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ABSTRACT 
We introduce quotient graphs for modeling neutrality in 
evolutionary search. We demonstrate that for a variety of 
evolutionary computing problems, search can be characterized by 
grouping genes with similar fitness and search behavior into 
quotient sets. These sets can potentially reduce the degrees of 
freedom needed for modeling evolutionary behavior without any 
loss of accuracy in such models. Quotients sets, which are also 
shown to be Markov models, aid in understanding the nature of 
search. We explain how to calculate Fitness Distance Correlation 
(FDC) through quotient graphs, and why different problems can 
have the same FDC but have different dynamics. Quotient models 
also allow visualization of correlated evolutionary drives. 

Categories and Subject Descriptors 
I.2.m.c [Computing Methodologies]: Artificial Intelligence – 
Miscellaneous - Evolutionary computing and genetic algorithms. 

General Terms 
Theory,  Measurement. 

Keywords 
Quotient sets, Degenerate Code, Fitness Distance Correlation, 
Neutral Evolution. 

1. INTRODUCTION 
In many Evolutionary Computing approaches, a genotype-to-
phenotype map is used to convert populations of genomes that 
inhabit a search space into expressions that are either fitness 
values or can be evaluated on further processing as fitness values. 
The mapping processes used in a variety of EC applications 
usually have some implicit structure to them. By this we mean it 
is usually possible to prescribe the map as an algorithm, or to 
describe the map by use of a concise description, or a meaningful 
name. In contrast a randomly generated map usually requires a 
listing of genotypes and the associated phenotypes they represent. 
The structure of a map can be examined both from the perspective 
of how it defines genetic neighborhoods and phenotypic 
selectivity of genes. Due to symmetries inherent in mapping 

structures it is sometimes possible to develop a model of 
evolution that is simpler than using the actual map. Quotient 
models are one way of using the symmetry in mapping structures 
to give simpler models without loss of accuracy. In this paper we 
use quotient sets to model various evolutionary computing 
problems.  

Quotient models are applicable to both encodings and problems. 
In order to show the wide applicability of our approach, we apply 
it to a variety of mapping schemes in the literature including 
OneMax, deceptive trap, needle in haystack coding, parity coding, 
majority coding [7] and the redundant coding used in Thomason 
and Soule [11].  

The next section looks at the reasoning behind our approach. 
Through the use of an example, we introduce our method of using 
quotient sets and graphs for the modeling of genes and genomes. 
In Section 3 we apply the method to diverse examples and show 
how it explains correlated evolutionary drives and fitness distance 
correlations. Section 4 contains conclusions and future work. 

2. SEARCH NEUTRALITY 
In this section we use a simple example to detail how a quotient 
model is obtained, the benefits of such a model and how to 
calculate a quotient mutation rate matrix and fitness distance 
correlation from such models. Though the example to be used is a 
genotype-to-fitness map for a complete problem, it should be 
noted that quotient models are also applicable to genotype-to-
phenotype maps, where the map is an encoding (e.g. parity 
coding) and can be seen as describing a sub-problem. 

Table 1 shows a genotype-to-fitness map for a simple problem 
based on a 3 bit string. We will use this map to illustrate our 
approach at using quotient models for evolutionary phenomena. 
Using the example, we can divide the strings into sets that have 
the same fitness values. The set of string 0 {000,111}Ω =  have the 
same fitness value 0; likewise the set of strings 

1 {001,010,100}Ω =  and  2 {011,101,110}Ω =  have fitness values 
1 and 2 respectively. We will refer to these sets as fitness neutral 
sets. 
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Table 1: Example mapping of 3-bit strings to fitness values. 
3 bit string Fitness 

000 0 
001 1 
010 1 
011 2 
100 1 
101 2 
110 2 
111 0 

 

 Assuming m-bit coding, all mapping schemes map 2m  unique 
strings unto n fitness cases, with 2mn ≤ . We can represent each 
string and their fitness values as unitary vectors X  and Ψ of 
sizes 2m and in respectively, with: 

1,
0

i
i xX
otherwise

⎧⎪ == ⎨
⎪⎩

. 

For instance strings  000 and 101 have integer values 0 and 5 and 
are represented as vectors: 

{ }1 0 0 0 0 0 0 0 TX =  , and 

{ }0 0 0 0 0 1 0 0 TX =  respectively. The vector 

representation of Ψ is: 

1,
0

i
i fitness
otherwise

⎧⎪ =Ψ = ⎨
⎪⎩

. 

The unitary vectors representing fitness 0, 1 and 2 are therefore 
respectively: { }1 0 0 T

Ψ = , { }0 1 0 T , and { }0 0 1 T . Note 

that these representations form basis (i.e. they are linearly 
independent and span their respective vector spaces). 
With these representations, we can construct a 2m

in ×  linear 
operator, A , that maps strings to fitness values, with AXΨ = . 
The definition of such a matrix is: 

,
1,
0

i j
if string j maps to fitness iA
otherwise

⎧⎪= ⎨
⎪⎩

. 

For our example,  

0,0 0,1 0,7

1,0 1,1 1,7

2,0 2,1 2,7

. .

. .

. .

A A A
A A A A

A A A

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

, 

 
1 0 0 0 0 0 0 1
0 1 1 0 1 0 0 0
0 0 0 1 0 1 1 0

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

. 

For every row of A , the set of indexes of columns that have a unit 
value is a fitness neutral set. We will find this matrix 
representation of mapping useful in explaining search neutrality, 
which we now discuss. 

Figure 1 represents the strings of our example as vertices on a 
cube. This representation shows the neighborhood structure 
between strings. It can be seen that each string in the fitness 

neutral set [1] (shown with gray vertices) has as neighbors two 
strings in set [2] (black vertices) and one string in set [0] (that 
with the white vertex); We can therefore infer that for all strings 
belonging to set [1], mutation of a single bit chosen at random 
leads to the same phenotypic search distribution (i.e. same 
probability that the resulting mutant string belongs to sets [0] or 
[2]). It is not difficult to see that even for the six possible 2-bit 
mutations and the one possible 3-bit mutation the search 
distributions are identical for all members of [1]. We therefore 
denote [1] as a set composed of search neutral members.  

Definition: A search neutral set of strings is a set of fitness neutral 
strings that has the same phenotypic search distribution on 
mutation.  

By our definition search neutral sets are (proper or improper) 
subsets of fitness neutral sets. The value of this characterization is 
that when we know a string belongs to a particular search neutral 
set, say [0], then we have all the information necessary to 
understand its fitness and search behavior. We can replace the 
string with some other randomly chosen member of the same 
search neutral set and expect identical search behavior. Set [0] is 
an example where the fitness neural members are not search 
neutral. On single bit mutation, for instance, string 000 has strings 
in [1] as neighbors, whereas string 111 has neighbors in [2]. When 
all members of a fitness neutral set are not search neutral, we 
divide the fitness neutral set into search neutral subsets, labeling 
each of them with both the fitness value and some additional 
lettering, and list the content of each individual set. We thus get 
[0a] = {000} and [0b] = {111}. 

Another way of looking at search neutrality is to consider each bit 
of an m-bit binary string being mutated with some fixed 
probability μ . The search distribution induced by mutation on 
the string can be modeled by applying an 2 2m m×  mutation rate 
matrix M on the string with   ( , ) ( , )

, (1 )d x y m d x y
i jM μ μ −= − , where 

( , )d x y is the Hamming distance between the present string x , 
and its potential mutated value y . 
The mutation rate matrix for our example 3-bit system is: 

3 2 2 3

2 3 2

2 2 3

3 3

000 001 010 . . . 111
000 (1 ) (1 ) (1 ) . . .
001 (1 ) (1 ) (1 )
010 (1 ) (1 ) (1 )

. .

. .

. .
111 (1 )

M

μ μ μ μ μ μ
μ μ μ μ μ
μ μ μ μ μ

μ μ

⎡ ⎤− − −
⎢ ⎥

− − −⎢ ⎥
⎢ ⎥− − −
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥−⎣ ⎦

 
The genotypic search distribution on mutation of a string is MX , 
where X is the unitary representation of the string. Its phenotypic 
search distribution XΦ is given by: 

X AMXΦ = . 
Let AMΦ = , for the example, its transpose is:  
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3 3 2

2 2 3 2

2 2 3 2

2 2 3 2

2 2 3 2

2 2 3 2

2 2 3

3 3

0 (1 ) 3 (1 )
1 (1 ) (1 ) (1 ) 2 (1 )
2 (1 ) (1 ) (1 ) 2 (1 )
3 (1 ) (1 ) 2 (1 )
4 (1 ) (1 ) (1 ) 2 (1 )
5 (1 ) (1 ) 2 (1 )
6 (1 ) (1 ) 2 (
7 (1 )

T

μ μ μ μ
μ μ μ μ μ μ μ
μ μ μ μ μ μ μ
μ μ μ μ μ μ μ
μ μ μ μ μ μ μ
μ μ μ μ μ μ μ
μ μ μ μ μ μ

μ μ

+ − −
− + − − + −
− + − − + −
− + − + −

Φ =
− + − − + −
− + − + −
− + − +

+ −

2

3 2

3 2

3 2

3 2

3 2

2 3 2

2 2

3 (1 )
2 (1 )
2 (1 )

(1 ) 2 (1 )
2 (1 )

(1 ) 2 (1 )
1 ) (1 ) 2 (1 )

3 (1 ) 3 (1 )

μ μ
μ μ μ
μ μ μ
μ μ μ

μ μ μ
μ μ μ

μ μ μ μ
μ μ μ μ

⎡ ⎤−
⎢ ⎥

+ −⎢ ⎥
⎢ ⎥+ −
⎢ ⎥

− + −⎢ ⎥
⎢ ⎥+ −⎢ ⎥
⎢ ⎥− + −
⎢ ⎥− − + −⎢ ⎥
⎢ ⎥− −⎣ ⎦

We see, from its transpose, that the phenotypic search distribution 
for columns 1, 2 and 4 of Φ  are identical and equal to: 

2 2

3 2

3 2

(1 ) (1 )
(1 ) 2 (1 )

2 (1 )

μ μ μ μ
μ μ μ

μ μ μ

⎡ ⎤− + −
⎢ ⎥

− + −⎢ ⎥
⎢ ⎥+ −⎣ ⎦

. 

This concurs with our visual analysis of search neutrality. 
Likewise we can observe the identical search distributions for 
columns 3, 5 and 6 associated with set [2], and the different 
search distributions of columns 0 and 7 meaning [0a] and [0b] 
have different search distributions. 

2.1 Search Neutral Sets As Quotient Sets And 
Graphs 
Let : { }iπ Ω→ Ω  represent the partitioning of strings into 
pairwise disjoint and nonempty search neutral sets iΩ , with 

i∪Ω = Ω .  Because members of each set iΩ have the same 
search distribution, the partitioning π , is such that for any two 
partitions iΩ , jΩ , the number of neighbors of any string ix∈Ω  

to jΩ is independent of the exact value of the string and depends 
only on the partition indexes i  and j . Such equitable 
partitioning is a well known concept in graph theory and system 
aggregation theory [1], [2], [3], [4]. The search neutral members 

ix∈Ω are an equivalence class. Any member can be chosen as a 
class representative. 

 
In general there is more than one way of achieving such 
partitioning at different levels of fineness (or coarseness). A 
partitioning 1: { }i i nπ ≤ ≤Ω→ Ω  is finer than another partitioning 

1: { }i i nπ ′≤ ≤′ ′Ω→ Ω if π π ′≠ and every set of j′Ω is a union of sets 

of iΩ . π ′ is said to be coarser than π . What we are interested in 
is obtaining the coarsest search neutral sets. The finest 
partitioning is achieved by having every partition contain a single 
string only. The coarsest partitioning can be found by grouping 
together the search neutral subsets of fitness neutral sets.  

 
A quotient set of search neutral strings is a set having each search 
neutral set represented by a single member. We can represent 
quotient set assignment of strings by a matrix Q where: 

,
1,
0

i j
if integer j maps to search neutral set iQ
otherwise

⎧⎪= ⎨
⎪⎩

. 

For our example: 

0 1 2 3 4 5 6 7
[0 ] 1 0 0 0 0 0 0 0
[0 ] 0 0 0 0 0 0 0 1
[1] 0 1 1 0 1 0 0 0
[2] 0 0 0 1 0 1 1 0

a
b

Q

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

The adjacencies between search neutral sets can be displayed 
with the aid of quotient sets. To obtain the adjacencies we can 
take any member of each search neutral set and find their search 
distribution for single bit mutations. Alternatively let H and 
H represent the quotient adjacency matrix, and the adjacency 
matrix of the hypercube respectively. If H  contains all 
adjacencies specified by H , then  assigning any string X  to its 
search neutral set, QX , and then applying the quotient adjacency 
matrix should be equivalent to finding its adjacency on the 
hypercube, HX , and then assigning the result to search neutral 
sets, i.e. 
HQX QHX= , 

this yields: 
1( )T TH QHQ QQ −= . 

The product TQQ is a square diagonal matrix with diagonal 
elements equal to the number of strings within the relevant search 
neutral set. Thus TQQ is full rank and invertible and H always 
exists. The following matrix represents the adjacencies between 
search neutral sets for our 3-bit example: 

[1] 

[0a] 

[2] 

[0b] 

Figure 2: Quotient adjacency graph for 3-bit string 
example.  

000 
 [0] 

001 
 [1] 

100 
 [1] 

011 
[2] 

110 
[2] 

111 
  [0] 

101 
[2] 010 

 [1] 

Figure 1: Strings and their fitness [in bracket]  
represented as vertices on a cube 
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[0 ] [0 ] [1] [2]

[0 ] 0 0 3 0

[0 ] 0 0 0 3

[1] 1 0 0 2

[2] 0 1 2 0

a b

a

b
H

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

. 

The elements of the adjacency matrix representing the number of 
directed adjacent transitions between and within search neutral 
sets. For instance any member of search neutral set [1] has 1 
neighbor in search neutral set [0a], no neighbor in set [0b], no 
neighbor in set [1] and 2 neighbors in set [2]. The adjacency 
matrix can be plotted as a quotient adjacency graph (which is a 
directed multigraph with each search neutral set represented as a 
vertex). We will refer to the quotient adjacency graph simply as a 
quotient graph. The quotient graph represents an entire search 
neutral set as a single representative entity and shows its relation 
with other search neutral sets; this way the effects of mutation and 
the interaction of search neutral sets become easier to understand. 
Figure 2 is the quotient graph for our example. The shading if the 
nodes in Figure 2 correspond to the nodes on the cube in Figure 1. 

Since the arcs of quotient graph indicate single bit adjacencies, 
the number of incoming (or outgoing) arcs for any node of a 
quotient model based on an n -bit string is equal to n .  Also the 
ratio of the number of string members of two nodes that have 
adjacencies is equal to the ratio of the number of arcs between 
them. For Figure 2, for instance, the ratio of the number of arcs 
between [0a] and [1] is 1:3, which is the ratio of the number of 
members of both sets.  

Figure 2 shows some of the advantages of the quotient 
representation. One advantage is that we are able to represent the 
adjacencies of an 8-node cube by a reduced model (a 4-node 
quotient model for our example). Without the use of search 
neutral sets, an m-bit genome requires a 2 2m m×  matrix to model 
its behavior at the genetic level. Another advantage is we can 
visually assess the phenotypic neighborhood structure. For our 
example (see Figure 3) we see that there is an evolutionary drive 
towards the central nodes from the outermost nodes of the 
quotient graph. 

2.2 Quotient Mutation Rate Matrix 
We can define a rate matrix based on the quotient representation 
that represents the dynamics of mutation at the quotient level. Let 
M represent the quotient rate matrix. For this matrix to exactly 
model mutation at the quotient level, assigning any string X  to 
its search neutral set, QX , and then applying the quotient rate 
matrix should be equivalent to carrying out the normal course of 
mutation, MX , and then assigning the result to search neutral 
sets, i.e. MQX QMX= ,which yields: 

1( )T TM QMQ QQ −=  

We can show that M always exists by using similar arguments to 
that used for showing that the quotient adjacency matrix always 
exists. It can be seen that M has the Markov property that, given 
the present state of a string, the future state is independent of the 
past.  

The off-diagonal elements of M  represent nontrivial search. 
These can be divided into a group that project non-neutral search, 
and another that project nontrivial neutral search. The diagonal 
members represent both trivial mutation and lack of mutation. If 
the search neutral sets are identical with the fitness neutral sets 
(i.e. Q A=  ) then we can refer to M as a phenotypic mutation 
rate matrix, similar to the phenotypic mutation rate of Poli and 
Galvan [7]. For our example the quotient mutation rate matrix is: 

3 3 2 2

3 3 2 2

2 2 3 2 3 2

2 2 3 2 3 2

[0 ] (1 ) (1 ) (1 )

[0 ] (1 ) (1 ) (1 )

[1] 3 (1 ) 3 (1 ) (1 ) 2 (1 ) 2 (1 )

[2] 3 (1 ) 3 (1 ) 2 (1 ) (1 ) 2 (1 )

[0 ] [0 ] [1] [2]
a

b
M

a b
μ μ μ μ μ μ

μ μ μ μ μ μ

μ μ μ μ μ μ μ μ μ μ

μ μ μ μ μ μ μ μ μ μ

− − −

− − −
=

− − − + − + −

− − + − − + −

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 

2.3 Fitness Distance Correlation  
Jones [5,6] proposed fitness distance correlation (FDC) as a 
predictive measure of problem difficulty. Given a set 

{ }1 2 3, , ,... nF f f f f=  of fitness values corresponding to all n  
possible strings, and their associated Hamming distances to their 
nearest optimum { }1 2 3, , ,... nD d d d d= , the fitness distance 
correlation measure is given by [7]: 

( )( ){ }
1

1 n

i i
i

f d

f f d d
nfdc

σ σ
=

− −∑
= ’ 

where f , d , fσ and dσ  are the means and the standard 
deviations of the fitness and hamming distances respectively.  
The FDC method has been generally successful in predicting 
problem difficulty [5,6,8] although there are some known 
weaknesses in its use [9, 10]. According to [5], a problem can be 
classified in one of three classes, depending of the value of FDC:  

• Misleading (FDC ≥ 0.15), in which fitness tends to increase 
with the distance from the global optimum,  

• Difficult (−0.15 < FDC < 0.15), for which there is no 
correlation between fitness and distance, and  

• Easy (FDC ≤ −0.15), in which fitness increases as the 
global optimum approaches. 

Poli and Galvan [7] showed that FDC roughly provides an 
indication of problem difficulty. They also state that in order to 
obtain more accurate information one needs to consider how a 
chosen representation translates genotypic mutation rates into 
phenotypic mutation rates. 
If the map of strings to fitness is expressed as a quotient set of 

in nodes, each node having im members, the FDC can be 
expressed as: 

( )
( )( ){ }

1

1

1 i

i

n

i i in
i

i
i

f d

m f f d d
m

fdc
σ σ

=

=

− −∑
∑

=  ,          Eq. 1 
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with 
( )

( )
1

1

1 i

i

n

i in
i

i
i

f m f
m =

=

= ∑
∑

,       
( )

( )
1

1

1 i

i

n

i in
i

i
i

d m d
m =

=

= ∑
∑

,  and   

( )
( ){ }

1/2

2

1

1

1 i

i

n

f i in
i

i
i

m f f
m

σ
=

=

⎛ ⎞
⎜ ⎟

= −∑⎜ ⎟
⎜ ⎟∑
⎝ ⎠

,
( )

( ){ }
1/2

2

1

1

1 i

i

n

d i in
i

i
i

m d d
m

σ
=

=

⎛ ⎞
⎜ ⎟

= −∑⎜ ⎟
⎜ ⎟∑
⎝ ⎠

. 

3. EXAMPLES OF QUOTIENT GRAPHS 
Figure 3 shows examples of quotient graphs for some encodings 
and problems. Although many of the examples in Figure 3 are for 
3-bit encodings and problems, Figure 3 (b), (c) and (g) are 
examples on how they can be generalized to the n bit case for 
majority and parity encodings. Rather than drawing multiple arcs 
between nodes, it is sometimes more convenient to indicate the 
number of arcs by a number beside a single arc; this is done for 
Figure 3 (b), (c), (g) and (i).  
Majority coding works as follows: given n bits (assume n is odd 
so there cannot be an equal number of zeros and ones in a gene), 
If the number of ones is greater than the number of zeros then the 
phenotype level is set to 1, otherwise it is set to 0. For the 3-bit 
majority coding of Figure 3(a), [0a] = {000}, [0b] = 
{001,010,100}. [1a] = {011,101,110}, [1b] = {111}. 

Parity coding works as follows: if the number of ones that 
are in n genotypic bits is an even number, then the bit at the 
phenotype level is set to 1, otherwise it is set to 0. For the 
parity coding of Figure 3(c), [0] is the set of all n-bit strings 
with even parity, [1] is the set of n-bit strings with odd 
parity. 
Needle in haystack (NIH) problem: there is a single genome with 
optimal fitness of 1. All other genomes have the same suboptimal 
fitness 0. For the 3-bit Needle in haystack genomes of Figure 
3(d), [1] = {111}, [0a] = {000}, [0b] = {011,101,110}, [0c] = 
{001,010,100}.  
Deceptive trap problem: The fitness is the number of ones in the 
genome. However if there is no “1” in the genome the fitness is 

1n + for an n -bit genome. For the 3-bit deceptive trap of Figure 
3(e), [3] = {111}, [4] = {000}, [2] = {011,101,110}, [1] = 
{001,010,100}.  
OneMax problem: In the case of Figure 3(f), the fitness is the 
number of “1” in the genome. For the 3-bit OneMax coding of 
Figure 3(f), [3] = {111}, [0] = {000}, [2] = {011,101,110}, [1] = 
{001,010,100}. 
Figure 3(g) shows the OneMax problem implemented with parity 
encoding. The fitness in this case is the sum of the fitness of the 3 
genes that compose the genome. These genes are n-bit strings that 
are parity encoded.  
We do not show the quotient graphs for other problems (NIH and 
deceptive trap) using parity coding. This is due to page limit 
constraint. The number of nodes and arc labels for these problems 
are identical to that of the OneMax case; however the node labels 
are different. The node labels are identical to the labeling of 
Figure 3(d) and (e) for NIH and deceptive trap respectively. The 
quotient graphs for problems using majority coding are more 
complex and will be detailed in future work. 

Figure 3(h) and (i) are based on a redundant coding scheme used 
by Thomason and Soule [11]. Figure 3(h) shows the quotient 
graph of the coding scheme and Figure 3(i) shows the quotient 
graph of a genome composed of 3 such genes. 
The gene of Figure 3(h) is a one of four possible characters {A, 
X, Y or Z}. On mutation any gene can change into any other gene 
with equal probability. Note that },,{ ZYXA = . For Figure 3(i), 
if the count of A ’s in a genome is larger than the count of all 
other characters combined, then the fitness of the genome is equal 
to the count of A ’s. Otherwise the fitness is the length of the 
string minus the A  count. The goal is to obtain a string of either 
all A ’s or no A . For Figure 3(i), AAA , AAA , AAA  and 
AAA   represents the 27 ,  27,  9 and 1 genomes with no A , one 
A , two A  and three A ’s respectively. These genomes have 

fitness of 3, 2, 2 and 3 respectively. 

3.1 Some Observations from the Examples 
An important fact that quotient graphs reveal is that there is 
sometimes a preferred directions of evolutionary drive due to 
random mutations. The drive is independent of fitness values. The 
arcs in Figure 3 show that there is a net mutational drive from 
edge nodes towards central nodes for majority, NIH, deceptive 
trap and OneMax. This drive is present because the arrangement 
of phenotypes correlates with distances between genotypes. These 
correlated mutational drives are sometimes the unsuspecting 
result of the use of highly structured mapping schemes that cause 
correlations of the effects of random mutations. Note that the 
optimal values are at the edge nodes for NIH, deceptive trap and 
OneMax. It has been observed for these problems that the 
quasispecies shifts from the optimal edge node (at low mutation 
rates) to, the centre (at high mutation rates) [12]. This shift is due 
to the increase in the effect of the net mutational drive. 
The experiments of Thomason and Soule [11] also show the effect 
of the net mutational drive. Thomason and Soule used genomes 
composed of 100 genes, rather than the 3 genes example shown in 
Figure 3(i). Our explanation applies for either case. We can see 
from Figure 3(i), that the mutational drive towards AAA  is 
higher than that towards AAA ; consequently we expect the 
proportion of solutions of form AAA  to be higher than that of 
the form AAA . We also expect the relative proportions to be 
dependent on the mutation rate, with the proportion of  AAA  
solutions increasing with increased mutation rate. These are some 
of the findings of  Thomason and Soule [11]; however they 
interpreted the results as a demonstration that an evolutionary 
system can avoid a more fit solution in favor of a more robust 
solution, when under pressure for robustness combined with 
function sets containing redundant genes.  
3.1.1 Same FDC, Different Dynamics 
It can be seen from the OneMax problem based on parity coding 
that the quotient graph (Figure 3(g)) is similar to that without 
neutral coding (i.e. Figure 3(f)). This is also true for other 
problems based on unitation functions. These functions have been 
found to give the same FDC for different coding sizes as 
explained in [7]. 
.    
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Figure 3: Sample quotient graphs for genes and genomes used in various coding schemes and problems. 

The reason why they have the same FDC (though they display 
different dynamics) is that the ratio between the numbers of 
members belonging to nodes of the quotient graph is maintained 
on changing code size. It can be shown (using Eq. 1) that if this 
ratio is maintained, the FDC is independent of code size.  Figure 
3(g) shows that the dynamics on using parity coding would be 
more responsive to changes in mutation rate with larger code 
size n . 

4. CONCLUSION AND FUTURE WORK 
We have used quotient graphs for modeling neutrality in 
evolutionary search in a variety of evolutionary computing 
problems. We have shown that search can be characterized by 
grouping genes or genomes with the same phenotype and search 
behavior into quotient sets. These sets have been shown to 
reduce the degrees of freedom needed for modeling 
evolutionary behavior without any loss of accuracy in such 
models. We have also shown how to calculate Fitness Distance 
Correlation (FDC) through quotient graphs, and why different 
problems can have the same FDC but show different dynamics. 
Quotient models have been shown to allow visualization of 
correlated evolutionary drives.  
In future work we will show how quotient graphs can be used to 
explain evolutionary phenomena that are difficult to understand 
without its use. This will include tracking complex population 
flows on evolutionary landscapes and showing the distributions 
of complex quasispecies. We will also apply quotient graphs to 
FDC counterexamples in the literature. 
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