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ABSTRACT
Genetic Network Programming (GNP), one of the extended
evolutionary algorithms was proposed, whose gene is con-
structed by the directed graph. GNP is distinguished from
other evolutionary techniques in terms of its compact struc-
ture and implicit memory function. GNP can perform a
global searching, but it lacks of the exploitation ability. Since
the behavior of GNP is characterized by the balance be-
tween exploitation and exploration in the search space, we
proposed a hybrid algorithm in this paper that combines
GNP with Ant Colony Optimization (ACO). The genetic
operators are operated using the pheromone information in
some special generations. We applied the proposed hybrid
algorithm to a complicated real world problem, that is , El-
evator Group Supervisory Control System (EGSCS). The
simulation results showed the effectiveness of the proposed
algorithm.
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Keywords
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1. INTRODUCTION
In the past, there has been increasing interest in imitat-

ing living things to develop powerful algorithms for diffi-
cult optimization problems. Genetic Network Programming
(GNP)[1], a graph-based evolutionary method, has been pro-
posed several years ago. GNP extends the biologically mo-
tivated Genetic Algorithm (GA), and relies on two genetic
operators (crossover and mutation).

Although GNP has been applied to many applications,
one of the main obstacles in applying GNP to complex prob-
lems is high computational cost due to its slow convergence
rate. A common strategy for overcoming the GNP’s slow
convergence problem is to combine GNP with other tech-
niques to balance the exploitation and exploration.

Our motivation in this paper is to introduce a positive
feedback mechanism into GNP, therefore, we combined GNP
with Ant Colony Optimization (ACO)[2,3], which enables
the rapid search of a global solution. Generally speaking,
traditional algorithms use the crossover and mutation opera-
tor to generate the next population without any information
in the previous generations. Different crossover or mutation
operators can make different evolutionary processes. Then,
determining the type of crossover and mutation operators is
very important for obtaining the good results. In this pa-
per, the proposed algorithm is very different from combining
GA and ACO[4]. The genetic operators have been done us-
ing the pheromone information of the nodes and branches,
which are calculated by ACO. The new operations can be
interpreted as a kind of exploitation in the structure of GNP.

Since Elevator Group Supervisory Control System (EGSCS)
is similar to many other stochastic traffic control problems,
it should find the strategy to minimize the service time and
to maximize the elevator group transportation capacity. In
previous studies, elevator system using GNP shows better
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Figure 1: Basic Structure of GNP.

performances than the conventional methods[5]. In this pa-
per, GNP with ACO is proposed expecting to be appropriate
for the assignment problem in elevator systems. The reason
is that: GNP with ACO can realize rules based on EGSCS
due to its directed graph structure, which makes EGSCS
more flexible in different traffics. And also, the controller of
EGSCS can be built by an evolutionary method with muta-
tion, crossover and selection, which could develop new effi-
cient and effective rules. Experimented results showed that
the proposed algorithm has a faster convergence speed than
those with conventional crossover and mutation operators,
especially in the small population size.

The paper is organized as follows. Section 2 contains the
description of the hybrid algorithm. Section 3 describes the
application of the proposed algorithm to EGSCS. Section
4 shows the simulation conditions and results. Section 5 is
devoted to conclusions.

2. ALGORITHM OF GNP WITH ACO

2.1 Genetic Network Programming (GNP)
Figure.1 shows the basic structure of GNP. GNP is com-

posed of one start node and plural number of judgment
nodes and processing nodes. The start node has no func-
tions and no conditional branches. Each judgment node
returns a judgment result and determines the next node to
be executed. In processing nodes, actions are conducted to
environments. The node transition begins from a start node,
and there is no terminal node.

A GNP has an iterative procedure which maintains a pop-
ulation of candidate solutions. During each iteration step,
the individuals in the current population are evaluated, and
on the basis of these evaluations, a new population of the
candidate solutions is formed. The initial population can be
chosen randomly. In order to search other individuals in the
search space, some variations are introduced into the new
population by genetic operations. Then, the fitness of the
new individuals are calculated until the terminal condition.

2.2 Ant Colony Optimization (ACO)
ACO is firstly proposed by Dorigo as a multi-agent ap-

proach to the difficult combinatorial optimization problems.
Basically ACO uses two functions to guide the search to-

Figure 2: The flowchart of GNP with ACO.

ward the optimal solution when it is applied to the travel-
ing salesman problem. Let Hn(r, a) be the intensity of the
pheromone on the section (r, a) of the trail at time n. After
all ants have generated the tours, the pheromone intensity
becomes updated as follows at time n

Hn(r, a) = (1− ρ)Hn−1(r, a) +
X

m∈M

hn
m(r, a), (1)

where ρ ∈ (0, 1) is a parameter of evaporation. M is
the set of suffixes of ants in the colony and hn

m(r, a) is the
intensity of the pheromone of the section (r, a), which was
laid by ant m at time n.

Let η(r, a) be the visibility between the vertex r and a.
η(r, a) is the inverse of the distance of the section (r, a) in
the traveling salesman problem. The probability that ant m
chooses a as the next vertex is given by Eq.(2) when ant m
is at the vertex r at time n

pn
m(r, a) =

(
Hn(r,a)αη(r,a)β

P
a∈Vm

Hn(r,a)αη(r,a)β if a ∈ Vm,

0 otherwise.
(2)

where Vm is the set of vertices not visited yet by ant m,
α and β are two parameters that control the relative impor-
tance of the trail versus visibility.

2.3 GNP with ACO

2.3.1 Basic structure of GNP with ACO
Combining GNP with ACO is proposed to improve the ex-

ploitation ability of GNP using the pheromone information,
that is, using the transition and fitness information of GNP
individuals. It converges on an optimal solution through the
accumulated and vapored pheromone information.

Figure.2 shows the flow chart of the proposed GNP with
ACO. The procedures of GNP with ACO can be summarized
as follows:

• Initialization phase: We first determine the number
of nodes and connections in GNP.
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• Pheromone calculation phase : The pheromone in-
formation of each branch of GNP is calculated by using
the fitness values and frequency of the transitions as
follows

hn
m(i, k, a) =

F n − fn
m

F n
· γn

m(i, k, a), (3)

where,
hn

m(i, k, a): pheromone from the kth branch of node i
to node a of individual m in the nth generation
fn

m: fitness of individual m in the nth generation
F n: the worst fitness in the nth generation
γn

m(i, k, a): the frequency of the transitions from the
kth branch of node i to node a of individual m in the
nth generation

Also the pheromone information of each node of GNP
is calculated by the pheromone of its branches.

hn
m(i) =

X

k∈A(i)

X

a∈A(i,k)

hn
m(i, k, a), (4)

hn
m(i): pheromone of node i of individual m in the nth

generation
A(i): set of suffixes of branches from node i
A(i, k): set of suffixes of the nodes connecting from the
kth branch of node i

• Pheromone updating phase : The pheromone on each
branch of GNP is updated by the accumulation and va-
porization using the following pheromone update func-
tion

Hn(i, k, a) = (1− ρ)Hn−1(i, k, a) +
X

m∈M

hn
m(i, k, a),

(5)
where,
Hn(i, k, a): pheromone from the kth branch of node i
to node a in the nth generation
ρ : parameter of evaporation

M : set of suffixes of individuals

• Genetic operation phase: The general generation
and special generation are defined during this phase.
In general generation, genetic operators are carried out
conventionally, where the pheromone is considered as
one of the attributes of branches of GNP. In special
generations, the new individuals are produced using
the genetic operators with pheromone information.

<Mutation> The more pheromone on the branch is,
the higher probability of taking the connection of the
branch would appear in the new GNP individual. At
a special generation, the offspring is produced by the
following P n(i, k, a),

P n(i, k, a) =
Hn(i, k, a)P

a∈A(i,k) Hn(i, k, a)
, (6)

where,
P n(i, k, a): probability of connecting the kth branch
of node i to node a in the nth generation

<Crossover> By consider the pheromone on the nodes
of each parent, the offspring is produced under the fol-
lowing rules. Np offspring p and Nq offspring q are
produced by parent g and h
If hn

g (i)≥hn
h(i)

Figure 3: Outline of DDES.

node i of offspring p is from node i of parent g
node i of offspring q is from node i of parent h

If hn
g (i)<hn

h(i)
node i of offspring p is from node i of parent h
node i of offspring q is from node i of parent g

• Termination phase: The whole process is repeated
until the terminal condition.

3. APPLICATION OF GNP WITH ACO
Efficient elevator group control is important for the op-

eration of large buildings. In this paper, GNP with ACO
is applied to the hall call assignment problem of Elevator
Group Supervisory Control Systems (EGSCS) in order to
show the effectiveness of the proposed method.

3.1 Review of EGSCS
Elevator Group Supervisory Control Systems (EGSCS)[6]

are the control systems that systematically manage three or
more elevators in order to efficiently transport passengers.
Nowadays, Double-deck elevators with two cages being at-
tached are proposed as the next generation system. Figure.3
shows the outline of DDES[7]. It allows the passengers on
two consecutive floors to use the elevator simultaneously,
significantly increasing the passenger transportation capac-
ity of an elevator shaft. Meanwhile, Destination Floor Guid-
ance System (DFGS) is installed in DDES, which is an ele-
vator system where passengers can register their destination
floors directly at elevator halls. In addition, One Cage Ser-
vice is one of the specific features of DDES, where one cage
stops without any service while the other cage serves passen-
gers at the floor. Considering such features, DDES becomes
more complex in their behaviors than conventional systems.

3.2 DDES with DFGS using GNP with ACO
It is difficult for a very large-scale stochastic system to

select a suitable elevator for the following reasons. First,
the controller must consider the hall calls which will be gen-
erated in the near future. Second, it must consider many
uncertain factors, such as the number of passengers at the
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Figure 4: Structure of DDES with DFGS using GNP
with ACO.

floors where the hall calls and destination registration are
generated. Third, it must balance the items such as waiting
time, long waiting time and so on.

The structure of DDES with DFGS using GNP with ACO
is shown in Figure.4. It includes Elevator System and GNP
with ACO controller which consists of four parts. The in-
formation is transferred through those parts.

3.2.1 Evaluation Items
In our proposed method the following 12 evaluation items

are defined to construct GNP considering the features of
DDES with DFGS.
ATsd : Predicted arrival time of the assigned hall call to

the self cage including the incremental arriving time
of the already registered hall calls to the self cage

AETsd: Maximum of the predicted arrival time plus elapsed
time of the already registered hall calls since their
assignment to the self cage

NPsd : Number of passengers in the self cage
NCsd : Number of assigned hall calls to the self cage
RRsd : Predicted riding rate (number of passengers/cage

capacity) of the self cage when the self cage arrives
at the assigned hall call including the incremented
riding rate of already registered hall calls to the
self cage

CHCsd: Check whether the emerged hall call coincides with
the cage calls of the self cage

ATd : Sum of the incremental predicted arrival time of the
already assigned hall calls to the other cage

AETd: Maximum of the predicted arrival time plus elapsed
time of the already registered hall calls since their
assignment to the other cage

DNPd: Difference of the number of passengers between the
self and other cage

DNCd: Difference of the number of assigned hall calls be-
tween the self and other cage

CCSd : Check the coincident service
CSRd : Check the separate riding for identical destination

3.2.2 Assigning Algorithm
In the GNP with ACO controller, firstly, the information

on the elevator system is transferred to the System Infor-

mation Judgment Part. In this part, the new hall call is
classified based on the following three terms, the degree of
the variance of the elevator positions V Psd, the origin floor
and direction of the new hall call EFsd and the destination
floor of the new hall call DFsd.

Secondly, a candidate cage with the minimum value of the
evaluation function is selected in the Cage Selection Part. A
candidate cage is selected by the following equation. First,
the cage evaluation function e(i) of cage i is calculated by
Eq.(7).

e(i) =
X
p∈P

wp · xp(i), (7)

where,
P : set of suffixes of nodes transited in the cage selection

part (P is determined by node transition)
wp: weight of the cage selection node p (wp is optimized

during evolutionary process)
xp(i): normalized value of evaluation item X of cage i at

the cage selection node p
The normalized value xp(i) is calculated by Eq. (8)

xp(i) =
Xp(i)

XAveMax
, (8)

where,
Xp(i): value of evaluation item X of cage i at the cage

selection node p
XAveMax: maximum value of averaged evaluation item X

over past 5 minutes among cages
The reason of using the normalized value of xp(i) is that

different evaluation items have different scales. As for the
evaluation item {CHCsd, CCSd}, xp(i) = 0 if satisfied, and
xp(i) = 1 if not satisfied. It is reversed in the case of
{CSRd}. Finally, the candidate cage d is selected by Eq.(9)

d = arg min
i∈I

e(i) , (9)

where, I: set of cage IDs
Then, the selected candidate cage d is evaluated again by

individual evaluation items one by one to confirm whether
it is the optimal one or not in the Cage Judgment Part. In
cage judgment nodes in this part, the binary judgment like
Eq.(10) is carried out except for {CHCsd, CCSd, CSRd}.

yj(d) ≤ rY
j j ∈ J, (10)

where,
J : set of suffixes of nodes in the cage judgment part
yj(d): normalized value of evaluation item Y of cage d at

the cage judgment node j
rY

j : threshold parameter of evaluation item Y of the cage

judgment node j (rY
j is optimized during evolutionary

process)
yj(d) is also calculated by the following equation similar to
Eq.(8).

yj(d) =
Yj(d)

YAveMax
, (11)

Yj(d): value of evaluation item Y of cage d at the cage
judgment node j

YAveMax: maximum value of averaged evaluation item Y
over past 5 minutes among cages

As for { CHCsd, CCSd, CSRd }, the binary judgment
(satisfy/not) is done. If Eq.(10) is satisfied and cage judge-
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Table 1: Specifications of Elevator Simulator
Items Value

Number of Floors 16
Number of Shafts(Cages) 6(12)
Floor Distance [m] 4.5
Max. Velocity [m/s] 2.5
Max. Acceleration [m/s2] 0.7
Jerk [m/s3] 0.7
Cage Capacity [person] 20
Time for Opening Door [s] 2.0
Time for Closing Door [s] 2.3
Time for Riding [s/person] 1.0
Passenger Density [person/h] 3000

ment node j is connected to the node in the Hall Call Assign-
ment Part, then the new hall call is assigned to the optimal
cage d in the Hall Call Assignment Part. Otherwise, i.e.,
the candidate cage d does not satisfy Eq.(10), which means
the condition of evaluation item Y is not satisfied, then, the
node transition is resumed from the cage selection part in
order to select another candidate cage again.

Finally, in the Hall Call Assignment Part, the new call
is assigned to the candidate cage by cage assignment nodes.
Node transition returns to the system information judgment
part after assignment, and the same procedures are executed
for the next call.

3.2.3 Fitness Function
The fitness function of GNP individual is calculated by a

weighed sum of the waiting time, maximum waiting time,
one cage service and loops of GNP as follows.

Fitness =
1

N

NX
n=1

tn
2+wt ·(tmax)2+wn ·(nc)

2+wl ·n2
l , (12)

where,
N : total number of passengers
tn : waiting time of the nth passenger
tmax : maximum waiting time among N passengers
nc : total number of passengers experiencing one cage

service
nl : number of loops of GNP per an hour evaluation
wt, wn, wl: weighting coefficient

The number of loops of GNP transition is considered in
the fitness because it deteriorates the performances of GNP.

All terms in this function are expected to minimize due
to its definitions described above. Thus, an individual with
smaller fitness value means that it has a better structure
and fitter parameters.

4. SIMULATIONS

4.1 Simulation Conditions
In this paper, we have studied the effectiveness of the

proposed GNP with ACO in a typical office building, which
has 16 floors and 6 double-deck elevators running at the
speed of 2.5m/s. Table 1 shows the specifications of the
system simulator. Simulations are executed under 5 kinds
of random sequences considering the probabilistic feature of
DDES.

Table 2: Evolutional Conditions of GNP with ACO
Items Value

Node Size 91+Initial Boot Node
Crossover Rate Pc 0.1
Mutation Rate Pm 0.01
Evaluation Time [h] 2
Special Generation every 10 generations
Evaporation Rate ρ 0.2
wt, wn, wl 0.007, 0.003, 0.6

4.2 Results and Discussions
In this section, we show the performances of the proposed

algorithm comparing to the simple GNP.

4.2.1 Experiment1
We simulate EGSCS under different population sizes of

30, 100 and 200 using the proposed method (GNP with
ACO(M), GNP with ACO(MC)) and a conventional method
(GNP without ACO). GNP with ACO(M) means to carry
out only mutation using pheromone information at special
generations, while GNP with ACO(MC) means to carry out
both mutation and crossover using pheromone information
at special generations. The parameters of the proposed GNP
with ACO are set as shown in Table 2.

The fitness curves of the proposed method are compared
with a conventional method in Figure.5. Compared to GNP
without ACO, the proposed method GNP with ACO(M),
GNP with ACO(MC) converges faster than GNP without
ACO. And it is clear from the figure that the fitness values
of GNP with ACO(M) and GNP with ACO(MC) are better
than GNP without ACO, and it is also clear that the fit-
ness value of GNP with ACO(MC) is better than GNP with
ACO(M) in the case of the population size of 30. With the
increase of the population size, GNP with ACO(MC) and
GNP with ACO(M) get almost the same fitness value. How-
ever, GNP with ACO(MC) has a faster convergence speed
than GNP with ACO(M).

To sum up, the proposed algorithm converges to a cer-
tain value at an early generation. And the fitness values of
the proposed method are better than the conventional GNP
without ACO.

4.2.2 Experiment2
Simulations were implemented using different numbers of

special generations under regular time. We set special gen-
erations every 5, 10 and 20 generations using different pop-
ulation sizes(30, 70 and 200).

The fitness curves are shown in Figure.6. The more spe-
cial generations are set in the evolutionary process, the faster
convergence speed is obtained in all of the population sizes.
But, too many special generations or too few special genera-
tions harm the evolution, i.e., too much exploitation and too
little exploitation is not a good way for the evolution. The
good trad-off between exploitation and exploration can be
realized by changing the number of special generations. This
experiment shows that setting special generations every 10
or 20 generations is appropriate for EGSCS.

4.2.3 Experiment3
In this subsection, we examined the performances of the

proposed method. The performance of the average waiting
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Figure 5: Fitness curves of the proposed method in different population size .
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Figure 6: Fitness curves when setting special generations every 5, 10 and 20 generations.

Table 3: Performances of AWT, LWP and NC of the
Proposed Method.

GNP without ACO GNP with ACO(MC)

AWT(s) 32.79 31.67
LWP(%) 12.93 11.88

NC(person) 792 681

time (AWT), the percentage of passengers waiting more than
60s (LWP) and total number of passengers experiencing one
cage service(NC) are shown in Table 3. AWT is reduced
by 3% in the regular time. In addition, LWP and NC are
reduced by 7% at least, a significant improvement.

5. CONCLUSIONS
This paper has proposed GNP with ACO using pheromone

information as an enhanced evolutionary method of GNP.
The proposed algorithm can save much time in searching
the solution space than the conventional method. The per-
formances of it are also better than the GNP without ACO.
When the proposed method is applied to the elevator group
supervisory control system, the proposed method provided
convenient and comfortable services for passengers. As a re-
sult, it is found that the proposed algorithm makes a good
trade-off between exploitation and exploration.
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