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ABSTRACT
Today, a lot of Automatic Programming techniques have
been proposed and applied various fields. Graph Structured
Program Evolution (GRAPE) is one of the recent Auto-
matic Programming techniques. GRAPE succeeds in gener-
ating the complex programs automatically. In this paper, a
new generation alternation model for GRAPE, called Evo-
lutionary Algorithm Considering Program Size (EACP), is
proposed. EACP maintains the diversity of program size in
the population by using particular fitness assignment and
generation alternation. We apply EACP to three test prob-
lems, factorial, exponentiation and sorting a list. And we
show the effectiveness of EACP and confirm evolution of
maintaining the diversity of program size.

Categories and Subject Descriptors
I.2.2 [Artificial Intelligence]: Automatic Programming—
program synthesis; I.2.8 [Artificial Intelligence]: Problem
Solving, Control Methods, and Search

General Terms
Algorithms, Experimentation, Performance

Keywords
Automatic Programming, Genetic Programming, Genera-
tion Alternation Model, Graph-based Genetic Programming,
Evolutionary Algorithm, Genetic Algorithm

1. INTRODUCTION
Automatic Programming is the method of generating com-

puter programs automatically. Genetic Programming (GP)
[4] is a typical example of Automatic Programming, which
was originally introduced by Koza. GP evolves computer
programs, which are usually tree structure, and searches a
desired program using Genetic Algorithm (GA). GP has a
tendency to create programs with unnecessarily large size
[4]. This phenomenon is called bloat. To prevent bloat, a lot
of ideas are investigated. One of the ideas to prevent bloat
is Multi Objective Genetic Programming (MOGP). Bleuler
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et al. [1] use Strength Pareto Evolutionary Algorithm 2
(SPEA2) [12] to control program size and reduce bloat in
standard GP. Two objectives are considered: functionality
of the program and code size. SPEA2 incorporates a close-
grained fitness assignment strategy and an adjustable elitism
scheme. SPEA2 shows better performance compared with
respect to standard GP, Constant Parsimony Pressure [9]
and Adaptive Parsimony Pressure [11] in several even-parity
problems.

Various representations for GP have been proposed so far
including graph representation[3, 5, 10]. GRAph structured
Program Evolution (GRAPE) [7, 8] is one of the recent Au-
tomatic Programming technique. GRAPE succeeds in gen-
erating the complex programs automatically (e.g. factorial,
exponentiation, sorting a list and so on). The work described
in this paper is based on this GRAPE technique. We believe
that various program size should be searched in evolution-
ary process. Thus, it is necessary to maintain the diversity
of program size in the population. In this paper, a new gen-
eration alternation model for GRAPE, called Evolutionary
Algorithm Considering Program Size (EACP), is proposed.
EACP maintains the diversity of program size in the popu-
lation by using particular fitness assignment and generation
alternation. We apply EACP to three problems, factorial,
exponentiation and sorting a list. The present work is in-
tended to take into account the effectiveness of EACP and
confirm evolution maintaining various program size.

2. RELATED WORKS

2.1 Graph Structured Program Evolution
(GRAPE)

GRAPE [7, 8] constructs graph structured programs au-
tomatically. The graph structured programs is composed of
arbitrary directed graph of nodes and data set.

The features of GRAPE are summarized as follows:

• Arbitrary directed graph structures.

• Handle multiple data types using the data set.

• Genotype of integer string.

The representation of GRAPE is graph structure. Each
program is constructed as an arbitrary directed graph of
nodes and data set. The data set flows the directed graph
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Figure 1: Structure of GRAPE (phenotype) and the
genotype which denotes a list of node types, connec-
tions and arguments. “No.6” is the inactive node.
Size of program (the number of active nodes) is 7.

and is processed at each node. Figure 1 illustrates an exam-
ple of structure of GRAPE. Each node in GRAPE has two
parts, a processing and branching. The processing executes
several kinds of processing using the data set, for instance,
arithmetic calculation and boolean calculation. After the
processing is executed, a next node is selected. The branch-
ing decides the next node according to the data set. “No.7
node” is the output node. When this node is reached, the
GRAPE program outputs data and then the program halts.
The representation of GRAPE is graph structure, therefore
it can represent complex programs (e.g. branches and loops)
using its graph structure. There are several data types in
GRAPE program, integer data type, boolean data type, list
data type and so on. The GRAPE program handles multiple
data types using the data set for each type.

To adopt evolutionary method, genotype-phenotype map-
ping is used in GRAPE. This genotype-phenotype mapping
method is similar to CGP [5]. The GRAPE program is en-
coded in the form of a linear string of integers. The genotype
is an integer string which denotes a list of node types, con-
nections and arguments. Although the genotype in GRAPE
is a fixed length representation, the number of nodes in the
phenotype can vary but is bounded (not all of the nodes
encoded in the genotype have to be connected). This allows
the existence of inactive nodes. In Figure 1, “No.6 node”
is an inactive node. The other nodes are active nodes. In
this paper, program size of GRAPE is the number of active
nodes in the phenotype.

To obtain the optimum structure of GRAPE, an evolu-
tionary method is adopted. The genotype of GRAPE is a
linear string of integers. Therefore, GRAPE is able to use a
usual GA. In this paper we use uniform crossover and mu-
tation as the genetic operators.

2.2 Minimal Generation Gap (MGG)
The MGG model [2, 6] is a steady state model proposed by

Satoh et al. The MGG model has a desirable convergence
property maintaining the diversity of the population, and
shows higher performance than the other conventional mod-
els in a wide range of applications (especially real-parameter

optimization). The MGG model is summarized as follows:

1. Set generation counter t = 0. Generate N individuals
randomly as the initial population P (t).

2. Select a set of two parents M by random sampling
from the population P (t).

3. Generate a set of m children C by applying the crossover
and the mutation operation to M .

4. Select two individuals from set M + C. One is the
elitist individual and the other is the individual by
the roulette-wheel selection. Then replace M with the
two individuals in population P (t) to get population
P (t + 1).

5. Stop if a certain specified condition is satisfied, other-
wise set t = t + 1 and go to step 2.

The MGG model localizes its selection pressure not to the
whole population as Simple GA or Steady State does, but
only to the family (children and parents).

GRAPE with MGG model shows higher performance than
GRAPE with Simple GA in a variety of evolution of pro-
grams [8].

3. EVOLUTIONARY ALGORITHM
CONSIDERING PROGRAM SIZE (EACP)

3.1 Overview
The EACP algorithm maintains the diversity of program

size in the population by using particular fitness assignment
and generation alternation. Each individual is evaluated by
considering functional fitness value and program size of the
individual in EACP fitness assignment. The EACP algo-
rithm also localizes its selection pressure to the family (chil-
dren and parents) as in the case of MGG.

3.2 The EACP Algorithm
Figure 2 shows the outline of generation alternation in

EACP. The EACP algorithm is designed to maintain the
diversity of program size in the population. The EACP al-
gorithm is summarized as follows:

Definition:
P (t): Population at generation t

N : Population size
M : Parents
C: Children
m: Child size

Step 1. Initialization:
Set generation counter t = 0. Generate N individuals
randomly as the initial population P (t).

Step 2. Selection of Parents:
Select a set of two parents M by random sampling
from the population P (t).

Step 3. Recombination:
Generate a set of m children C by applying the crossover
and the mutation operation to M .

Step 4. EACP Fitness Assignment:
EACP fitness assignment to children C and parents M

using P (t) + C (cf. Section 3.3).
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Figure 2: Outline of generation alternation in
EACP.

Step 5. Selection:
Select EACP fitness best and 2nd best individuals from
set M +C. Then replace the two parents M with these
two individuals in population P (t) to get population
P (t + 1).
(When the individuals A and B have same EACP fit-
ness value, the individual which has greater functional
fitness value is evaluated better. i.e. (Feacp(A) =
Feacp(B)) ∧ (FA > FB) ⇒ A is evaluated better in-
dividual.)

Step 6. Stop Criteria:
Stop if a certain specified condition is satisfied, other-
wise set t = t + 1 and go to step 2.

3.3 EACP Fitness Assignment
To keep the diversity of program size in the population,

EACP uses particular fitness assignment. The EACP fitness
assignment is considered the distribution of program size
in the population. Specifically, each individual is assigned
the EACP fitness for each program size. If there are a lot
of same program size individuals in the population, these
individuals should be assigned low fitness form concept of
the EACP algorithm.

The EACP fitness assignment procedure is as follows:

1. Each individual i ∈ (M + C) (parents and children)
is calculated a value of n(i) using Equation 1. n(i) is
the number of individuals which have same program
size and equal or greater functional fitness value of the
individual i.

n(i) =
X

j∈P (t)+C,j 6=i

xi(j),

where xi(j) =

(

1 if (Si = Sj) ∧ (Fi ≤ Fj)

0 otherwise
(1)

where Si is the program size of individual i, Fi is the
functional fitness value of individual i. In this case, the
higher the numerical value F indicates the better per-
formance. In GRAPE, program size S is the number
of active nodes in the phenotype.

2. Each individual i ∈ (M + C) is assigned the EACP
fitness value Feacp(i) in Equation 2.

Feacp(i) =
1

n(i) + 1
(2)
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Figure 3: Example of fitness assignment in EACP.

Table 1: The parameters of each algorithm used in
the experiments.

Parameter Value

The number of evaluations 5000000
Population size (N) 500
Child size (m) 50 (for MGG, EACP)
Uniform Crossover rate Pc 0.1
Crossover rate 0.7
Mutation rate Pm 0.02
The maximum number of nodes 30

Figure 3 illustrates an example of fitness assignment of
EACP. In Figure 3, the individual A has two individuals
which are same program size and greater functional fitness
value (i.e. n(A) = 2). Thus, the EACP fitness value is 0.33.
The individual B has no individual which are same program
size and greater functional fitness value (i.e. n(B) = 0),
and the EACP fitness value is 1.0. The individual C has one
individual which are same program size and equal functional
fitness value (i.e. n(C) = 1), and the EACP fitness value is
0.5.

4. SETTINGS OF EXPERIMENTS
Several different problems are tackled in order to verify the

effectiveness of EACP. The EACP algorithm is compared to
Simple GA (SGA), MGG and SPEA2 on a number of test
problems. The problems include the computations of facto-
rial, exponentiation and sorting a list. We use GRAPE as
an Automatic Programming technique. Evolution of these
programs is difficult for standard GP. It needs to prepare
iteration or recursion mechanisms to solve these problems.

The parameters of each algorithm are given in Table 1. In
SGA, tournament selection (a tournament size of 2) along
with elitist strategy (an elite size of 1) is used as the selec-
tion mechanism. In SPEA2, we use an archive size of 500,
and two objectives are considered: functional fitness value
and program size (the number of active nodes). Therefore,
SPEA2 has a tendency to generate small program size indi-
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viduals. The maximum number of nodes of GRAPE (max-
imum program size) is 30. In order to avoid the problem
caused by non-terminating structures we limited the exe-
cution step to 500 (factorial and exponentiation) and 3000
(sorting a list). When a program reaches the execution limit,
the individual is assigned the fitness 0.0. We prepare suffi-
cient data set size to compute the problems. Initially, we set
input values and constant values on the data set. Therefore,
GRAPE handles or creates constants within its programs.

In the problem of factorial, we seek to evolve an imple-
mentation of the factorial function. We use integers from 0
to 5 as the training set. The functional fitness F used in the
experiments is:

F = 1 −

n
X

i=1

|Correcti − Outi|

|Correcti| + |Correcti − Outi|

n
(3)

where Correcti is correct value for the training data i, Outi

is the value returned by the generated program for the train-
ing data i, and n is the size of the training set. The range of
this fitness function is [0.0, 1.0]. The higher the numerical
value indicates the better performance. If this functional
fitness is equal to 1.0, the program gives the perfect solution
for the training set. If the functional fitness in Equation 3
is reached 1.0, the functional fitness is calculated as follows:

F = 1.0 +
1

Sexe

(4)

where Sexe is the total number of execution steps of the
generated program. This fitness function means the less ex-
ecution step is the better solution. In the experiment of
factorial, integer data type is used, and the size of inte-
ger data in GRAPE is 10. Initially, we set input value on
the data[0] to data[4] and constant value 1 on the data[5]
to data[9]. The node functions used in this experiment
are {+,−, ∗, =, >, <, OutputInt}. For instance, “+” is add
data[x] to data[y] and substitute for data[z]. On the “=”, if
data[x] is equal data[y] connection 1 is chosen else connec-
tion 2 is chosen.

In the problem of exponentiation, we seek to evolve an
implementation of the integer exponential ab. There are two
inputs in this problem. We also use the functional fitness
in Equation 3 and 4 on the training set. In the experiment
of exponentiation, integer data type is used, and the size of
integer data in GRAPE is 15. Initially, we set input value
a on the data[0] to data[4], input value b on the data[5] to
data[9] and constant value 1 on the data[10] to data[14]. The
node functions used in this experiment are {+,−, ∗, =, >, <

, OutputInt}.
In the problem of sorting a list, we seek to evolve an im-

plementation of the sorting algorithm. We provide a list of
integers as the inputs. A correct program returns a sorting
input list, of any length (e.g. input: (2 1 7 5 1), output: (1
1 2 5 7)). The training data set is 30 random lists whose
lengths are between 10 and 20. Elements of the list are ran-
domly chosen from the range of [0, 255]. The functional
fitness function F used in this experiment is given in Equa-
tion 5. The range of this fitness function is [0.0, 1.0]. The
higher the numerical value indicates the better performance.
If this functional fitness is equal to 1.0, the program gives

the perfect solution for the training set.

F = 1.0 −

n
X

i=1

l
X

j=0

(1 −
1

2dij
)

li

n
(5)

where dij is the distance between the correct position and
the return value position for the training data i for the ele-
ment j. li is the length of the list for the training data i and n

is the size of the training data set. If the functional fitness in
Equation 5 is reached 1.0, the functional fitness is calculated
using Equation 4. We prepare simple node functions, arith-
metic functions, swap the elements of list and compare the
elements of list. For instance, “SwapList”swaps list[data[x]]
for list[data[y]], “EqualList” is that if list[data[x]] is equal
list[data[y]] connection 1 is chosen else connection 2 is cho-
sen. We do not prepare special node functions such as it-
eration functions. In this experiment, a list of integers and
integer data type are used, and the size of integer data in
GRAPE is 15. Initially, we set the size of input list (the list
length) on the data[0] to data[4], constant value 0 on the
data[5] to data[9] and constant value 1 on the data[10] to
data[14].

5. RESULTS AND DISCUSSION
Results are given for 100 different runs with the same

parameter set. GRAPE with EACP is successful in finding
correct solutions to all of the problems.

The transitions of average functional fitness value over
100 runs for each algorithm are display in Figure 4. This
graph also shows the effectiveness of EACP. From the point
of view of transition of functional fitness in Figure 4, EACP
is superior to other algorithms for all the experiments.

A comparison of variance of the number of active nodes
(program size) in the population for each algorithm can be
seen in Figure 5. Note that the variance of the number of
active nodes with EACP is higher and constant value as
against other algorithms. In Figure 5, EACP is realized
maintenance of the diversity of program size in the popu-
lation at all generations. Thus, EACP searches individu-
als (programs) of various program sizes. In contrast, the
individuals converge on a certain program size with other
algorithms (SGA, MGG and SPEA2).

Table 2 provides a summary and comparison of the num-
ber of successful runs for each algorithm on each of the prob-
lem domains tackled. When an individual whose functional
fitness is more than 1.0 is found, the run is counted as suc-
cessful run. MGG and EACP algorithm achieve higher per-
formance than SGA and SPEA2. According to the results,
we can consider that localizing the selection pressure to the
family is improved the performance of GRAPE. EACP ap-
proach which is maintenance of the diversity of program size
in the population is significant for improvement of the num-
ber of successful runs and functional fitness. In SPEA2, it
is difficult to generate the individuals which have large pro-
gram size.

Figure 6 and 7 show the distribution of EACP and MGG
population at the generation 2000, 20000 and 80000 in the
experiment of factorial, respectively. The horizontal axis
represents the number of active nodes (program size) and
the vertical axis is the functional fitness. Each dot in the
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Figure 4: These graphs show the comparison of the transition of average functional fitness for each algorithm
over 100 runs.
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Figure 5: These graphs show the comparison of the variance of the number of active nodes (program size) in
the population for each algorithm over 100 runs.

Table 2: The number of successful runs after
5000000 fitness evaluations for each algorithm over
100 runs.

Problem Domain Number of successful runs

SGA MGG SPEA2 EACP
Factorial 19 80 7 95
Exponentiation 2 39 0 37
Sorting a list 1 72 0 80

graphs represents one individual. While EACP keeps a vari-
ety of the number of active nodes (program size) at all gen-
eration, the individuals in MGG has a tendency to converge
on a certain program size. Furthermore, large program size
individuals (near 30 nodes) cannot be generated by using
MGG algorithm.

6. CONCLUSIONS AND FUTURE WORKS
In this paper, we have proposed a new generation alterna-

tion model for GRAPE, Evolutionary Algorithm Consider-
ing Program Size (EACP). We have applied EACP to three
different test problems and examined the performance of

EACP. We have demonstrated that EACP improves the per-
formance of GRAPE and maintains the diversity of program
size in the population.

As for further research topics, we need to apply EACP to
other types of problems to show more effectiveness of EACP.
Moreover, we will plan to investigate the performance of
EACP using other Automatic Programming techniques, for
instance, standard Genetic Programming, Cartesian Genetic
Programming and so on.
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Figure 6: The distributions of EACP population at generation 2000, 20000 and 80000 in the experiment of
factorial. Each dot in the graphs represents one individual.
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