Probabilistic Model-Building Genetic Algorithms

a.k.a. Estimation of Distribution Algorithms a.k.a. Iterated Density Estimation Algorithms

Martin Pelikan

Missouri Estimation of Distribution Algorithms Laboratory (MEDAL) Dept. of Math. and Computer Science University of Missouri at St. Louis pelikan@cs.umsl.edu http://medal.cs.umsl.edu/

last update: April 2008]

Copyright is held by the author/owner(s). GECCO'08, July 12–16, 2008, Atlanta, Georgia, USA. ACM 978-1-60558-131-6/08/07.

Foreword

- Motivation
 - □ Genetic and evolutionary computation (GEC) popular.
 - □ Toy problems great, but difficulties in practice.
 - $\hfill\square$ Must design new representations, operators, tune, \ldots

Martin Pelikan, Probabilistic Model-Building GAs

This talk

- $\hfill\square$ Discuss a promising direction in GEC.
- □ Combine machine learning and GEC.
- □ Create practical and powerful optimizers.

Problem Formulation

- Input
 - □ How do potential solutions look like?
 - □ How to evaluate quality of potential solutions?
- Output
 - □ Best solution (the optimum).
- Important
 - $\hfill\square$ No additional knowledge about the problem.

Martin Pelikan, Probabilistic Model-Building GAs

Representations Considered Here

Martin Pelikan, Probabilistic Model-Building GAs

- Start with
 - □ Solutions are n-bit binary strings.
- Later
 - □ Real-valued vectors.
 - Program trees.
 - Permutations

Many Answers

- Hill climber
 - $\hfill\square$ Start with a random solution.
 - $\hfill\square$ Flip bit that improves the solution most.
 - $\hfill\square$ Finish when no more improvement possible.
- Simulated annealing
 Introduce Metropolis.
- Probabilistic model-building GAs
 Inspiration from GAs and machine learning (ML).

Martin Pelikan, Probabilistic Model-Building GAs

8

<section-header><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item>

Good News: Good Stats Work Great!

- Optimum in O(n log n) evaluations.
- Same performance as on onemax!
- Others
 - □ Hill climber: $O(n^5 \log n) = much$ worse.
 - \Box GA with uniform: O(2ⁿ) = intractable.
 - \Box GA with k-point xover: O(2ⁿ) (w/o tight linkage).

Martin Pelikan, Probabilistic Model-Building GAs

What's Next?

- COMIT
 - \Box Use tree models
- Extended compact GA
 Cluster bits into groups.
- Bayesian optimization algorithm (BOA)
 Use Bayesian networks (more general).

Martin Pelikan, Probabilistic Model-Building GAs

How to Learn a Tree Model?

- Mutual information: I(X_i, X_j) = ∑_{a,b} P(X_i = a, X_j = b) log P(X_i = a, X_j = b) P(X_i = a)P(X_j = b)

 Goal

 Find tree that maximizes mutual information between connected nodes.
 Will minimize Kullback-Leibler divergence.

 Algorithm
 - □ Prim's algorithm for maximum spanning trees.

Martin Pelikan, Probabilistic Model-Building GAs

Beyond Pairwise Dependencies: ECGA

- Extended Compact GA (ECGA) (Harik, 1999).
- Consider groups of string positions.

Sampling Model in ECGA

- Sample groups of bits at a time.
- Based on observed probabilities/proportions.
- But can also apply population-based crossover similar to uniform but w.r.t. model.

Martin Pelikan, Probabilistic Model-Building GAs

What's Next? We saw Probability vector (no edges). Tree models (some edges). Marginal product models (groups of variables). Next: Bayesian networks Can represent all above and more.

Martin Pelikan, Probabilistic Model-Building GAs

36

<section-header><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><table-container>

BOA and Problem Decomposition

- Conditions for factoring problem decomposition into a product of prior and conditional probabilities of small order in Mühlenbein, Mahnig, & Rodriguez (1999).
- In practice, approximate factorization sufficient that can be learned automatically.
- Learning makes complete theory intractable.

Martin Pelikan, Probabilistic Model-Building GAs

PMBGAs Are Not Just Optimizers

- PMBGAs provide us with two things
 - $\hfill\square$ Optimum or its approximation.
 - □ Sequence of probabilistic models.
- Probabilistic models
 - $\hfill\square$ Encode populations of increasing quality.
 - $\hfill\square$ Tell us a lot about the problem at hand.
 - \Box Can we use this information?

Martin Pelikan, Probabilistic Model-Building GAs

Efficiency Enhancement Types

- 7 efficiency enhancement types for PMBGAs
 - Parallelization
 - □ Hybridization
 - □ Time continuation
 - □ Fitness evaluation relaxation
 - □ Prior knowledge utilization
 - □ Incremental and sporadic model building
 - □ Learning from experience

Martin Pelikan, Probabilistic Model-Building GAs

Description of the series of the se

Results on 2D Spin Glasses

- Number of evaluations is $O(n^{1.51})$.
- Overall time is $O(n^{3.51})$.
- Compare O(n^{3.51}) to O(n^{3.5}) for best method (Galluccio & Loebl, 1999)
- Great also on Gaussians.

Martin Pelikan, Probabilistic Model-Building GAs

79

80

<section-header><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><table-container>

PBIL Extensions: First StepSHCwL: Stochastic hill climbing with learning (Rudlof, Köppen, 1996).
Model

Single-peak Gaussian for each variable.
Means evolve based on parents (promising solutions).
Deviations equal, decreasing over time.

Problems

No interactions.
Single Gaussians=can model only one attractor.
Same deviations for each variable.

Martin Pelikan, Probabilistic Model-Building GAs

How Many Peaks?

- One Gaussian vs. kernel around each point.
- Kernel distribution similar to ES.
- IDEA (Bosman, Thierens, 2000)

Mixtures: Between One and Many

- Mixture distributions provide transition between one Gaussian and Gaussian kernels.
- Mixture types
 - Over one variable.
 - Gallagher, Frean, & Downs (1999).
 - Over all variables.
 Pelikan & Goldberg (2000).
 - Pelikan & Goldberg (2000).
 Bosman & Thierens (2000).
 - $\Box \text{ Over partitions of variables.}$

Martin Pelikan, Probabilistic Model-Building GA

- Bosman & Thierens (2000).
- Ahn, Ramakrishna, and Goldberg (2004).

Aggregation Pheromone System (APS)

- Tsutsui (2004)
- Inspired by aggregation pheromones
- Basic idea
 - □ Good solutions emit aggregation pheromones
 - New candidate solutions based on the density of aggregation pheromones
 - Aggregation pheromone density encodes a mixture distribution

Martin Pelikan, Probabilistic Model-Building GAs

87

88

Real-Coded BOA (rBOA)

- Ahn, Ramakrishna, Goldberg (2003)
- Probabilistic Model
 - □ Underlying structure: Bayesian network
 - □ Local distributions: Mixtures of Gaussians
- Also extended to multiobjective problems (Ahn, 2005)

Martin Pelikan, Probabilistic Model-Building GAs

Adaptive Variance Scaling

- Adaptive variance in mBOA
 Ocenasek et al. (2004)
- Normal IDEAs
 - □ Bosman et al. (2006, 2007)
 - □ Correlation-triggered adaptive variance scaling
 - Standard-deviation ratio (SDR) triggered variance scaling

Martin Pelikan, Probabilistic Model-Building GAs

Real-Valued PMBGAs: Recommendations

- □ All variables, subsets, or single variables.
- Strong linear dependencies?
- Partial differentiability? □ Combine with gradient search.

Real-Valued PMBGAs: Summary

- Discretization
 - Fixed
 - □ Adaptive
- Real-valued models
 - □ Single or multiple peaks?
 - □ Same variance or different variance?
 - □ Covariance or no covariance?
 - □ Mixtures?
 - □ Treat entire vectors, subsets of variables, or single variables?

Martin Pelikan, Probabilistic Model-Building GAs

90

PMBGP (Genetic Programming)

- New challenge
 - □ Structured, variable length representation.
 - □ Possibly infinitely many values.
 - □ Position independence (or not).
 - □ Low correlation between solution quality and solution structure (Looks, 2006).
- Approaches
 - □ Use explicit probabilistic models for trees.
 - □ Use models based on grammars.

Martin Pelikan, Probabilistic Model-Building GAs

eCGP

- Sastry & Goldberg (2003)
- ECGA adapted to program trees.
- Maximum tree as in PIPE.
- But nodes partitioned into groups.

MOSES

- Looks (2006).
- Evolve demes of programs.
- Each deme represents similar structures.
- Apply PMBGA to each deme (e.g. hBOA).
- Introduce new demes/delete old ones.
- Use normal forms to reduce complexity.

Martin Pelikan, Probabilistic Model-Building GAs

PMBGP: Summary

- Interesting starting points available.
- But still lot of work to be done.
- Much to learn from discrete domain, but some completely new challenges.

Martin Pelikan, Probabilistic Model-Building GAs

Research in progress

Multivariate Permutation Models

Basic approach

- □ Use any standard multivariate discrete model.
- □ Restrict sampling to permutations in some way.
- □ Bengoetxea et al. (2000), Pelikan et al. (2007).

Strengths and weaknesses

- □ Use explicit multivariate models to find regularities.
- □ High-order alphabet requires big samples for good models.
- □ Sampling can introduce unwanted bias.
- □ Inefficient encoding for only relative ordering constraints, which can be encoded simpler.

Martin Pelikan, Probabilistic Model-Building GAs

ICE: Modify Crossover from Model

ICE

- □ Bosman, Thierens (2001).
- □ Represent permutations with random keys.
- □ Learn multivariate model to factorize the problem.
- □ Use the learned model to modify crossover.

Performance

□ Typically outperforms IDEAs and other PMBGAs that learn and sample random keys.

Martin Pelikan, Probabilistic Model-Building GAs

102

Conclusions

- Competent PMBGAs exist
 - □ Scalable solution to broad classes of problems.
 - □ Solution to previously intractable problems.
 - □ Algorithms ready for new applications.
- PMBGAs do more than just solve the problem
 - □ They provide us with sequences of probabilistic models.
 - $\hfill\square$ The probabilistic models tell us a lot about the problem.
- Consequences for practitioners
 - $\hfill\square$ Robust methods with few or no parameters.
 - $\hfill\square$ Capable of learning how to solve problem.
 - $\hfill\square$ But can incorporate prior knowledge as well.
 - $\hfill\square$ Can solve previously intractable problems.

Online Code (2/2)

- Demos of APS and EHBSA http://www.hannan-u.ac.jp/~tsutsui/research-e.html
- RM-MEDA: A Regularity Model Based Multiobjective EDA Differential Evolution + EDA hybrid http://cswww.essex.ac.uk/staff/qzhang/mypublication.htm
- Naive Multi-objective Mixture-based IDEA (MIDEA) Normal IDEA-Induced Chromosome Elements Exchanger (ICE) Normal Iterated Density-Estimation Evolutionary Algorithm (IDEA) http://homepages.cwi.nl/~bosman/code.html

Martin Pelikan, Probabilistic Model-Building GAs

107

Ochica Cocic (1/2) • BOA, BOA with decision graphs, dependency-tree EDA http://medal.cs.umsl.edu/ • CEGA, xi-ary ECGA, BOA, and BOA with decision trees/graphs http://www-illigal.ge.uiuc.edu/ • mBOA http://jiri.ocenasek.com/ • PIPE http://www.idsia.ch/~rafal/ • Real-coded BOA http://www.evolution.re.kr/