F.
Miller, E. Burke, and N. Jonoska, editors, GECCO
2002: Proceedings of the Genetic and Evolutionary
Computation Conference, pages 829-836, New York,
9-13 July 2002. Morgan Kaufmann Publishers.

T. M. Mitchell. The discipline of machine learning.
Technical Report CMU-ML-06-108, Machine Learning
Department, Carnegie Mellon University, July 2006.

2164

(18]

(19]

(20]

21]

(22]

23]

24]

J. O’Sullivan and S. Thrun. A robot that improves its
ability to learn, 1995.

L. Y. Pratt, J. Mostow, and C. A. Kamm. Direct
Transfer of Learned Information among Neural
Networks. In Proceedings of the Ninth National
Conference on Artificial Intelligence (AAAI-91), pages
584-589. AAAI, July 1991.

S. C. Roberts, D. Howard, and J. R. Koza. Evolving
modules in genetic programming by subtree
encapsulation. In J. F. M. et al., editor, Genetic
Programming, Proceedings of FuroGP’2001, volume
2038 of LNCS, pages 160-175. Springer-Verlag, 2001.
J. P. Rosca and D. H. Ballard. Discovery of
subroutines in genetic programming. In P. J. Angeline
and K. E. Kinnear, Jr., editors, Advances in Genetic
Programming 2, chapter 9, pages 177-202. MIT Press,
Cambridge, MA, USA, 1996.

G. Seront. External concepts reuse in genetic
programming. In E. V. Siegel and J. R. Koza, editors,
Working Notes for the AAAI Symposium on Genetic
Programming, pages 94-98, MIT, Cambridge, MA,
USA, 10-12 Nov. 1995. AAAL

R. Vilalta and Y. Drissi. A perspective view and
survey of meta-learning. Artif. Intell. Rev.,
18(2):77-95, 2002.

D. Wolpert and W. Macready. No free lunch theorems
for optimization. IEEE Transactions on Evolutionary
Computation, 1(1):67-82, 1997.

	Introduction
	Motivations and Related Work
	Code Reuse
	The Experiment
	Conclusions
	Acknowledgment
	References

