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ABSTRACT 
Pyrolysis is the thermal decomposition of organic matter under 
inert atmospheric conditions, leading to the release of volatiles 
and formation of char. It is also a first step in the biomass 
gasification. Understanding of kinetic parameters is essential for 
the design of a suitable pyrolysis reactor. In the proposed kinetic 
model of this study, the kinetic scheme of biomass decomposition 
by two competing reactions giving gaseous volatiles and solid 
charcoal is used. Differential evolution is used to find the kinetic 
parameters by minimizing the square of the error between the 
reported experimental data of thermogravimetry of hazelnut shell 
and simulated model predicted values of residual weight fraction. 
Logarithmic DE, an improved version of simple DE, is proposed 
by incorporating logarithmic initialization and logarithmic 
mutation to take care of wide ranges of variable values. 
Logarithmic DE is found to yield better kinetic parameters in 
terms of objective function and gave better fit with experimental 
data. 

Categories and Subject Descriptors 
G.1.6 OPTIMIZATION: Global optimization; J.2 PHYSICAL 
SCIENCE AND ENGINEERING: Engineering 

General Terms: Algorithms 

Keywords 
Biomass; Pyrolysis; Kinetics; Parameter Estimation; Modeling; 
Simulation; Optimization; Evolutionary Algorithm; Initialization; 
Mutation; Differential Evolution; Logarithmic  

1. INTRODUCTION 
Decomposition of a compound, in the absence of oxygen, by 

the action of heat alone to produce various organic gaseous 
products, charcoal and tar, is known as pyrolysis [1]. Pyrolysis is 
not only an independent process, but also a first step in the 
gasification or the combustion process. Hazelnut shell is an 
abundantly available agriculture residue. Dogru et al. [2] used a 
pilot plant scale downdraft gasifier to investigate gasification 
potential of hazelnut shells. It is necessary to understand the 
kinetics of pyrolysis in order to design a suitable pyrolysis 
reactor. Balci et al. [3] proposed several kinetic models for 
hazelnut pyrolysis and validated by thermo-gravimetric 

experiments. In these kinetic models, the rate expression based on 
first-order decomposition of the reactive solid is defined in terms 
of fractional conversion. Demirbas [4] performed thermo-
gravimetric experimental runs and presented the weight loss data 
for different particle sizes of ground hazelnut shell and for various 
heating rates. Kinetic analysis has also been carried out but the 
expression for the kinetic constants with respect to temperature is 
not developed, and the experimental data validation with 
theoretical models for these experiments is not reported in the 
literature. Experimental and modeling studies have been 
conducted on pyrolysis by many researchers [1-10].  

In the present study, kinetic model based on apparent 
decomposition rate [3] is modified by incorporating the kinetic 
scheme proposed by Koufopanos et al. [8, 9]. To find kinetic 
parameters of proposed model, an objective function based on 
least square error between experimental data and simulated results 
has to be minimized. Model simulation results are validated with 
the data reported in literature [4]. A population based search 
algorithm, Differential Evolution (DE), which is simple and 
robust and has proven successful record, is employed for 
optimization in the present case [12, 13]. However, for some 
problems simple DE gives poor population distribution for cases 
where the range of limits is very wide (more than three orders of 
magnitude). In the present case of kinetic parameter estimation, 
lower and upper limits of frequency factors are 1010 and 1018 
respectively. Hence simple DE is modified first by including the 
logarithmic initialization (LIDE). The algorithm is further 
improved by incorporating the logarithmic mutation also and 
named as logarithmic DE (LDE). Optimum kinetic parameters are 
found by minimizing the objective function using simple DE, 
LIDE and LDE and obtained results are compared.   

2. KINETIC MODELING & SIMULATION 
The pyrolysis reactions can be described by means of the 

following scheme proposed by Koufopanos et al. [8, 9]. This 
model indicates that the biomass decomposes to volatiles, gases 
and char. The volatiles and gases may further react with char to 
produce different types of volatiles, gases and char where the 
compositions are different. Therefore, the primary pyrolysis 
products participate in secondary interactions (Reaction 3), 
resulting in a modified final product distribution. 
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       Virgin Biomass (n1 order decay) 
 
    Reaction 1        Reaction 2 
 
              Reaction 3 
(Volatiles + Gases)1    +    (Char)1   (Volatiles + Gases)2    +    (Char)2 
 
(n2 order decay) (n3 order decay) 

 The kinetic equations for the mechanism, shown above are 
represented by Eq. (1) through Eq. (3). 

1n
11 Bkr =      (1) 

1n
22 Bkr =      (2) 

32 n
1

n
133 CGkr =      (3) 

To find the kinetic parameters of the above-mentioned 
reactions, the square of the error between the reported 
experimental data of thermogravimetry of hazelnut shell and 
theoretical values of residual weight fraction is minimized. 
Thermogravimetry data of hazelnut shell is reported as % weight 
loss versus temperature [4]. The data has been recalculated in 
terms of residual weight fraction, where, residual weight fraction 
is defined as given by Eq. (4) 

( )
( ) WeightInitial

 WeightResidualFraction  Weight Residual =(W)  (4) 

The recalculated experimental data of 0.180 mm size and for 
heating rate of 25.0 K/s are plotted and shown in Fig. 1.  
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Fig. 1 Residual Weight Fraction versus Temperature (K) 

To find the residual weight fraction theoretically, net rate of 
production of different species by reaction 1 & 2 in terms of rate 
of reactions are found. Due to small size (0.180 mm) of the 
hazelnut shell sample taken in the experiments, the secondary 
reaction [reaction 3] is neglected. The residual weight fraction is 
calculated using Eq. (5). 

W = B + C1     (5) 

For simplicity, the order of reactions 1 & 2 are taken as 1.0. 
Then Eq. (1) & (2) reduce to Eq. (6) and Eq. (7) respectively. 

( )Bkk
dt
dB

21 +−=     (6) 

Bk
dt

dC
1

1 =      (7) 

So the change of residual weight fraction with time [Eq. (8)] 
obtained by addition of Eq. (6) and Eq. (7). 

Bk
dt

dW
1−=      (8) 

To find temperature (T) at a particular time (t), following 
equation [Eq. (9)] is used [3, 4, 7-9], 

T = (HR)t + T0     (9) 
Differentiating Eq. (9) would result in  
dT = (HR)dt     (10) 
Using Eq. (8) & (10), relations of change of residual weight 

fraction with temperature is found, which is given by Eq. (11). 

HR
Bk

dT
dW 1

1−=     (11) 

Using Eq. (6) & (10), relation of change of biomass weight 
fraction with temperature can be found & given by Eq. (12). 

( )
HR

Bkk
dT
dB 1

21 +−=    (12) 

Arrhenius relation of kinetic constants is given by Eq. (13) in 
which i = 1 and 2 for reaction 1 and reaction 2 respectively. 

⎟
⎠
⎞

⎜
⎝
⎛ −=

RT
EAk i

ii exp      (13) 

Values of frequency factor anc activation energy of both 
reactions are found by minimizing the objective function (Eq. 14).  

( ) ( )∑
=

−=
n

j
jj WWEAEAF

1

2
,calexp,221,1 ,,  (14) 

Sheth and Babu [10] found the kinetic parameters for 
isothermal pyrolysis of beech wood saw dust using a MATLAB 
subroutine. When the same inbuilt MATLAB optimization 
function is used to find the kinetic parameters by minimizing the 
Eq. (14) for non-isothermal pyrolysis of hazelnut shell in the 
present study, it yielded different converged values of frequency 
factor and activation energies as optimum with different initial 
guesses. It indicates that the present objective function is highly 
nonlinear and complex in nature, having local optima. Most of the 
traditional optimization algorithms based on gradient methods 
have the possibility of getting trapped at local optimum depending 
upon the degree of non-linearity and initial guess. Differential 
Evolution (DE) is applied by taking Eq. (14) as an objective 
function to be minimized to find the global optimum set of kinetic 
parameters. The key parameters of control in DE are: NP-  
population size, CR- cross over constant, and F  weight applied to 
random differential (scaling factor). The details of DE algorithm 
and pseudo code are available in the literature [12, 13-17]. The 
key parameters of DE are problem dependent. However, certain 
guidelines and heuristics are available for the choice of these 
parameters [15]. Based on these heuristics, the values of DE key 
parameters for the present problem are set as follows: 

NP = 40, 80, 120, 160, 200; CR = 0.9; F   = 0.5  
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The limits of the frequency factors and activation energies 
are given below, which is chosen based on the available literature 
for kinetic modeling of different biomasses. 

Limits of frequency factors (A1 & A2) = (1.0e+10, 1.0e+18) 

Limits of activation energies (E1 & E2) = (1.0e+04, 3.0e+05) 

To find the theoretical value of the residual weight fraction 
(W), forward finite difference technique [21, 22] is applied to Eq. 
(11) to Eq. (13) with the following initial conditions. 

At time t=0; T0 = 325 K;    B = 1.0;   C1 = 0.0;   G1 = 0.0 

3. RESULTS AND DISCUSSION 
 Table-1 shows the kinetic parameters of reaction 1 (A1 and 
E1) and reaction 2 (A2 and E2) for the heating rate of 25.0 K/s for 
different size of population (NP). NP value is varied from 10 to 
50 times of the dimension of the problem. With increase in NP 
value, objective function value is decreased and different set of 
kinetic parameters are found as optimum values. It clearly 
indicates that kinetic parameter estimation is a multimodal 
problem and having a number of local minima. In addition it also 
yielded the frequency factors of the order of 1017, whereas the 
limits cover a wide range from 1010 to 1018 (i.e. forcibly getting 
trapped towards the upper limit only). 

Table-1. Kinetic Parameters of reaction 1 and reaction 2 found using simple DE for heating rate of 25 K/s 

Kinetic Parameters Number of 
Population 
(NP) A1 (1/s) E1 (J/mol) A2 (1/s) E2 (J/mol) 

Objective 
Function Value 
[Eq. (14)] 

40 4.566886671e+017  2.113759061e+005 5.720718806e+017 2.126114848e+005 9.130447823e-003 
80 4.558503512e+017  2.113970396e+005 4.765050853e+017 2.117037535e+005 9.128729091e-003 
120 3.709092314e+017  2.102901874e+005 3.507645032e+017 2.100792813e+005 9.109103152e-003 
160 1.416632742e+017  2.055108395e+005 9.999999843e+017 2.155763135e+005 9.048729762e-003 
200 1.337902880e+017  2.052421797e+005 9.999999843e+017 2.156096494e+005 9.041855517e-003 
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Fig. 2  Population Distribution of Frequency Factors for NP 

= 200 using simple DE 

 Fig. 2 and Fig. 3 show the variation of population 
distribution of frequency factors (A1 and A2) and activation 
energies (E1 and E2) with the number of generations for an NP 
value of 200. For frequency factors (Fig. 2) the initial population 
covers only a part (1016 to 1018) of the entire range (1010 to 1018). 
Initial population of activation energies almost covers the entire 
range from lower to upper limit (Fig. 3), but majority of the points 
lie in the range from 105 to 3 x 105 and very few points lie near 
lower limit i.e. 104. This is due to linear mapping rule used in DE 
for initialization of normalized population. According to the 
mapping rule in the initialization of normalized population 

New variable = Minimum value of the variable + Random no. 
(Maximum value of the variable – Minimum value of the variable)
      (15) 
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Fig. 3  Population Distribution of Activation Energies for 

NP =200using simple DE 

 Table -2 shows the variable value with different random 
numbers ranging from 0.1 to 1.0 for a minimum value of 1010 and 
a maximum value of 1018. For a change in value of random 
number from 0.1 to 1.0, the change in variable value is only one 
order of magnitude (1.0 x 1017 to 1.0 x 1018), which is not good 
enough change taking into account of the possible range of 
variable value (1010 to 1018).  By this mathematical operation, the 
new variable value found in the initialization of DE would have 
the order of magnitude equal to that of the maximum value. So 
the optimum value found using simple DE may be a local 
minimum or maximum and not the global one. 

 
3.1 Logarithmic Mapping Rule  
To overcome the problem of population distribution, logarithmic 
mapping rule is proposed for initialization of normalized 
population and given by Eq. (16) 
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Variable value = AntiLog {Log(minimum value) + (random 
number) [Log(maximum value) - Log(minimum value)]} (16) 

New variables are found using Eq. (16) with a minimum 
value of 1010 and maximum value of 1018 for different values of 
random numbers ranging from 0.1 to 1.0. Wide distribution of 
new variable values, which is essential to cover wide range of the 
said variable, are obtained and given in Table - 2. 

Table -2 Variable value for different random numbers 
(Min = 1010 and Max = 1018) 

Random 
Number 

Variable Value using 
simple initialization 

(Eq. (15)) 

Variable Value using 
logarithmic initialization 

(Eq. (16)) 
0.1 1.000 x 1017 6.309 x 1010 

0.2 2.000 x 1017 3.981 x 1011 

0.3 3.000 x 1017 2.512 x 1012 

0.4 4.000 x 1017 1.585 x 1013 

0.5 5.000 x 1017 1.000 x 1014 

0.6 6.000 x 1017 6.309 x 1014 

0.7 7.000 x 1017 3.981 x 1015 
0.8 8.000 x 1017 2.512 x 1016 
0.9 9.000 x 1017 1.585 x 1017 
1.0 1.000 x 1018 1.000 x 1018 

 
For the present problem of kinetic parameter estimation for a 
heating rate of 25 K/s, logarithmic mapping is used to initialize 
the normalized population vectors and simple differential 
evolution is applied to find the global optimum value of kinetic 
parameters (We call the LIDE). Fig. 4 and Fig. 5 shows the 
population distribution of frequency factors and activation 
energies respectively, for NP = 200 with respect to number of 
generations in case of LIDE. In comparison with simple DE (Fig. 
2 and Fig. 3), LIDE gives better population distribution for A1, A2, 
E1, and E2. Table - 3 shows the optimum kinetic parameters and 
the value of objective function found by using the LIDE for 
different value of NP. Comparison for NP = 40, 120 and 160 from 
Table – 1 (simple DE) and Table - 3 (LIDE) shows that the 
objective function value is less for simple DE and for NP = 80 
and 200, LIDE gave better results in terms of optimum value of 
objective function. It may be noted that the optimum values of 
frequency factors are of the order of 1017. Also in Fig. 4 and Fig. 
5, the population distribution just after 20th generation narrows 
down and all points lie very close to the upper limit value of the 
variable. This kind of population distribution change with respect 
to no. of generations in DE is due to the mutation operator. In the 
mutation operation of the DE, weighted difference vector is 
calculated by difference of two randomly chosen vectors. Noisy 
random vector is calculated by adding weighted difference vector 
and the randomly chosen Target vector. Mathematically it is 
written as given by Eq. (17). 
 Noisy Random Vector = Target Vector + Scaling Factor 
(difference of two randomly chosen vectors)  (17) 

For a Scaling factor of 0.5, and the order of three randomly 
chosen vector of 1010, 1012 and 1017 respectively 

Noisy Random Vector = 1010 + 0.5 (1017 – 1015) = 4.95 x 1016 

 Because of this linear operation, all the members of the 
mutant population would be of highest order among the three 

randomly chosen vectors (irrespective of their numerical values) 
and after few generations, the entire population of points lie near 
the upper limit of the variable. 
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Fig. 4 Population Distribution of Frequency Factors for 

NP =200 using LIDE 
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Fig. 5 Population Distribution of Activation Energies for  

NP =200 with LIDE 

3.2 Logarithmic Mutation 
To overcome the problem of population distribution generation 
after generation, logarithmic mutation is proposed and given by 
Eq. (18). 

Noisy Random Vector =  AntiLog {log(variable[c]) + F  
(log(variable[a]) - log(variable[b]))}      (18) 

Where a, b and c are randomly chosen number from the 
population size. For a Scaling factor of 0.5, and the order of three 
randomly chosen vector of 1010, 1012 and 1017 respectively 

Noisy Random Vector  

=  AntiLog {log (1010) + F (log(1017) - log(1015))}  =  1.0 x 1011 

By implementation of logarithmic mutation in DE, better mutant 
population in terms of wide population distribution is expected 
and so better chances to get the global optimum values. We call 
this logarithmic initialization and logarithmic mutation of DE as 
Logarithmic DE (LDE).  
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Table-3. Kinetic Parameters of reaction 1 and reaction 2 found using LIDE for heating rate of 25 K/s 

Kinetic Parameters Number of 
Population 
(NP) A1 (1/s) E1 (J/mol) A2 (1/s) E2 (J/mol) 

Objective 
Function Value 
[Eq. (15)] 

40 3.625545542e+017  2.101262519e+005 2.405592550e+017 2.080204938e+005 9.135202071e-003 
80 1.684361501e+017  2.064137617e+005 6.975696814e+017 2.137319632e+005 9.071062357e-003 
120 3.732242417e+017  2.104686034e+005 4.505817354e+017 2.115734744e+005 9.125753720e-003 
160 2.426530209e+017  2.082492439e+005 9.999999843e+017 2.155842635e+005 9.085364436e-003 
200 9.959812379e+016  2.037569391e+005 9.999999843e+017 2.156303008e+005 9.021881334e-003 

 

Table-4. Kinetic Parameters of reaction 1 and reaction 2 found using Logarithmic DE (LDE) for heating rate of 25 K/s 

Kinetic Parameters Number of 
Population 
(NP) A1 (1/s) E1 (J/mol) A2 (1/s) E2 (J/mol) 

Objective 
Function Value 
[Eq. (15)] 

40 1.540784554e+014  1.713920488e+005 2.005103335e+013 1.619462097e+005 6.442233304e-003 
80 3.885485326e+014  1.758750841e+005 4.551904297e+012 1.541520486e+005 6.441844469e-003 
120 2.284807833e+014  1.734125580e+005 1.961720679e+014 1.735975231e+005 6.425304514e-003 
160 2.119764183e+014  1.731095826e+005 6.750124424e+014 1.800125476e+005 6.421839787e-003 
200 2.106331972e+014  1.730996444e+005 3.014892950e+015 1.876928166e+005 6.294910790e-003 
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Fig. 6 Population Distribution of Frequency Factors 

 for NP =200 with logarithmic DE 
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Fig. 7  Population Distribution of Activation Energies for 

NP =200 with logarithmic DE 

To compare the performance of LDE with simple DE 
and LIDE, LDE is applied to the present problem of kinetic 
parameter estimation for a heating rate of 25 K/s. Table - 4 

shows the optimum kinetic parameters and the value of 
objective function found by using the LDE for different values 
of NP. The objective function value is the least using LDE in 
comparison with simple DE (Table -1) or LIDE (Table - 3) for 
any NP Value. The optimum kinetic parameter values found 
using LDE are also quite different from that of the values found 
using simple DE and LIDE. Fig. 6 shows the population 
distribution of the frequency factors with number of generations 
using LDE. Initial population is widely spread over the entire 
range and population distribution after subsequent generations 
are also spread over a wide range. 
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Fig. 8 Experimental and Theoretical Residual Weight 

Fraction for heating rate of 25 K/s 

Comparison of Fig 6 with Fig.4 and Fig. 2 shows that 
LDE gives wide spread of population distribution and so could 
give better value of optimum variables. The lines shown in Fig. 
6, i.e. Drop lines drawn on to x-axis and y-axis, show the 
population after 5000 generations, where all the points merge to 
give optimum value of frequency factors. Fig. 7 shows the 
variation of population distribution with number of generations 
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for activation energies. Using the optimum kinetic parameters 
for NP = 200 and found by simple DE (Table - 1), LIDE (Table 
- 3) and LDE (Table - 4) are used to find the residual weight 
fraction and the results are compared with experimental data as 
shown in Fig. 8. It shows that model predictions for LDE fits 
better amongst model predictions found using simple DE and 
LIDE. 

4. CONCLUSIONS 
Based on the results obtained and discussions in the earlier 
sections, the following conclusions are drawn. 

• Kinetic parameters (frequency factors and activation 
energies) for the two competing reactions, found using simple 
differential evolution (DE) are not global.  

• Optimum value of frequency factors are biased towards the 
upper limit of the range chosen using simple DE. 

• Logarithmic initialization with simple DE (LIDE) yields very 
good initial population distribution but failed to give better 
value of kinetic parameters in comparison with simple DE. 

• Logarithmic DE (LDE) which is a combination of logarithmic 
initialization and logarithmic mutation with simple DE yields 
kinetic parameters which give better value of objective 
function. 

• Kinetic parameters found using LDE gives global optimum 
set when compared with experimental data. 

NOTATION 
B Concentration of Biomass 
C1 Concentration of Charcoal 1 
CR Crossover constant 
F Scaling Factor 
G1 Concentration of volatile component 1 
HR Heating Rate 
j Data point variable 
ki Kinetic constant of reaction i 
n Total no. of data points  
NP  Population size 
ri Rate of reaction I 
t Time 
T0 Initial Temperature 
W Residual Weight Fraction 
Wexp Experimental value of the residual weight  fraction 
Wcal Calculated value of the residual weight fraction  
z Normalized Conversion 
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