
A Novel Methodology For Diversity Preservation
In Evolutionary Algorithms

Giovanni Squillero
Politecnico di Torino - DAUIN
Corso Duca degli Abruzzi 24

10129 Torino - Italy
Tel: +39 011564.7092

giovanni.squillero@polito.it

Alberto P. Tonda
Politecnico di Torino - DAUIN
Corso Duca degli Abruzzi 24

10129 Torino - Italy
Tel: +39 011564.7091

alberto.tonda@polito.it

ABSTRACT
In this paper we describe an improvement of an entropy-based
diversity preservation approach for evolutionary algorithms. This
approach exploits the information contained not only in the parts
that compose an individual, but also in their position and relative
order. We executed a set of preliminary experiments in order to
test the new approach, using two different problems in which
diversity preservation plays a major role in obtaining good
solutions.

Categories and Subject Descriptors
I.m [Computing Methodologies]: Miscellaneous

General Terms
Algorithms, Experimentation

Keywords
Evolutionary Algorithms, Diversity Preservation

1. INTRODUCTION
Diversity preservation is one of the main open issues of
Evolutionary Computation. Since new individuals of each
generation are usually created by applying genetic operators to
those already present in the population, it is important to avoid
that all the population is filled with identical or nearly identical
copies of the same individual. Simplistic approaches propose to
avoid individuals with equal fitness. However, these techniques
are inadequate where widely different individuals may have a
similar fitness value. In the literature, different strategies have
been developed to preserve diversity even in these circumstances,
such as the island model genetic algorithm, the lattice genetic
algorithm and the entropy driven approach.

The island model genetic algorithm, as other coarse-grained
mechanisms, is based on considerations from theories of natural
evolution and from the efficiencies of parallel computer
architectures. Instead of having a single large population, this
algorithm uses several distinct subpopulations, which alternate
extensive periods of isolated evolution (computation) with
occasionally episodes of migration (communication). Since
different populations are likely to explore different portions of the

solution space, the migration between subpopulations may help
mixing genetic information and preserving diversity. This
approach, however, leaves some open issues such as
dimensioning the subpopulations (which is strongly problem-
dependant) and the optimal parameters of the migration. Also,
while most empirical results show that island evolutionary
algorithms are more efficient than evolutionary algorithms with
just one population, this approach seems to be more suitable for
separable problems and problems with multiple solution paths.

A different kind of approach is the lattice (or cellular) model,
where each individual occupies a cell in a regular lattice (or a
more general graph). All interactions, like mating and selection,
are local and limited to a neighborhood. Size and shape of the
neighborhood are closely related to selection pressure [4]. Since
each individual can interact only with its neighbors, this approach
allows the survival of individuals with unusual genotypes.
Choosing the appropriate neighborhood size and shape is thus
critical, and could be problem-related.

In [3] we proposed an alternative approach. While the two latter
models focus on limiting the interaction between individuals, the
diversity preservation was implemented by conserving individuals
with peculiar genotypes despite their fitness values. By
considering the population as a message, and each allele
appearing in an individual as a symbol, we can compute a
measure of the entropy of the message, based on the number of
symbols and their occurrences, as in the Shannon entropy formula
[6].

We defined delta-entropy as the difference between the total
entropy of the population and the entropy of the population
without the symbols appearing in an individual. Individuals with
an unusual genotype would contribute to the message with a large
number of unusual symbols, and would thus have great values of
delta-entropy. Once those individuals are identified, they could be
selected as parents to generate new individuals, thus preserving
part of their genotype in the new generations. In this approach,
individuals are represented by a directed non-cyclic graph, where
each node is an allele of a certain gene. Thus, two individuals
(with dissimilar fitness value and structure) could have the same
node values (thus the same allele), just in a different order, and

Copyright is held by the author/owner(s).
GECCO’08, July 12–16, 2008, Atlanta, Georgia, USA.
ACM 978-1-60558-131-6/08/07.

Figure 1. Shannon Entropy formula.

2223

Figure 2. Corresponding symbols in different individuals
using old and new entropy computation.

both would contribute with the same quality and amount of
information to the message. The idea proposed in this paper is to
modify the definition of “symbols” connected with an individual,
in order to preserve “unique structures” present in the population
without altering the entropy computation.

2. A NEW CONCEPT OF ENTROPY
We propose to modify the concept of symbols of a single
individual, considering the presence of n-uples of nodes and the
position of a certain allele in a graph as atomic element.

A possibly useful information is the order of the nodes of a single
individual. Since two distinct positions of the same allele in an
individual could have a completely different meaning, we chose
to ignore the information related to the allele, focusing instead on
both the allele and its position inside the directed graph which
describes the individual in μGP3. Instead of considering an allele
as a symbol, we coded the information of the value of the instance
and its position in a single symbol. By doing so, individuals with
recurring alleles of the same gene in a different order have now
higher values of delta-entropy. In Figure 3, two different
individuals which would contribute to the message with the same
symbols, have now only one symbol in common using the new
entropy computation.

We also consider valuable to search for n-grams (defined here as
n consecutive node values) occurrences in each individual, adding
this data to the contribution given to the message by the
individual itself. [2] N-grams in the population are coded as
symbols, thus letting us discriminate individuals with unusual
patterns very easily, without changing the overall entropy-driven
approach of the algorithm: even individuals with an atypical order
of diffused values of single nodes possess now a high value of
delta-entropy, which is an interesting result with regards to
preserve diversity in the population. In Figure 2, two different
individuals which would contribute to the message with the same
symbols using the old entropy computation have only two
identical symbols using the new entropy computation.

3. EXPERIMENTAL EVALUATION
In order to verify the new entropy approach described in the
previous section, we executed a series of preliminary
experiments, comparing the results obtained using the new
approach with results obtained using the old entropy computation
and using no entropy computation at all.
The first benchmark was evolving assembly code in order to
obtain a function capable of discerning between prime and non-
prime numbers ranging from 1 to 20. The second benchmark was
evolving the code used by a simple program to draw a path into a
virtual arena, in order to reach a given goal in the least possible
number of instructions.
In all the experiments described in the following subsections we
used various versions of the evolutionary algorithm known as
μGP3 [3]. The version with the new entropy computation, was
implemented in order to consider occurrences of n-grams of order
2 and 3.

3.1 Prime Numbers Function
In this benchmark, our goal is finding an assembly function which
returns 1 whenever it has a prime number passed as an argument,
and 0 otherwise. Each individual is a block of assembly code, of
arbitrary length. Only a subset of all possible assembly x86
instructions can appear in the code (addl, subl, movl, andl, orl,
xorl, test, cmp, ja, jz, jnz, je, jne, jc, jnc, jo, jno) while the
operands of each instruction can only be four registers (ax, bx, cx,
dx) and integers (with values between 0 and 255). “Jump”
instruction can only point to labels after the jump instruction
itself, thus preventing endless loops. In this experiment we tested
each individual with numbers ranging from 1 to 20.

The evaluation is performed by a script that compiles an
individual and then executes a simple C program which invokes
the individual as a function multiple times, each time passing a
number as an argument and expecting a return value of either 0 or
1. In all the experiments, we used a (μ, λ) strategy with μ = 1000
and λ = 33, and a generational approach with an elitist strategy
that preserves the best 3 individuals. Please note that, in μGP3, λ
is in fact the number of genetic operators applied to the

Figure 3. Corresponding symbols in different individuals
using old and new entropy computation.

2224

Figure 5. An example of individual in the second
benchmark.

population at each step, thus the offspring size may be different.
In order to select the individuals to pass to the genetic operators,
we used a tournament selection (with tournament size of 3). The
algorithm was set to stop when the maximum possible fitness
value or a given number of generations was reached.

In the preliminary experiments, we compared the performance of
three different tournament selection strategies:
- a selection based only on the fitness values of the chosen
individuals
- a selection based on entropy values (with the old entropy
computation)

- a selection based on entropy values (with the improved entropy
computation we described in section 2).

In all the experiments we found out that the latter approach is the
most efficient, obtaining the desired function in 600-700
generations, while the old entropy approach and an experiment
carried out with a tournament selection based only on fitness
values did not manage to converge even after 2000 generations.

In these experiments we tested only the two extreme cases of
tournament selection based either only on the fitness value or on
entropy values.

3.2 Finding the Right Path
In this experiment, our goal is to obtain an individual which can
arrive to a certain point on the opposite side of an arena without
intersecting an obstacle, and doing so in the least possible number
of instructions. Each individual is a block of code, between 8 and
50 instructions. There are only two possible instructions: MOVE
(which accepts a real parameter ranging from 0.0 to 40.0) and
ROTATE (which accepts a rotation expressed in radiant, thus
ranging from -π to π).

The evaluation takes the individual and follows its instructions by
“moving” into an arena of 250 x 100 units of length, with two
obstacles. If the individual intersects an obstacle, its position is
not updated and further instructions are not executed.

We have two fitness parameters: one dependent on the distance
from the objective, and one dependent on the number of
instructions of the individual. Note that each obstacle is a local
optimum with regards to the first fitness value: since there is only
a small vertical space of 10 units of length where an individual
could pass without intersecting an obstacle, it is relatively
difficult for an individual to escape the two local optima.

We used a (μ, λ) strategy with μ = λ and population sizes (of 10,
20, 30, and 50 individuals), and a generational approach with an
elitist strategy that preserves the best 4 individuals. We executed
different runs with the same stopping condition: evaluation of 2 M
individuals, in order to compare the best individuals emerged

 .file "foo.c"
 .text

.globl foo
 .type foo, @function
foo:
 pushl %ebp
 movl %esp, %ebp
 movl 8(%ebp), %eax
 pushl %ebx
 pushl %ecx
 pushl %edx
 movl $93, %ebx
 movl $133, %ecx
 movl $104, %edx

prologue
 andl $225, %eax
 jne nFRW
 xorl %ecx, %ebx
 jz nFRV
 andl $32, %ecx
 addl %ecx, %ebx
 jne nFRV
 addl $81, %ecx
 cmp %ebx, %ebx
 addl %ecx, %eax
 cmp %eax, %edx
 addl $95, %ecx
 jno nFRV
 addl %ecx, %ebx
 nFRV: jne nFRZ
 nFRW: orl %eax, %edx
 orl %eax, %ebx
 subl %ebx, %ebx
 nFRZ:
#epilogue

 popl %edx
 popl %ecx
 popl %ebx
 popl %ebp
 ret
 .size foo, .-foo

 .ident "GCC: (GNU) 4.1.1 20070105 (Red Hat
4.1.1-51)"
 .section .note.GNU-stack,"",@progbits

Figure 4. An example of individual in the first
benchmark.

rotate 0.128501499703256
move 16.4006824043443
rotate 0.584000940527606
rotate 0.30873892699125
move 37.7772101402074
move 33.8879641796075
move 37.7759674859092
rotate -1.13261208546878
rotate 0.20164306478673
rotate -0.473967818304483
move 15.9922375998931
move 23.6644477504869
rotate -0.433767526492107
move 35.7594037608348
move 35.7594037608348
move 36.9633255101185
rotate 1.78907118768571
move 1.02390550580111
move 18.6992676756395
rotate 0.30873892699125
move 37.7759674859092

2225

after each run. We used a tournament selection to choose the
individuals to pass to the genetic operators:
- in the first case, the selection was based only on the fitness
values of the individuals
- in the second, the selection was based on entropy values instead
- a third experiment is running, with an old entropy computation,
in order to evaluate the improvement of the new approach

In the preliminary experiments we always obtained an
improvement in the fitness values of the best individual using the
new entropy approach, for the same population sizes. Again, we
used only two kinds of tournament selection, but we are running
more tests with various fitness holes and greater population sizes,
in order to have a better comparison of the performance of the
new entropy computation under different conditions.

4. CONCLUSIONS
In this paper we presented a way to improve the approach to
preserve diversity in the population used by the evolutionary

algorithm μGP. This approach views the population as a message:
each individual of the population contributes to the message with
a series of symbols. By computing a difference between total
entropy of the message and the entropy of the message without
the symbols added by an individual, we can obtain a delta-entropy
which measures the diversity of the individual itself with regards
to the population.

We modified the approach by including as symbols the
information on the occurrences of n-grams of values in the nodes
composing an individual and on the order of the occurrences of
alleles in an individual.

Preliminary experiments demonstrated that the new approach is
promising, as it performed more efficiently than the old one in the
totality of the tests executed, and much more efficiently when
compared to the same tests carried out without any mean to
preserve diversity.

5. ACKNOWLEDGMENTS
Our thanks to Massimiliano Schillaci and Alessio Moscatello for
developing the evaluators for the benchmark presented, and to
Danilo Ravotto and Ernesto Sanchez for constructive criticisms
and invaluable advice.

6. REFERENCES
[1] Martin, W.N. , Lienig J. and Cohoon J.P. Island (migration)

models: evolutionary algorithms based on punctuated
equilibria, In Handbook of Evolutionary Computation, IOP
Publishing Ltd and Oxford University, 1997.

[2] Tomassini, M. and Giacobini, M. Spatial and Temporal
Dimensions in Evolutionary Systems, GSICE05, 2005.

[3] Corno F., Sanchez E., Squillero G., Evolving Assembly
Programs: How Games Help Microprocessor Validation,
IEEE Transactions on Evolutionary Computation, Special
Issue on Evolutionary Computation and Games, Dec. 2005,
vol. 9, pp. 695-706

[4] Sarma J., De Jong K., An Analysis of the Effects of
Neighborhood Size and Shape on Local Selection
Algorithms, PPSN IV (Berlin, 1996)

[5] E. Burke, S. Gustafson, G. Kendall, Diversity in Genetic
Programming: An Analysis of Measures and Correlation
With Fitness, IEEE Transactions on Evolutionary
Computation, Feb 2004, Vol 8, No I, pp 47-62

[6] Shannon C.E., A Mathematical Theory of Communication,
Bell System Technical Journal, vol. 27, pp. 379-423, 623-
656, July, October, 1948

Best Individual Length Population
Size TS based on Fitness TS based on Entropy

10 NO SOLUTION 22
20 31 26
30 34 23
50 28 23

Figure 6. The path produced by the execution of the code
provided in Figure 4.

Table 1. Results of the preliminary experiments with the
second benchmark, comparing the best individual obtained
through tournament selection based on fitness values with
the best one obtained through tournament selection based
on entropy values.

2226

