
Using Quotient Graphs to Model Neutrality in Evolutionary
Search

Dominic Wilson
Electrical Engineering and Computer Science

University of Toledo
Toledo, Ohio 43606, USA

419 508 5472

dowilson@eng.utoledo.edu

Devinder Kaur
Electrical Engineering and Computer Science

University of Toledo
Toledo, Ohio 43606, USA

419 530 8146

dkaur@eecs.utoledo.edu

ABSTRACT
We introduce quotient graphs for modeling neutrality in
evolutionary search. We demonstrate that for a variety of
evolutionary computing problems, search can be characterized by
grouping genes with similar fitness and search behavior into
quotient sets. These sets can potentially reduce the degrees of
freedom needed for modeling evolutionary behavior without any
loss of accuracy in such models. Quotients sets, which are also
shown to be Markov models, aid in understanding the nature of
search. We explain how to calculate Fitness Distance Correlation
(FDC) through quotient graphs, and why different problems can
have the same FDC but have different dynamics. Quotient models
also allow visualization of correlated evolutionary drives.

Categories and Subject Descriptors
I.2.m.c [Computing Methodologies]: Artificial Intelligence –
Miscellaneous - Evolutionary computing and genetic algorithms.

General Terms
Theory, Measurement.

Keywords
Quotient sets, Degenerate Code, Fitness Distance Correlation,
Neutral Evolution.

1. INTRODUCTION
In many Evolutionary Computing approaches, a genotype-to-
phenotype map is used to convert populations of genomes that
inhabit a search space into expressions that are either fitness
values or can be evaluated on further processing as fitness values.
The mapping processes used in a variety of EC applications
usually have some implicit structure to them. By this we mean it
is usually possible to prescribe the map as an algorithm, or to
describe the map by use of a concise description, or a meaningful
name. In contrast a randomly generated map usually requires a
listing of genotypes and the associated phenotypes they represent.
The structure of a map can be examined both from the perspective
of how it defines genetic neighborhoods and phenotypic
selectivity of genes. Due to symmetries inherent in mapping

structures it is sometimes possible to develop a model of
evolution that is simpler than using the actual map. Quotient
models are one way of using the symmetry in mapping structures
to give simpler models without loss of accuracy. In this paper we
use quotient sets to model various evolutionary computing
problems.

Quotient models are applicable to both encodings and problems.
In order to show the wide applicability of our approach, we apply
it to a variety of mapping schemes in the literature including
OneMax, deceptive trap, needle in haystack coding, parity coding,
majority coding [7] and the redundant coding used in Thomason
and Soule [11].

The next section looks at the reasoning behind our approach.
Through the use of an example, we introduce our method of using
quotient sets and graphs for the modeling of genes and genomes.
In Section 3 we apply the method to diverse examples and show
how it explains correlated evolutionary drives and fitness distance
correlations. Section 4 contains conclusions and future work.

2. SEARCH NEUTRALITY
In this section we use a simple example to detail how a quotient
model is obtained, the benefits of such a model and how to
calculate a quotient mutation rate matrix and fitness distance
correlation from such models. Though the example to be used is a
genotype-to-fitness map for a complete problem, it should be
noted that quotient models are also applicable to genotype-to-
phenotype maps, where the map is an encoding (e.g. parity
coding) and can be seen as describing a sub-problem.

Table 1 shows a genotype-to-fitness map for a simple problem
based on a 3 bit string. We will use this map to illustrate our
approach at using quotient models for evolutionary phenomena.
Using the example, we can divide the strings into sets that have
the same fitness values. The set of string 0 {000,111}Ω = have the
same fitness value 0; likewise the set of strings

1 {001,010,100}Ω = and 2 {011,101,110}Ω = have fitness values
1 and 2 respectively. We will refer to these sets as fitness neutral
sets.

Copyright is held by the author/owner(s).
GECCO’08, July 12–16, 2008, Atlanta, Georgia, USA.
ACM 978-1-60558-131-6/08/07.

2233

Table 1: Example mapping of 3-bit strings to fitness values.
3 bit string Fitness

000 0
001 1
010 1
011 2
100 1
101 2
110 2
111 0

 Assuming m-bit coding, all mapping schemes map 2m unique
strings unto n fitness cases, with 2mn ≤ . We can represent each
string and their fitness values as unitary vectors X and Ψ of
sizes 2m and in respectively, with:

1,
0

i
i xX
otherwise

⎧⎪ == ⎨
⎪⎩

.

For instance strings 000 and 101 have integer values 0 and 5 and
are represented as vectors:

{ }1 0 0 0 0 0 0 0 TX = , and

{ }0 0 0 0 0 1 0 0 TX = respectively. The vector

representation of Ψ is:

1,
0

i
i fitness
otherwise

⎧⎪ =Ψ = ⎨
⎪⎩

.

The unitary vectors representing fitness 0, 1 and 2 are therefore
respectively: { }1 0 0 T

Ψ = , { }0 1 0 T , and { }0 0 1 T . Note

that these representations form basis (i.e. they are linearly
independent and span their respective vector spaces).
With these representations, we can construct a 2m

in × linear
operator, A , that maps strings to fitness values, with AXΨ = .
The definition of such a matrix is:

,
1,
0

i j
if string j maps to fitness iA
otherwise

⎧⎪= ⎨
⎪⎩

.

For our example,

0,0 0,1 0,7

1,0 1,1 1,7

2,0 2,1 2,7

. .

. .

. .

A A A
A A A A

A A A

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

,

1 0 0 0 0 0 0 1
0 1 1 0 1 0 0 0
0 0 0 1 0 1 1 0

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

.

For every row of A , the set of indexes of columns that have a unit
value is a fitness neutral set. We will find this matrix
representation of mapping useful in explaining search neutrality,
which we now discuss.

Figure 1 represents the strings of our example as vertices on a
cube. This representation shows the neighborhood structure
between strings. It can be seen that each string in the fitness

neutral set [1] (shown with gray vertices) has as neighbors two
strings in set [2] (black vertices) and one string in set [0] (that
with the white vertex); We can therefore infer that for all strings
belonging to set [1], mutation of a single bit chosen at random
leads to the same phenotypic search distribution (i.e. same
probability that the resulting mutant string belongs to sets [0] or
[2]). It is not difficult to see that even for the six possible 2-bit
mutations and the one possible 3-bit mutation the search
distributions are identical for all members of [1]. We therefore
denote [1] as a set composed of search neutral members.

Definition: A search neutral set of strings is a set of fitness neutral
strings that has the same phenotypic search distribution on
mutation.

By our definition search neutral sets are (proper or improper)
subsets of fitness neutral sets. The value of this characterization is
that when we know a string belongs to a particular search neutral
set, say [0], then we have all the information necessary to
understand its fitness and search behavior. We can replace the
string with some other randomly chosen member of the same
search neutral set and expect identical search behavior. Set [0] is
an example where the fitness neural members are not search
neutral. On single bit mutation, for instance, string 000 has strings
in [1] as neighbors, whereas string 111 has neighbors in [2]. When
all members of a fitness neutral set are not search neutral, we
divide the fitness neutral set into search neutral subsets, labeling
each of them with both the fitness value and some additional
lettering, and list the content of each individual set. We thus get
[0a] = {000} and [0b] = {111}.

Another way of looking at search neutrality is to consider each bit
of an m-bit binary string being mutated with some fixed
probability μ . The search distribution induced by mutation on
the string can be modeled by applying an 2 2m m× mutation rate
matrix M on the string with (,) (,)

, (1)d x y m d x y
i jM μ μ −= − , where

(,)d x y is the Hamming distance between the present string x ,
and its potential mutated value y .
The mutation rate matrix for our example 3-bit system is:

3 2 2 3

2 3 2

2 2 3

3 3

000 001 010 . . . 111
000 (1) (1) (1) . . .
001 (1) (1) (1)
010 (1) (1) (1)

. .

. .

. .
111 (1)

M

μ μ μ μ μ μ
μ μ μ μ μ
μ μ μ μ μ

μ μ

⎡ ⎤− − −
⎢ ⎥

− − −⎢ ⎥
⎢ ⎥− − −
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥−⎣ ⎦

The genotypic search distribution on mutation of a string is MX ,
where X is the unitary representation of the string. Its phenotypic
search distribution XΦ is given by:

X AMXΦ = .
Let AMΦ = , for the example, its transpose is:

2234

3 3 2

2 2 3 2

2 2 3 2

2 2 3 2

2 2 3 2

2 2 3 2

2 2 3

3 3

0 (1) 3 (1)
1 (1) (1) (1) 2 (1)
2 (1) (1) (1) 2 (1)
3 (1) (1) 2 (1)
4 (1) (1) (1) 2 (1)
5 (1) (1) 2 (1)
6 (1) (1) 2 (
7 (1)

T

μ μ μ μ
μ μ μ μ μ μ μ
μ μ μ μ μ μ μ
μ μ μ μ μ μ μ
μ μ μ μ μ μ μ
μ μ μ μ μ μ μ
μ μ μ μ μ μ

μ μ

+ − −
− + − − + −
− + − − + −
− + − + −

Φ =
− + − − + −
− + − + −
− + − +

+ −

2

3 2

3 2

3 2

3 2

3 2

2 3 2

2 2

3 (1)
2 (1)
2 (1)

(1) 2 (1)
2 (1)

(1) 2 (1)
1) (1) 2 (1)

3 (1) 3 (1)

μ μ
μ μ μ
μ μ μ
μ μ μ

μ μ μ
μ μ μ

μ μ μ μ
μ μ μ μ

⎡ ⎤−
⎢ ⎥

+ −⎢ ⎥
⎢ ⎥+ −
⎢ ⎥

− + −⎢ ⎥
⎢ ⎥+ −⎢ ⎥
⎢ ⎥− + −
⎢ ⎥− − + −⎢ ⎥
⎢ ⎥− −⎣ ⎦

We see, from its transpose, that the phenotypic search distribution
for columns 1, 2 and 4 of Φ are identical and equal to:

2 2

3 2

3 2

(1) (1)
(1) 2 (1)

2 (1)

μ μ μ μ
μ μ μ

μ μ μ

⎡ ⎤− + −
⎢ ⎥

− + −⎢ ⎥
⎢ ⎥+ −⎣ ⎦

.

This concurs with our visual analysis of search neutrality.
Likewise we can observe the identical search distributions for
columns 3, 5 and 6 associated with set [2], and the different
search distributions of columns 0 and 7 meaning [0a] and [0b]
have different search distributions.

2.1 Search Neutral Sets As Quotient Sets And
Graphs
Let : { }iπ Ω→ Ω represent the partitioning of strings into
pairwise disjoint and nonempty search neutral sets iΩ , with

i∪Ω = Ω . Because members of each set iΩ have the same
search distribution, the partitioning π , is such that for any two
partitions iΩ , jΩ , the number of neighbors of any string ix∈Ω

to jΩ is independent of the exact value of the string and depends
only on the partition indexes i and j . Such equitable
partitioning is a well known concept in graph theory and system
aggregation theory [1], [2], [3], [4]. The search neutral members

ix∈Ω are an equivalence class. Any member can be chosen as a
class representative.

In general there is more than one way of achieving such
partitioning at different levels of fineness (or coarseness). A
partitioning 1: { }i i nπ ≤ ≤Ω→ Ω is finer than another partitioning

1: { }i i nπ ′≤ ≤′ ′Ω→ Ω if π π ′≠ and every set of j′Ω is a union of sets

of iΩ . π ′ is said to be coarser than π . What we are interested in
is obtaining the coarsest search neutral sets. The finest
partitioning is achieved by having every partition contain a single
string only. The coarsest partitioning can be found by grouping
together the search neutral subsets of fitness neutral sets.

A quotient set of search neutral strings is a set having each search
neutral set represented by a single member. We can represent
quotient set assignment of strings by a matrix Q where:

,
1,
0

i j
if integer j maps to search neutral set iQ
otherwise

⎧⎪= ⎨
⎪⎩

.

For our example:

0 1 2 3 4 5 6 7
[0] 1 0 0 0 0 0 0 0
[0] 0 0 0 0 0 0 0 1
[1] 0 1 1 0 1 0 0 0
[2] 0 0 0 1 0 1 1 0

a
b

Q

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

The adjacencies between search neutral sets can be displayed
with the aid of quotient sets. To obtain the adjacencies we can
take any member of each search neutral set and find their search
distribution for single bit mutations. Alternatively let H and
H represent the quotient adjacency matrix, and the adjacency
matrix of the hypercube respectively. If H contains all
adjacencies specified by H , then assigning any string X to its
search neutral set, QX , and then applying the quotient adjacency
matrix should be equivalent to finding its adjacency on the
hypercube, HX , and then assigning the result to search neutral
sets, i.e.
HQX QHX= ,

this yields:
1()T TH QHQ QQ −= .

The product TQQ is a square diagonal matrix with diagonal
elements equal to the number of strings within the relevant search
neutral set. Thus TQQ is full rank and invertible and H always
exists. The following matrix represents the adjacencies between
search neutral sets for our 3-bit example:

[1]

[0a]

[2]

[0b]

Figure 2: Quotient adjacency graph for 3-bit string
example.

000
 [0]

001
 [1]

100
 [1]

011
[2]

110
[2]

111
 [0]

101
[2] 010

 [1]

Figure 1: Strings and their fitness [in bracket]
represented as vertices on a cube

2235

[0] [0] [1] [2]

[0] 0 0 3 0

[0] 0 0 0 3

[1] 1 0 0 2

[2] 0 1 2 0

a b

a

b
H

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

.

The elements of the adjacency matrix representing the number of
directed adjacent transitions between and within search neutral
sets. For instance any member of search neutral set [1] has 1
neighbor in search neutral set [0a], no neighbor in set [0b], no
neighbor in set [1] and 2 neighbors in set [2]. The adjacency
matrix can be plotted as a quotient adjacency graph (which is a
directed multigraph with each search neutral set represented as a
vertex). We will refer to the quotient adjacency graph simply as a
quotient graph. The quotient graph represents an entire search
neutral set as a single representative entity and shows its relation
with other search neutral sets; this way the effects of mutation and
the interaction of search neutral sets become easier to understand.
Figure 2 is the quotient graph for our example. The shading if the
nodes in Figure 2 correspond to the nodes on the cube in Figure 1.

Since the arcs of quotient graph indicate single bit adjacencies,
the number of incoming (or outgoing) arcs for any node of a
quotient model based on an n -bit string is equal to n . Also the
ratio of the number of string members of two nodes that have
adjacencies is equal to the ratio of the number of arcs between
them. For Figure 2, for instance, the ratio of the number of arcs
between [0a] and [1] is 1:3, which is the ratio of the number of
members of both sets.

Figure 2 shows some of the advantages of the quotient
representation. One advantage is that we are able to represent the
adjacencies of an 8-node cube by a reduced model (a 4-node
quotient model for our example). Without the use of search
neutral sets, an m-bit genome requires a 2 2m m× matrix to model
its behavior at the genetic level. Another advantage is we can
visually assess the phenotypic neighborhood structure. For our
example (see Figure 3) we see that there is an evolutionary drive
towards the central nodes from the outermost nodes of the
quotient graph.

2.2 Quotient Mutation Rate Matrix
We can define a rate matrix based on the quotient representation
that represents the dynamics of mutation at the quotient level. Let
M represent the quotient rate matrix. For this matrix to exactly
model mutation at the quotient level, assigning any string X to
its search neutral set, QX , and then applying the quotient rate
matrix should be equivalent to carrying out the normal course of
mutation, MX , and then assigning the result to search neutral
sets, i.e. MQX QMX= ,which yields:

1()T TM QMQ QQ −=

We can show that M always exists by using similar arguments to
that used for showing that the quotient adjacency matrix always
exists. It can be seen that M has the Markov property that, given
the present state of a string, the future state is independent of the
past.

The off-diagonal elements of M represent nontrivial search.
These can be divided into a group that project non-neutral search,
and another that project nontrivial neutral search. The diagonal
members represent both trivial mutation and lack of mutation. If
the search neutral sets are identical with the fitness neutral sets
(i.e. Q A=) then we can refer to M as a phenotypic mutation
rate matrix, similar to the phenotypic mutation rate of Poli and
Galvan [7]. For our example the quotient mutation rate matrix is:

3 3 2 2

3 3 2 2

2 2 3 2 3 2

2 2 3 2 3 2

[0] (1) (1) (1)

[0] (1) (1) (1)

[1] 3 (1) 3 (1) (1) 2 (1) 2 (1)

[2] 3 (1) 3 (1) 2 (1) (1) 2 (1)

[0] [0] [1] [2]
a

b
M

a b
μ μ μ μ μ μ

μ μ μ μ μ μ

μ μ μ μ μ μ μ μ μ μ

μ μ μ μ μ μ μ μ μ μ

− − −

− − −
=

− − − + − + −

− − + − − + −

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

2.3 Fitness Distance Correlation
Jones [5,6] proposed fitness distance correlation (FDC) as a
predictive measure of problem difficulty. Given a set

{ }1 2 3, , ,... nF f f f f= of fitness values corresponding to all n
possible strings, and their associated Hamming distances to their
nearest optimum { }1 2 3, , ,... nD d d d d= , the fitness distance
correlation measure is given by [7]:

()(){ }
1

1 n

i i
i

f d

f f d d
nfdc

σ σ
=

− −∑
= ’

where f , d , fσ and dσ are the means and the standard
deviations of the fitness and hamming distances respectively.
The FDC method has been generally successful in predicting
problem difficulty [5,6,8] although there are some known
weaknesses in its use [9, 10]. According to [5], a problem can be
classified in one of three classes, depending of the value of FDC:

• Misleading (FDC ≥ 0.15), in which fitness tends to increase
with the distance from the global optimum,

• Difficult (−0.15 < FDC < 0.15), for which there is no
correlation between fitness and distance, and

• Easy (FDC ≤ −0.15), in which fitness increases as the
global optimum approaches.

Poli and Galvan [7] showed that FDC roughly provides an
indication of problem difficulty. They also state that in order to
obtain more accurate information one needs to consider how a
chosen representation translates genotypic mutation rates into
phenotypic mutation rates.
If the map of strings to fitness is expressed as a quotient set of

in nodes, each node having im members, the FDC can be
expressed as:

()
()(){ }

1

1

1 i

i

n

i i in
i

i
i

f d

m f f d d
m

fdc
σ σ

=

=

− −∑
∑

= , Eq. 1

2236

with
()

()
1

1

1 i

i

n

i in
i

i
i

f m f
m =

=

= ∑
∑

,
()

()
1

1

1 i

i

n

i in
i

i
i

d m d
m =

=

= ∑
∑

, and

()
(){ }

1/2

2

1

1

1 i

i

n

f i in
i

i
i

m f f
m

σ
=

=

⎛ ⎞
⎜ ⎟

= −∑⎜ ⎟
⎜ ⎟∑
⎝ ⎠

,
()

(){ }
1/2

2

1

1

1 i

i

n

d i in
i

i
i

m d d
m

σ
=

=

⎛ ⎞
⎜ ⎟

= −∑⎜ ⎟
⎜ ⎟∑
⎝ ⎠

.

3. EXAMPLES OF QUOTIENT GRAPHS
Figure 3 shows examples of quotient graphs for some encodings
and problems. Although many of the examples in Figure 3 are for
3-bit encodings and problems, Figure 3 (b), (c) and (g) are
examples on how they can be generalized to the n bit case for
majority and parity encodings. Rather than drawing multiple arcs
between nodes, it is sometimes more convenient to indicate the
number of arcs by a number beside a single arc; this is done for
Figure 3 (b), (c), (g) and (i).
Majority coding works as follows: given n bits (assume n is odd
so there cannot be an equal number of zeros and ones in a gene),
If the number of ones is greater than the number of zeros then the
phenotype level is set to 1, otherwise it is set to 0. For the 3-bit
majority coding of Figure 3(a), [0a] = {000}, [0b] =
{001,010,100}. [1a] = {011,101,110}, [1b] = {111}.

Parity coding works as follows: if the number of ones that
are in n genotypic bits is an even number, then the bit at the
phenotype level is set to 1, otherwise it is set to 0. For the
parity coding of Figure 3(c), [0] is the set of all n-bit strings
with even parity, [1] is the set of n-bit strings with odd
parity.
Needle in haystack (NIH) problem: there is a single genome with
optimal fitness of 1. All other genomes have the same suboptimal
fitness 0. For the 3-bit Needle in haystack genomes of Figure
3(d), [1] = {111}, [0a] = {000}, [0b] = {011,101,110}, [0c] =
{001,010,100}.
Deceptive trap problem: The fitness is the number of ones in the
genome. However if there is no “1” in the genome the fitness is

1n + for an n -bit genome. For the 3-bit deceptive trap of Figure
3(e), [3] = {111}, [4] = {000}, [2] = {011,101,110}, [1] =
{001,010,100}.
OneMax problem: In the case of Figure 3(f), the fitness is the
number of “1” in the genome. For the 3-bit OneMax coding of
Figure 3(f), [3] = {111}, [0] = {000}, [2] = {011,101,110}, [1] =
{001,010,100}.
Figure 3(g) shows the OneMax problem implemented with parity
encoding. The fitness in this case is the sum of the fitness of the 3
genes that compose the genome. These genes are n-bit strings that
are parity encoded.
We do not show the quotient graphs for other problems (NIH and
deceptive trap) using parity coding. This is due to page limit
constraint. The number of nodes and arc labels for these problems
are identical to that of the OneMax case; however the node labels
are different. The node labels are identical to the labeling of
Figure 3(d) and (e) for NIH and deceptive trap respectively. The
quotient graphs for problems using majority coding are more
complex and will be detailed in future work.

Figure 3(h) and (i) are based on a redundant coding scheme used
by Thomason and Soule [11]. Figure 3(h) shows the quotient
graph of the coding scheme and Figure 3(i) shows the quotient
graph of a genome composed of 3 such genes.
The gene of Figure 3(h) is a one of four possible characters {A,
X, Y or Z}. On mutation any gene can change into any other gene
with equal probability. Note that },,{ ZYXA = . For Figure 3(i),
if the count of A ’s in a genome is larger than the count of all
other characters combined, then the fitness of the genome is equal
to the count of A ’s. Otherwise the fitness is the length of the
string minus the A count. The goal is to obtain a string of either
all A ’s or no A . For Figure 3(i), AAA , AAA , AAA and
AAA represents the 27 , 27, 9 and 1 genomes with no A , one
A , two A and three A ’s respectively. These genomes have

fitness of 3, 2, 2 and 3 respectively.

3.1 Some Observations from the Examples
An important fact that quotient graphs reveal is that there is
sometimes a preferred directions of evolutionary drive due to
random mutations. The drive is independent of fitness values. The
arcs in Figure 3 show that there is a net mutational drive from
edge nodes towards central nodes for majority, NIH, deceptive
trap and OneMax. This drive is present because the arrangement
of phenotypes correlates with distances between genotypes. These
correlated mutational drives are sometimes the unsuspecting
result of the use of highly structured mapping schemes that cause
correlations of the effects of random mutations. Note that the
optimal values are at the edge nodes for NIH, deceptive trap and
OneMax. It has been observed for these problems that the
quasispecies shifts from the optimal edge node (at low mutation
rates) to, the centre (at high mutation rates) [12]. This shift is due
to the increase in the effect of the net mutational drive.
The experiments of Thomason and Soule [11] also show the effect
of the net mutational drive. Thomason and Soule used genomes
composed of 100 genes, rather than the 3 genes example shown in
Figure 3(i). Our explanation applies for either case. We can see
from Figure 3(i), that the mutational drive towards AAA is
higher than that towards AAA ; consequently we expect the
proportion of solutions of form AAA to be higher than that of
the form AAA . We also expect the relative proportions to be
dependent on the mutation rate, with the proportion of AAA
solutions increasing with increased mutation rate. These are some
of the findings of Thomason and Soule [11]; however they
interpreted the results as a demonstration that an evolutionary
system can avoid a more fit solution in favor of a more robust
solution, when under pressure for robustness combined with
function sets containing redundant genes.
3.1.1 Same FDC, Different Dynamics
It can be seen from the OneMax problem based on parity coding
that the quotient graph (Figure 3(g)) is similar to that without
neutral coding (i.e. Figure 3(f)). This is also true for other
problems based on unitation functions. These functions have been
found to give the same FDC for different coding sizes as
explained in [7].
.

2237

3-
bi

t
m

aj
or

ity

 c
od

in
g

n-
bi

t
m

aj
or

ity

 c
od

in
g

n-
bi

t
pa

rit
y

co

di
ng

3-
bi

t
ne

ed
le

 in

 h
ay

st
ac

k

3-
bi

t
de

ce
pt

iv
e

 tr
ap

3-
bi

t
O

ne
M

ax

O
ne

M
ax

 o
f 3

ge

ne
s b

as
ed

on

 n
-b

it

pa
rit

y
co

di
ng

G
en

e
of

Th

om
as

on

an
d

So
ul

e[
11

]

ge
no

m
e

of
 3

ge

ne
s

ba
se

d
on

Th

om
as

on

an
d

So
ul

e[
11

]

a b c d e f g h i

Figure 3: Sample quotient graphs for genes and genomes used in various coding schemes and problems.

The reason why they have the same FDC (though they display
different dynamics) is that the ratio between the numbers of
members belonging to nodes of the quotient graph is maintained
on changing code size. It can be shown (using Eq. 1) that if this
ratio is maintained, the FDC is independent of code size. Figure
3(g) shows that the dynamics on using parity coding would be
more responsive to changes in mutation rate with larger code
size n .

4. CONCLUSION AND FUTURE WORK
We have used quotient graphs for modeling neutrality in
evolutionary search in a variety of evolutionary computing
problems. We have shown that search can be characterized by
grouping genes or genomes with the same phenotype and search
behavior into quotient sets. These sets have been shown to
reduce the degrees of freedom needed for modeling
evolutionary behavior without any loss of accuracy in such
models. We have also shown how to calculate Fitness Distance
Correlation (FDC) through quotient graphs, and why different
problems can have the same FDC but show different dynamics.
Quotient models have been shown to allow visualization of
correlated evolutionary drives.
In future work we will show how quotient graphs can be used to
explain evolutionary phenomena that are difficult to understand
without its use. This will include tracking complex population
flows on evolutionary landscapes and showing the distributions
of complex quasispecies. We will also apply quotient graphs to
FDC counterexamples in the literature.

5. REFERENCES

[1] D. Cvetkovic, P. Rowlinson, and C. Simic, Eigenspaces of Graphs.

Encyclopedia of Mathematics and its Applications, Vol. 66,
Cambridge University Press, 1997.

[2] P.F. Stadler, and G. Tinhofer, “Equitable partitions, coherent

algebras, and random walks: applications to the correlation structure
of landscapes,” MATCH 40 pp.215-261, 2000.

[3] C. Godsil, Algebraic Combinatorics, Chapman and Hall, New York,
NY. 1993.

[4] M. Shpak, P. F. Stadler, G. P. Wagner, and J. Hermisson.
“Aggregation of variables and system decomposition: application to
fittness landscape analysis,” Theory in Biosciences 123: 33-68,
2004.

[5] T. Jones and S. Forrest “Fitness Distance Correlation as a Measure
of Problem Difficulty for Genetic Algorithms”, Proceedings of the
Sixth International Conference on Genetic Algorithms. pp. 184-192,
1995.

[6] T. Jones.: Evolutionary Algorithms, Fitness Landscapes and Search.
PhD thesis, University of New Mexico, Albuquerque (1995).

[7] R. Poli and E. Galvan “On the Effects of Bit-Wise Neutrality on
Fitness Distance Correlation, Phenotypic Mutation Rates and
Problem Hardness”, FOGA 2007.

[8] Tomassini, M., Vanneschi, L., Collard, P., Clergue, M.: A study of
fitness distance correlation as a difficulty measure in genetic
programming. Evolutionary Computation 13(2), 213–239, 2005.

[9] B. Naudts and L. Kalle “A comparison of predictive measures of
problem difficulty in evolutionary algorithms”. IEEE Transactions
Evolutionary Computation 4(1), 1–15, 2000.

[10]L. Altenberg, “Fitness distance correlation analysis: An instructive
counterexample”, Proceedings of the Seventh International
Conference on Genetic Algorithms, San Francisco, CA, USA, 1997,
pp. 57–64. Morgan Kaufmann Publishers Inc. San Francisco, 1997.

[11]R. Thomason and T. Soule “Redundant genes and the evolution of
robustness”, Proceedings of the 8th annual conference on Genetic
and evolutionary computation. Seattle, Washington, USA pp. 959 –
960, 2006.

[12]N. Richter, J. Paxton and A. Wright. EA Models and Population
Fixed-Points Versus Mutation Rates for Functions of Unitation.
GECCO 2005, Genetic and Evolutionary Computation Conference.
June 2005.

2238

