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ABSTRACT 
Industry poses different separations problems for diverse 
compounds recovery. Separation stage is very important on the 
product cost, especially for the biotechnological products. Liquid-
liquid extraction is a widely used separation operation; however it 
requires separation agents that must fulfill conditions such as low 
toxicity, high distribution coefficient and selectivity, etc. Therefore, 
different approaches have been developed to tackle this problem, 
being computer aided molecular design the most promising 
alternative. It is an optimization process looking for the best group 
combination to successfully perform some objective in a given 
process, including some physical, feasibility and process 
restrictions. To solve this problem we present a new genetic 
algorithm that does not show some limitations present in early 
works.  

Categories and Subject Descriptors 
J.6 [Computer-aided Engineering]: Computer Applications – 
Computer-aided engineering – Computer-aided design. 

General Terms 
Algorithms, Experimentation. 

Keywords 
Genetics algorithms, molecular design, Unifac, CAMD, 
extraction agents. 

1. INTRODUCTION 
Chemical and biochemical processes are composed basically by 
pretreatment, synthesis and product recovery operations. The 
recovery stage is an important part of the process, due to cost and 
technical difficulties. For example, separation operations in 
biotechnological processes may be as much as 50% of the total 
process cost. Streams with low organic concentration are among the 
most common separation problems for industry. These are a big 
challenge due to the low available potentials for mass transfer and 
the great amount of contaminants in the streams under treatment. 

Liquid-liquid extraction is a simple and cheap separation operation ; 
it is used in the recovery of diverse products such as phenols, 
organic acids (lactic, citric, propionic, butyric, etc), among others. 
However, that operation requires separation agents with some 
conditions such as low toxicity, high distribution coefficient and 
selectivity, etc. These limitations impose a great complexity on the 
molecule type to be used; therefore, this problem has been 
addressed using different approaches. The first approach is the 
knowledge-based selection methods such as the search on databases; 
it is an easy method but it is restricted to the relatively low number 
of compounds on these. Another approach is the enumeration 
method, its principal problem being the combinatorial explosion 
caused by the group contribution methods used (GANI & 
BRIGNOLE, 1983). 
The most promising alternative and then the most used, is the 
computer aided molecular design (CAMD). This inverse 
engineering methodology has been successfully used by some 
authors for the generation of different molecules as refrigerants 
(Duvedi & Achenie, 1997), polymers and polymer blends (Buxton, 
et al., 1999), gas absorption solvents (Stefanis, et al., 1996), liquid-
liquid extraction solvents (Marcoulaki & Kokossis, 2000), blanket 
wash solvents (Achenie & Sinha, 2004), crystallization solvents 
(Karunanithi, et al., 2006), reaction and supercritical solvents (Gani, 
et al., 2005), among others. The molecular design could be 
understood as a optimization process: min/maxx,j J(x,y,z,...), where 
J(x,y,z,…) represents the molecule performance and (x,y,z,…) are the 
contributions of the groups constituting the molecule. The design 
has different kinds of constraints: physical, structural properties, etc, 
defined as function of the structural groups. In other words, the 
molecular design methodology tries to find the best group 
combination (the best molecule) to perform satisfactorily some 
objective in a given process. The process imposes some restrictions 
on the molecule, for example: boiling point, melting point, 
vaporization latent heat, octanol-water distribution coefficient, cost, 
etc. 
The CAMD methodology is based on different property estimation 
methods coupled with an optimization method. There are four 
alternatives for properties estimation: group contribution methods 
(the more used model is Unifac), quantum chemistry based methods 
(Sheldon, et al., 2006), group contribution methods with some 
characteristics of quantum calculations as Cosmo-RS (Klamt, et al., 
2001), and others methods (Meniai & Newsham, 1999). A large 
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number of the works published has used group contribution 
methods, in spite of some limitations such as the insufficient 
precision in properties estimation, no isomers distinction and no 
inclusion of proximity effects in the model. Although molecular 
simulation based on quantum chemistry can give solutions to the 
limitations of the group contribution methods aforementioned, such 
simulation is not straightforward, and requires a lot of computational 
resources (time and memory). Hybrid methods combine the group 
contribution methods low level of complexity and the quantum 
calculations rigorousness. 
The fundamental idea of the group contribution methods is that a 
molecular group makes the same contribution to the evaluated 
property regardless the type of molecule. Therefore, the summation 
of the group’s contributions constituting the molecule, gives as 
result the property on evaluation. Different group contribution 
methods have been used for properties estimation. 
The optimization problem involved in molecular design is 
formulated as a mixed integer non linear programming model 
(MINLP) (Stefanis, et al., 1996, Hostrup, et al., 1999), but some 
authors use non linear programming. To solve this problem, 
different methods are used: deterministic ones such as branch and 
bound (Xu & Diwekar, 2005), interval analysis (Achenie & Sinha, 
2003), outer approximation algorithm (Sheldon, et al., 2006), 
generalized benders decomposition (Karunanithi, et al., 2005) and 
stochastic methods such as simulated annealing (Marcoulaki, et al., 
2000) and genetic algorithms (Van Dyk & Nieuwoudt, 2000, van 
Dyk & Nieuwoudt, 2002, Lehmann & Maranas, 2004, Xu & 
Diwekar, 2005). 
Due to the high level of complexity, deterministic methods not 
always find the global optimum and are very susceptible to get 
trapped in local minima. In contrast, stochastic methods have a 
greater possibility finding the global optimum and their form of use 
is very flexible. These are the reasons that lead to the use of genetic 
algorithms in this work. 
Thanks to the advantages of the genetic algorithms over the other 
stochastic methods, authors as van Dyk (van Dyk & Nieuwoudt, 
2002), Venkatasubramanian (Venkatasabrumanian, et al., 1994) and 
Xu (Xu & Diwekar, 2005) has used them for solvent design. 
However, their implementations have some limitations: a) the 
molecules representation is diverse and often allow the construction 
of molecules with a low complexity (because of the representation 
and the low maximum number of groups that form the molecule); 
additionally, almost in all cases the representation permits multiple 
molecules b) there is a non uniform use of the restrictions of the 
problem, especially the structural feasibility restrictions, and it is 
unknown the effect of the problem formulation on the results, c) 
some researchers use gaussians or sigmoidals fitness functions that 
need an a priori knowledge of the function, limiting its application 
d)  in spite of the genetic operators used are similar, their probability 
of use in the algorithm is a parameter to be adjusted by the user, no 
warranting convergence nor optimality, and e) the use of different 
property estimation methods makes difficult the results evaluation 
and introduces a high uncertainty level in the problem that could 
change the results. 
This work presents an alternative software that aims to alleviate the 
aforementioned difficulties. 

2. SOLVENT DESIGN 
The CAMD software for solvent design is divided in the following 
way: a routine to construct molecules structurally feasible, another 
to estimate properties, and a final that encompasses the others and 
makes the optimization. Every part are described in the following 
lines. 

2.1 Molecule’s Construction 
The required molecules to initialize the software are constructed in 
the following way: once the user has defined how many groups are 
allowed in a molecule (Np), the software chooses the number of 
terminal groups randomly. That number varies between 1 and Np/2. 
Terminal groups have a valence of 1. Then, other group with a 
valence higher than 1 is selected randomly and is connected to some 
terminal groups according to its valence, leaving a number of bonds 
free. These connected groups are joined with other random selected 
groups up to the molecule valence is zero. 
For aromatic and cyclic compounds a special routine is used. The 
software determines the cycle size randomly and it is constructed 
using only special cyclic groups. For aromatics construction the 
cycle size is fixed to 6 and it is constructed using only aromatics 
groups. When appears a cyclic-aliphatic or aromatic-aliphatic group, 
the aliphatic branch is constructed by the same random selection 
used before and it is finished with a terminal group.  
In all cases the maximum number of functional groups is restricted 
to three, considering easy of synthesis heuristic. Constructed 
molecules must fulfill the Odele-Machietto restrictions (GANI & 
BRIGNOLE, 1983). 

2.2  Properties Estimation 
The principal properties needed for the estimation of solvent 
performance are distribution coefficient and selectivity. Boiling 
point, Gibbs free energy and density are also included in the design. 

2.2.1. Activity coefficient 
Distribution coefficient and selectivity are functions of activity 
coefficients. These coefficients are calculated using the Unifac-
Dortmund model (Gmehling, et al., 1993, Gmehling, et al., 2002). 
In this method, the activity coefficients are estimated as the sum of 
residual and combinatorial contributions. 

 

 

The combinatorial contribution considers compounds with very 
different sizes and forms, and it is calculated as: 

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+−−+− = 

i

i

i

i
iii F

V
F
VqVV ln15ln1ln ''C

iγ
 

The parameters V’
i, Vi, qi, ri y Fi are calculated by the following 

equations and are functions of the relative van der Waals volumes 
and areas (Rk y Qk) for the different groups: 
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The residual contribution is calculated as: 
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The group area fraction (Φm) and the group mole fraction (Xm) are 
given by the following equations: 
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The group interaction parameters are temperature dependent by the 
following expression: 
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The relative van der Waals volumes and areas, and some group 
interaction parameters can be founded in literature (Weidlich & 
Gmehling, 1987, Gmehling, et al., 1993, Gmehling, et al., 2002). 

2.1.2 Other estimated properties  
Boiling point, density and Gibbs free energy are used as restrictions 
in the design process. For its estimation the last version of the 
GCVOL method for density (Ihmels & Gmehling, 2003) and the 
Constantinou and Gani methods for boiling point and Gibbs free 
energy are used. To include these restrictions in the design, the 
method of fitness function penalization is used. 
2.3  Genetic Algorithm 

 For the solution of the problem, an adaptive genetic algorithm called 
HAEA [42] was used. Genetic search methods have their basis in 
Darwinian models of natural selection and evolution. Introduced by 
Holland, the general idea behind genetic algorithms is the 
evolutionary creation of a new population of individuals from an 
earlier generation through genetic processes, such as crossover and 

mutation, and by passing on the better offsprings to the next 
generation. In general, individuals that are better adapted to their 
environment will have a better chance of survival and thus pass on 
their genetic material to the succeeding generations. This approach 
is expected to lead to generations that become more and more fitted 
through evolution thus achieving the desired design objective. 

 2.3.1. Fitness Function 
 Distribution coefficient is the fundamental property for the study of 

the liquid-liquid extraction; it shows how a compound is distributed 
between two phases.  However, a solvent with good extraction 
capacity shows low selectivity, and the inverse relation is also true. 
Therefore in this work, the fitness function for solvent design is the 
product of the distribution coefficient and the selectivity. Selectivity 
is calculated with the equation suggested by Pretel [41]: 
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 Both properties are functions of activity coefficients and molecular 
weights. The former property is calculated by the Unifac method 
described above. 

 2.3.2. Representation 
 Every population individual or molecule is represented in two ways, 

genotype and phenotype. Molecule genotype is a tree 
representation, where every node represents a group and the 
branches, the bonds of this group with others groups, it is used for 
the genetic operators. Phenotype is an array of groups of the same 
molecule; it is employed for properties estimation. For example, 
lactic acid whose structure is CH3CH(OH)COOH, is represented by 
its genotype (figure 1): 
 

     
 

Figure 1. Lactic acid representation 

Its phenotype is given by the array (1, 3, 15, 43), where the numbers 
are the corresponding groups codes (Gmehling, et al., 1993). 

2.3.3. Population 
An initial population of 100 individuals was used. The molecules 
have variable length and a maximum length of 30 groups. In order 
to achieve a good diversity of the initial population, 10 % of the 
molecules created are cyclic, 10 % aromatics, and the others 
aliphatic. 

2.3.4. Reproduction 
For the generation of new individuals four genetic operators were 
used: mutation, crossover, group insertion y deletion. The 

CH

OH
COOH CH3
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operator’s probabilities were adjusted with the problem using the 
adaptive algorithm HAEA. 

2.3.4.1.  Mutation 
Initially the program chooses a parent individual randomly, then 
choose the mutation point and the group to insert according to the 
residual valence of the fragment (randomly) and make the 
interchange. Figure 2 shows an example. 

Figure 2. Molecule’s mutation example. 

 
2.3.4.2.  Cross 
To do a cross, the program chooses randomly two parent 
individuals by their fitness and two operation points, one for 
molecule. Then it makes the fragment interchange, to construct 
the new molecules. An example is given in figure 3: 

 

Figure 3. Molecules cross example. 
 

2.3.5. Selection 
The individual’s selection was performed by tournament. 
3. RESULTS AND ANALYSIS 
The results depicted in figures 5 to 8 are the average of 50 runs of 
the solvent design problem. As model problem, the design of an 
extractant of acetic acid from an aqueous solution was done. 
 

 
 

Figure 4. Best two molecules designed 
 

The designed molecules with the best fitness contain esters, ethers 
or chloride groups. These results are in agreement with the results 
of Wang and Achenie (Wang & Achenie, 2002), Kim Diwekar 
and Tomazi (KIM, et al., 2004) (Kim & Diwekar, 2002), and are 
oxygenated groups such as the groups suggested by Harper 
(Harper, et al., 1999). 
Due to our CAMD software does not include restrictions on the 
design; our results are large molecules, compared to methyl 
dimethyl ester and diisobutyl ketone reported previously. 
However, our molecules have the right groups. 
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Figure 5. Fitness Evolution 

 
Figure 5 shows fast convergence of the proposed genetic 
algorithm HAEA. It needs less than 30 iterations to find a local 
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optimum. For the best individual the algorithm get an 
improvement close to 50% in the fitness function. 

Good molecule fitness implies a good distribution coefficient and 
good selectivity. As it was mentioned above, these properties are 
inverse related. A good extraction coefficient allows a good 
extraction capacity, it is very favorable for the unit operation due 
to less extraction agent consumption. A high selectivity is 
beneficial for extraction operation since it makes easier the next 
separation operations in the process, saving money. 

The found fitness value of 120000 is very high, compared to 
values such as 12,43 for the selectivity and 0,66 for the 
distribution coefficient for methyl dimethyl ester, and 20,3 for the 
selectivity and 0,28 for the distribution coefficient for diisobutyl 
ketone. However, the lack of restrictions could explain this fact. 

0

2

4

6

8

10

12

14

0 5 10 15 20 25 30 35 40 45 50
Iteration

M
ol

ec
ul

e'
s 

Le
ng

ht

Population
Best Individual

 
Figure 6. Individual Length Evolution 

The optimum length of the designed molecule is close to 12 
groups. Figure 6 shows how algorithm makes bigger the best 
molecules and stabilizes the population length in a value close to 
10 groups. 
For a group contribution method, a higher number of groups 
imply a higher value of the property on evaluation. A long 
molecule is difficult to synthesize, thus we will introduce in future 
works, restrictions on the molecule design limiting its size. 
A molecule with 12 groups is relatively large compared to other 
results founded in the literature. We hope that the restrictions 
introduction could be an effective way to design more realistic 
molecules. 
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Figure 7. Population Operators Probabilities Evolution 

The algorithm HAEA is an adaptive genetic algorithm, thus 
operators probabilities are adjusted by it. Figures 7 and 8 show 
similar trends, at the run’s beginning the algorithm cross 
individuals as the preferential operator and the probability 
mutation is low, allowing good exploration of the search space. 
Around the tenth iteration cross probability diminish 
progressively, and mutation probability is a little higher for every 
iteration, allowing exploiting on the found optimum. 

We are introducing more operators in the genetic algorithm such 
as group addition and deletion. We hope that their introduction 
could make more efficient the search process. 
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Figure 8. Operators Probabilities Evolution for the Best Molecule 
 

4. CONCLUSIONS 
Due to the high level of complexity of molecular design, genetic 
algorithms are a valuable tool for the CAMD. 
The designed molecules for the extraction of acetic acid are in 
agreement with literature results. 
The adaptive genetic algorithm HAEA is a promising tool for the 
computer aided molecular design. 
We need to incorporate some restrictions in the molecular design 
to get more realistic results. 
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