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Theory. . . Why should you care?

foundations — firm ground

Proofs provide insights and understanding.

generality — wide applicability

knowledge vs. beliefs

fundamental limitations — saves time

much improved teaching

“There is nothing more practical than a good theory.”
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Aims and Goals of this Tutorial

provide an overview of

goals and topics
methods and their applications

enhance your ability to

read, understand, and appreciate such papers
make use of the results obtained this way

enable you to

apply the methods to your problems
produce such results yourself

explain

what is doable with the currently known methods
where there is need for more advanced methods

entertain

4/108

Introduction About EAs Topics in Theory Optimization Time Analysis General Limitations Conclusions

Topics and Structure

Introduction and Motivation

(an extremely short) introduction to evolutionary algorithms

overview of topics in theory (as presented here today)

analytical tools and methods – and how to apply them

fitness-based partitions
expectations and deviations
simple general lower bounds
expected multiplicative decrease in distance
drift analysis
random walks and cover times
typical runs
instructive example functions

general limitations

NFL
black box complexity
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History

Evolution Strategies (Bienert, Rechenberg, Schwefel)

developed in the ’60s / ’70s of the last century.

continuous optimization problems, rely on mutation.

Genetic Algorithms (Holland)

developed in the ’60s / ’70s.

binary problems, rely on crossover.

Genetic Programming (Koza)

developed in the ’90s.

try to build good “computer programs”.

Nowadays

more general view ⇒ evolutionary algorithms.
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Points of Views

Bionics/Engineering

evolution is a “natural”enhancing process.

bionics: algorithmic simulation =⇒ “enhancing” algorithm.

used for optimization.

Biology

evolutionary algorithms.

understanding model of natural evolution.

Computer Science

evolutionary algorithms.

successful applications.

theoretical understanding.
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Evolutionary Algorithms

Principle

follow Darwin’s principle (survival of the fittest).

work with a set of solutions called population.

parent population produces offspring population by variation
operators (mutation, crossover).

select individuals from the parents and children to create new
parent population.
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Scheme of an evolutionary algorithm

Basic EA

1 compute an initial population P = {X1, . . . , Xμ}.

2 while (not termination condition)

produce an offspring population P ′ = {Y1, . . . , Yλ} by
crossover and/or mutation.
create new parent population P by selecting μ individuals from
P and P ′.

GECCO 2008 Tutorial / Computational Complexity and Evolutionary Computation
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Design

Important issues

representation

crossover operator

mutation operator

selection method
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Representation

Properties

representation has to fit to the considered problem.

small change in the representation =⇒ small change in the
solution (locality).

often direct representation works fine.

Mainly in this talk

search space {0, 1}n.

individuals are bitstrings of length n.
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Crossover operator

Aim

two individuals x and y should produce a new solution z.

1-point Crossover

choose a position p ∈ {1, . . . , n} uniformly at random

set zi = xi for 1 ≤ i ≤ p

set zi = yi for p < i ≤ n

Uniform Crossover

set zi equally likely to xi or yi

if xi = yi then zi = xi = yi

if xi �= yi then Prob(zi = xi) = Prob(zi = yi) = 1/2
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Mutation

Aim

produce from a current solution x a new solution z.

Some Possibilities

flip one randomly chosen bit of x to obtain z.

flip each bit of x with probability p to obtain z (often
p = 1/n).

GECCO 2008 Tutorial / Computational Complexity and Evolutionary Computation
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Selection methods

Fitness-proportional selection

choose new population from a set of r individuals
{x1, . . . , xr}.

probability to choose xi in the next selection step is
f(xi)/(

∑r
j=1 f(xj)).

μ individuals are selected in this way.

(μ, λ)-selection

μ parents produce λ children.

select μ best individuals from the children.

(μ + λ)-selection

μ parents produce λ children.

select μ best individuals from the parents and children.
14/108
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(μ + λ)-EA

(μ + λ)-EA

1 Choose μ individuals uniformly at random from {0, 1}n.

2 Produce λ children by mutation.

3 Apply (μ + λ)-selection to parents and children.

4 Go to 2.)
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Simple algorithms

(1+1) EA

1 Choose s ∈ {0, 1}n randomly.

2 Produce s′ by flipping each bit of s with probability 1/n.

3 Replace s by s′ if f(s′) ≥ f(s).

4 Repeat Steps 2 and 3 forever.

RLS

1 Choose s ∈ {0, 1}n randomly.

2 Produce s′ from s by flipping one randomly chosen bit.

3 Replace s by s′ if f(s′) ≥ f(s).

4 Repeat Steps 2 and 3 forever.
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Topics in Theory

The most pressing open question
depends very much on what you are interested in.

What you are interested in depends very much on who you are.

You may be

biologist What is evolution and how does it work?

engineer How do I solve my problem with an EA?

computer scientist What can evolutionary algorithms do?

Evolutionary algorithms are

a model of natural evolution

a robust general purpose problem solver

randomized algorithms

here and today computer scientist’s point of view

GECCO 2008 Tutorial / Computational Complexity and Evolutionary Computation
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Algorithms in Computer Science

Two branches

1 design and analysis of algorithms
“How long does it take to solve this problem?”

2 complexity theory
“How much time is needed to solve this problem?”

For evolutionary algorithms

1 analysis (and design) or evolutionary algorithms
“What’s the expected optimization time of this EA for this problem?

2 general limitations — NFL and black box complexity “How
much time is needed to solve this problem?”
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‘Time’ and Evolutionary Algorithms

At the end of the day, time is wall clock time.

in computer science more convenient: #computation steps
requires formal model of computation (Turing machine, . . . )

typical for evolutionary algorithms black box optimization

fitness function not known to algorithm
gathers knowledge only by means of function evaluations

often

evolutionary algorithm’s core rather simple and fast

evaluation of fitness function costly and slow

thus ‘time’ = #fitness function evaluations often appropriate

Definition

Optimization Time T = #fitness function evaluations until an
optimal search point is sampled for the first time
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Fitness-Based Partitions

very simple, yet often powerful method for upper bounds

first for (1+1)-EA only

Observation due to plus-selection fitness is monotone increasing

Idea for each fitness value v, find probability pv to increase
fitness

Observation E (time to increase fitness from v) = 1
pv

Observation E (T ) =
∑
v

1
pv

a bit more general group fitness values
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Method of Fitness-Based Partitions

Definition

For f : {0, 1}n → R, L0, L1, . . . , Lk ⊆ {0, 1}n with

1 ∀i �= j ∈ {0, 1, . . . , k} : Li ∩ Lj = ∅

2

k⋃
i=0

Li = {0, 1}n

3 ∀i < j ∈ {0, 1, . . . , k} : ∀x ∈ Li : ∀y ∈ Lj : f(x) < f(y)

4 Lk = {x ∈ {0, 1}n | f(x) = max {f(y) | y ∈ {0, 1}n}}

is called an f -based parition.

Remember An f -based partition
partitions the search space in accordance to fitness values
grouping fitness values arbitrarily.

Droste/Jansen/Wegener: On the analysis of the (1+1) EA. Theoretical Computer Science 276:51–81
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Upper Bounds with f -Based Partitions

Theorem

Consider (1+1)-EA on f : {0, 1}n → R and an f -based partition
L0, L1, . . . , Lk.

Let si := min
x∈Li

k∑
j=i+1

∑
y∈Lj

(
1
n

)H(x,y) (
1 − 1

n

)n−H(x,y)

for all i ∈ {0, 1, . . . , k − 1}.

E
(
T(1+1)-EA,f

)
≤

k−1∑
i=0

1

si

Hint most often, very simple lower bounds for si suffice
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Very Simple Example

(1+1)-EA on OneMax

(
OneMax(x) =

n∑
i=1

x[i]

)
First Step define f -based partition

trivial for each fitness value one Li

Li := {x ∈ {0, 1}n | OneMax(x) = i}, 0 ≤ i ≤ n

Second Step find lower bounds for si

Observation It suffices to flip any 0-bit from the n − i 0-bits.

si ≥
(
n−i
1

)
1
n

(
1 − 1

n

)n−1
≥ n−i

en((
1 − 1

n

)n−1
≥ 1

e ≥
(
1 − 1

n

)n
)

Third Step compute upper bound

E
(
T(1+1)-EA,OneMax

)
≤

n−1∑
i=0

en
n−i = en ·

n∑
i=1

1
i = O(n log n)
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Example: Result for a Class of Functions

Definition

f : {0, 1}n → R is called linear

⇔ ∃w0, w1, . . . , wn ∈ R : ∀x ∈ {0, 1}n : f(x) = w0 +
n∑

i=1
wi · x[i]

Consider (1+1)-EA on linear function f : {0, 1}n → R.

For (1+1)-EA, w. l. o. g. w0 = 0, w1 ≥ w2 ≥ · · · ≥ wn ≥ 0

First Step define f -based partition

Li :=

{
x ∈ {0, 1}n |

i∑
j=1

wj ≤ f(x) <
i+1∑
j=1

wj

}
, 0 ≤ i ≤ n

Second Step find lower bounds for si

Observation There is always at least 1-bit-mutation for leaving Li.

si ≥
1
n

(
1 − 1

n

)n−1
≥ 1

en

Third Step E
(
T(1+1)-EA,f

)
≤

n−1∑
i=0

en = en2 = O(n2)
24/108
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Generalizing the Method

Idea not restricted to (1+1)-EA, only.
Consider (1 + λ)-EA on LeadingOnes.(

LeadingOnes(x) =
n∑

i=1

i∏
j=1

x[j]

)
First Step define f -based partition

trivial for each fitness value one Li

Li := {x ∈ {0, 1}n | LeadingOnes(x) = i}, 0 ≤ i ≤ n

For the (1 + λ)-EA, we re-define the si.
si := Prob (leave Li in one generation)

Observation E
(
T(1 + λ)-EA,f

)
≤ λ ·

k−1∑
i=0

1
si

Jansen/De Jong/Wegener (2005): On the choice of the offspring population size in evolutionary algorithms. Evolutionary Computation 13(4):413–440
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(1 + λ)-ES on LeadingOnes

Second Step find lower bounds for si

Observation It suffices to flip exactly the leftmost 0-bit.

si ≥ 1 −
(
1 − 1

en

)λ
≥ 1 − e−λ/(en)

Case Inspection Case 1 λ ≥ en
si ≥ 1 − 1

e
Case Inspection Case 2 λ < en

si ≥
λ

2en

Third Step compute upper bound

E
(
T(1 + λ)-EA,LeadingOnes

)
≤ λ ·

((
n−1∑
i=0

1
1−e−1

)
+

(
n−1∑
i=0

2en
λ

))
= O

(
λ ·

(
n + n2

λ

))
= O

(
λ · n + n2

)
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Some Useful Background Knowledge

a short detour into very basic probability theory

We already know, we care for E (T ) — an expected value.

Often, we care for the probability to deviate from an expected
value.

A lot is known about this, we should make use of this.
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Markov Inequality and Chernoff Bounds

Theorem (Markov Inequality)

X ≥ 0 random variable, s > 0
Prob (X ≥ s · E (X)) ≤ 1

s

Theorem (Chernoff Bounds)

Let X1, X2, . . . , Xn : Ω → {0, 1} independent random variables
with
∀i ∈ {1, 2, . . . , n} : 0 < Prob (Xi = 1) < 1.

Let X :=
n∑

i=1
Xi.

∀δ > 0: Prob (X > (1 + δ) · E (X)) <
(

eδ

(1+δ)1+δ

)E(X)

∀0 < δ < 1: Prob (X < (1 − δ) · E (X)) < e−E(X)δ2/2

Motwani/Raghavan (1998): Randomized Algorithms 28/108
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A Very Simple Application

Consider x ∈ {0, 1}100 selected uniformly at random

more formal for i ∈ {1, 2, . . . , 100} : Bi :=

{
1 i-th bit is 1

0 otherwise

with Prob (Bi = 0) = Prob (Bi = 1) = 1
2

B :=
100∑
i=1

Bi clearly E (B) = 50

What is the probability to have at least 75 1-bits?

Markov Prob (B ≥ 75) = Prob
(
M ≥ 3

2 · 50
)
≤ 2

3
Chernoff Prob (B ≥ 75) = Prob

(
B ≥

(
1 + 1

2

)
· 50

)
≤

( √
e

(3/2)3/2

)50
< 0.0045

Truth Prob (B ≥ 75) =
100∑
i=75

(
100
i

)
2−100

= 89,310,453,796,450,805,935,325
316,912,650,057,057,350,374,175,801,344 < 0.000000282

GECCO 2008 Tutorial / Computational Complexity and Evolutionary Computation
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The Law of Total Probability

Theorem (Law of Total Probability)

Let Bi with i ∈ I be a partition of some probability space Ω.
∀A ⊆ Ω: Prob (A) =

∑
i∈I

Prob (A | Bi) · Prob (Bi)

immediate consequence Prob (A) ≥ Prob (A | B) · Prob (B)

Useful for lower bounds
when some event “determines” expected optimization time

30/108
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A Very Simple Example

Consider (1+1)-EA on f : {0, 1}n → R

with f(x) :=

{
n − 1

2 if x = 0n

OneMax(x) otherwise
.

Theorem

E
(
T(1+1)-EA, f

)
= Ω

((
n
2

)n)
Proof.

Define event B : (1+1)-EA initializes with x = 0n

clearly ProbB = 2−n

Observation E
(
T(1+1)-EA, f | B

)
= nn

since all bits have to flip simulatneously

Law of Total Probability
E

(
T(1+1)-EA, f

)
≥ nn · 2−n =

(
n
2

)n
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Lower bound for OneMax

Chernoff bounds

Expected number of 1-bits in initial solution is n/2.

At least n/3 0-bits with probability 1 − e−Ω(n) (Chernoff).

Lower Bound

Probability that at least one 0-bit has not been flipped during
t = (n − 1) lnn steps is

1 − (1 − (1 − 1/n)(n−1) ln n)n/3 ≥ 1 − e−1/3 = Ω(1).

Expected optimization time for OneMax is Ω(n log n)

Generalization

Ω(n log n) for each function with poly. number of optima.

S. Droste, T. Jansen, I. Wegener: On the analysis of the (1+1) Evolutionary Algorithm, Theoretical Computer Science, 2002. 32/108
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Coupon Collector’s Theorem

Proposition

Given n different coupons. Choose at each trial a coupon uniformly
at random. Let X be a random variable describing the number of
trials required to choose each coupon at least once. Then

E(X) = nHn

holds, where Hn denotes the nth Harmonic number, and

lim
n→∞Prob(X ≤ n(lnn − c)) = e−ec

holds for each constant c ∈ R.

R. Motwani, P. Raghavan: Randomized Algorithms, Cambridge University Press, 1995.
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Expected multiplicative distance decrease

Basic idea

Assumption: Function values are integers.

Define a set O of l operations to obtain an optimal solution.

Average gain of these l operations is
f(xopt)−f(x)

l .

34/108
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Figure: Distance Decrease

x xopt

1 operation

(1− 1/l) ·D

t operations

(1− 1/l)
t
·D

D = f (xopt)− f (x))

l accepted operations that turn x into xopt
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Expected multiplicative distance decrease

Upper bound

Let dmax = maxx∈{0,1}n f(xopt) − f(x).

1 operation: expected distance at most (1 − 1/l) · dmax.

t operations: expected distance at most (1 − 1/l)t · dmax.

Expected number of O(l · log dmax) operations to reach
optimum.

Assume: expected time for each operation is at most r.

Upper bound O(r · l · log dmax) to obtain an optimal solution.

F. Neumann, I. Wegener: Randomized local search, evolutionary algorithms, and the minimum spanning tree problem, GECCO 2004.
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Example

Linear Functions

f(x) = w1x1 + w2x2 + · · · + wnxn.

wi ∈ Z.

wmax = maxi wi.

Upper bound

Consider all operations that flip a single bit.

Each necessary operation is accepted.

dmax = n · wmax.

Expected number of operations O(n log dmax).

Waiting time for a single bit flip O(1).

Upper bound O(n(log n + log wmax)).

If wmax = poly(n), upper bound O(n log n).

GECCO 2008 Tutorial / Computational Complexity and Evolutionary Computation
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A More Flexibel Proof Method

Sad Facts

f -based partitions restricted to “well behaving” functions

direct lower bound often too difficult

How can we find a more flexibel method?

Observation f -based partition measure progress by f(xt+1) − f(xt)

Idea consider a more general measure of progress

Define distance d : Z → R
+
0 , (Z set of all populations)

with d(P ) = 0 ⇔ P contains optimal solution

Caution “Distance” need not be a metric!
38/108
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Drift

Define distance d : Z → R
+
0 , (Z set of all populations)

with d(P ) = 0 ⇔ P contains optimal solution

Observation T = min{t | d(Pt) = 0}

Consider maximum distance M := max {d(P ) | P ∈ Z},
decrease in distance Dt := d(Pt−1) − d(Pt)

Definition E (Dt | T ≥ t) is called drift.

Pessimistic point of view Δ := min {E (Dt | T ≥ t) | t ∈ N0}

Drift Theorem (Upper Bound) Δ > 0 ⇒ E (T ) ≤ M/Δ

He/Yao (2004): A study of drift analysis for estimating computation time of evolutionary algorithms. Natural Computing 3(1):21–35
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Upper Bound Drift Theorem

Drift Theorem (Upper Bound)

Let A be some evolutionary algorithm, Pt its t-th population, f
some function, Z the set of all possible populations, d : Z → R

+
0

some distance measure with
d(P ) = 0 ⇔ P contains an optimum of f ,
M = max{d(P ) | P ∈ Z}, Dt := d(Pt−1) − d(Pt),
Δ := min {E (Dt | T ≥ t) | t ∈ N0}.
Δ > 0 ⇒ E (TA,f ) ≤ M/Δ

Proof

Observe M ≥ E

(
T∑

t=1
Dt

)

40/108
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Proof of the Drift Theorem (Upper Bound)

M ≥ E

(
T∑

t=1

Dt

)
=

∞∑
t=1

Prob (T = t) · E

(
T∑

i=1

Di | T = t

)

=
∞∑

t=1

Prob (T = t) ·
t∑

i=1

E (Di | T = t)

=
∞∑

t=1

t∑
i=1

Prob (T = t) · E (Di | T = t)

=
∞∑
i=1

∞∑
t=i

Prob (T = t) · E (Di | T = t)

GECCO 2008 Tutorial / Computational Complexity and Evolutionary Computation

2426



41/108

Introduction About EAs Topics in Theory Optimization Time Analysis General Limitations Conclusions

Proof of the Drift Theorem (Upper Bound) (cont.)

≥
∞∑
i=1

∞∑
t=i

Prob (T = t) · E (Di | T = t)

=
∞∑
i=1

∞∑
t=i

Prob (T ≥ i) · Prob (T = t | T ≥ i) · E (Di | T = t)

=
∞∑
i=1

Prob (T ≥ i)
∞∑
t=i

Prob (T = t | T ≥ i) · E (Di | T = t ∧ T ≥ i)

=
∞∑
i=1

Prob (T ≥ i)
∞∑

t=1

Prob (T = t | T ≥ i) · E (Di | T = t ∧ T ≥ i)

=
∞∑
i=1

Prob (T ≥ i) E (Di | T ≥ i) ≥ Δ ·
∞∑
i=1

Prob (T ≥ i) = Δ · E (T )

thus E (T ) ≤ M
Δ
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Introduction About EAs Topics in Theory Optimization Time Analysis General Limitations Conclusions

A Simple Application

Consider (1, n)-EA on LeadingOnes

Theorem

E
(
T(1, n)-EA,LeadingOnes

)
= O(n2)

Proof.

d(x) := n − LeadingOnes(x) � M = n

E (d(xt−1) − d(xt) | T > t)

≥ 1 ·

(
1 −

(
1 −

1

en

)n)
− n ·

(
1 −

(
1 −

1

n

)n)n

= Ω(1)

thus E (T ) = O(n)
thus E

(
T(1, n) EA,LeadingOnes

)
= n · E (T ) = O(n2)
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Another Example

Consider (1+1)-EA on linear function f : {0, 1}n → R

now with drift analysis

remember f(x) =
n∑

i=1
wi · x[i]

with w1 ≥ w2 ≥ · · · ≥ wn > 0

Define d(x) := ln

(
1 + 2

n/2∑
i=1

(1 − x[i]) +
n∑

i=(n/2)+1

(1 − x[i])

)
Observe
M = max {d(x) | x ∈ {0, 1}n} = ln

(
1 + 3

2n
)

= Θ (lnn)

He/Yao (2004): A study of drift analysis for estimating computation time of evolutionary algorithms. Natural Computing 3(1):21–35
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Drift Analysis for (1+1)-EA on general linear functions

d(x) := ln

(
1 + 2

n/2∑
i=1

(1 − x[i]) +
n∑

i=(n/2)+1

(1 − x[i])

)

Need lower bound for E (d(xt−1) − d(xt) | T ≥ t)

Observe minimal for xt−1 = 011 · · · 1 or 11 · · · 1︸ ︷︷ ︸
left

01 · · · 1︸ ︷︷ ︸
right

Consider separately and do tedious calculations. . .

GECCO 2008 Tutorial / Computational Complexity and Evolutionary Computation
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Calculation for 011 · · · 1

E (d(xt−1) − d(xt) | T ≥ t)

=
1

n

(
1 −

1

n

)n−1

(ln(3) − ln(1))

+

(
n/2

1

)(
1

n

)2 (
1 −

1

n

)n−2

(ln(3) − ln(1 + 1))

−

n/2∑
br=3

(
n/2

br

)(
1

n

)1+br
(

1 −
1

n

)n−br−1

(ln(1 + br) − ln(3))

−

(n/2)−1∑
bl=1

n/2∑
br=0

(
(n/2) − 1

bl

)(
n/2

br

)(
1

n

)1+bl+br
(

1 −
1

n

)n−bl−br−1

(ln(1 + 2bl + br) − ln(3))

= Ω

(
1

n

)
46/108

Introduction About EAs Topics in Theory Optimization Time Analysis General Limitations Conclusions

Calculation for 1n/201(n/2)−1

E (d(xt−1) − d(xt) | T ≥ t)

=
1

n

(
1 −

1

n

)n−1

(ln(2) − ln(1))

−

(
n/2

1

)(
1

n

)2 (
1 −

1

n

)n−2

(ln(1 + 2) − ln(2))

−

(n/2)−1∑
br=2

(
(n/2) − 1

br

)(
1

n

)1+br
(

1 −
1

n

)n−br−1

(ln(1 + br) − ln(2))

= Ω

(
1

n

)
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Result for (1+1)-EA on General Linear Functions

We have

d(x) := ln

(
1 + 2

n/2∑
i=1

(1 − x[i]) +
n∑

i=(n/2)+1

(1 − x[i])

)
d(x) ≤ ln (1 + (3/2)n) = O(log n)

E (d(xt−1) − d(xt) | T ≥ t) = Ω(1/n)

together E
(
T(1+1) EA,f

)
= O(n log n) for any linear f
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Drift Analysis of Lower Bounds

We have drift analysis for upper bounds

How can we obtain lower bounds when analyzing drift?

Idea Check proof of drift theorem (upper bound).
Can inequalities be reversed?

Remember M≥E

(
T∑

t=1
Dt

)
= · · ·=

∞∑
i=1

Prob (T ≥ i) E (Di | T ≥ i)

≥Δ ·
∞∑
i=1

Prob (T ≥ i) =Δ · E (T )

with

M = max{d(P ) | P ∈ Z}

Δ = min{E (d(Pt−1) − d(Pt) | T ≥ t)}
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Modification for a Lower Bound Technique

observation only two inequalities need to be reversed

1 M ≥
∑

· · · with M = max{d(P ) | P ∈ Z}

2
∑

· · · ≥ Δl ·
∑

· · · with
Δl = min{E (d(Pt−1) − d(Pt) | T ≥ t)}

clearly for lower bound Δu = max{E (d(Pt−1) − d(Pt) | T ≥ t)}
sensible and sufficient for “≤”

clearly for lower bound instead of M min{d(P ) | P ∈ Z}
possible and sufficient for “≤”,
but pointless, since min{d(P ) | P ∈ Z} = 0

He/Yao (2004): A study of drift analysis for estimating computation time of evolutionary algorithms. Natural Computing 3(1):21–35
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Closing the Distance

clearly E

(
T∑

t=1
Dt

)
fixed, if initial population is known

thus lower bound on d(P0) yields lower bound on E (T )

making this concrete

E (T | d(P0) ≥ Mu) ≥ Mu/Δu

E (T ) ≥ Prob (d(P0) ≥ Mu) · E (T | d(P0) ≥ Mu) ≥
Prob (d(P0) ≥ Mu) · Mu/Δu

E (T ) ≥
∑

Prob (d(P0) ≥ d) · d/Δu ≥ E (d(P0)) /Δu

thus drift analysis suitable as method for
upper and lower bounds
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Lower Bound for (1+1) EA on LeadingOnes

Define trivial distance
d(x) := n − LeadingOnes(x)

Observation necessary for decreasement of distance
left-most 0-bit flips

thus Prob (decrease distance) ≤ 1
n

How can we bound the decrease in distance?

Observation trivially, by n — not useful

better question How can we bound the expected
decrease in distance?
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Expeced Decrease in Distance on LeadingOnes

Note decrease in distance =̂ increase in fitness

Observation two sources for increase in fitness

1 the left-most 0-bit

2 bits to the right of this bits that happen to be 1-bits

Observation bits to the right of the left-most 0-bit
have no influence on selection and
never had influence on selection

Claim These bits are uniformly distributed.

obvious holds after random initialization

Claim standard bit mutations do not change this

GECCO 2008 Tutorial / Computational Complexity and Evolutionary Computation

2429



53/108

Introduction About EAs Topics in Theory Optimization Time Analysis General Limitations Conclusions

Standard Bit Mutations on Uniformly Distributed Bits

Claim ∀t ∈ N0 : ∀x ∈ {0, 1}n : Prob (xt = x) = 2−n

clearly holds for t = 0

Prob (xt = x) =
∑

x′∈{0,1}n

Prob
(
(xt−1 = x′) ∧ (mut(x′) = x)

)
=

∑
x′∈{0,1}n

Prob
(
xt−1 = x′) · Prob

(
mut(x′) = x

)
=

∑
x′∈{0,1}n

2−n · Prob
(
mut(x′) = x

)
= 2−n

∑
x′∈{0,1}n

Prob
(
mut(x) = x′)

= 2−n
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Expected Increase in Fitness and Expected Intial Distance

E (increase in fitness)

=
n∑

i=1

i · Prob (fitness increase = i)

≤
n∑

i=1

i ·
1

n
· 2−i ≤

1

n

∞∑
i=1

i

2i
=

2

n

E (d(x0)) = n −
n∑

i=1

i · Prob (LeadingOnes(x0) = i)

= n −
n∑

i=1

i

2i+1
≥ n −

1

2

∞∑
i=1

i

2i
= n − 1

thus E
(
T(1+1) EA,LeadingOnes

)
≥ (n−1)n

2 = Ω(n2)
thus E

(
T(1+1) EA,LeadingOnes

)
= Θ(n2)
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Random Walks

Random Walks on Graphs

Given: An undirected connected graph.

A random walk starts at a vertex v.

Whenever it reaches a vertex w, it chooses in the next step a
random neighbor of w.

56/108

Introduction About EAs Topics in Theory Optimization Time Analysis General Limitations Conclusions

Result Cover Time

Theorem (Upper bound for Cover Time)

Given an undirected connected graph with n vertices and m edges,
the expected number of steps until a random walk has visited all
vertices is at most 2m(n − 1).

R. Aleliunas et al.: Random walks, universal traversal sequences, and the complexity of maze problems, FOCS 1979.
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Example: Plateaus

Definition

Plateau(x) :=

⎧⎨⎩
|x|0 : x �∈ {1i0n−i, 0 ≤ i ≤ n}
n + 1 : x ∈ {1i0n−i, 0 ≤ i < n}
n + 2 : x = 1n.

1
i
0
n−i

0
n

|x|0

1
n
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Result: Plateau

1i0 n−i

1
i
0
n−i

1
n0

n 1
i+1
0
n−i−1

1
i−1
0
n−i+1

Upper bound (RLS)

Solution with fitness ≥ n + 1 in expected time O(n log n).

Random walk on the plateau of fitness n + 1.

Probability 1/2 to increase (reduce) the number of ones.

Expected waiting time for an accepted step Θ(n).

Optimum reached within O(n2) expected accepted steps.

Upper bound O(n3) (same holds for (1+1)-EA).

T. Jansen, I. Wegener: Evolutionary algorithms - how to cope with plateaus of constant fitness and when to reject strings of the same fitness, IEEE Trans. Evolutionary Computatio
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Method of Typical Runs

Phase 1: Given EA starts with random initialization, with
probability at least 1 − p1, it reaches a population
satisfying condition C1 in at most T1 steps.

Phase 2: Given EA starts with a population satisfying
condition C1, with probability at least 1 − p2, it
reaches a population satisfying condition C2 in at
most T2 steps.

. . .

Phase k: Given EA starts with a population satisfying
condition Ck−1, with probability at least 1 − pk, it
reaches a population containing a global optimum in
at most Tk steps.

This yields: Prob

(
TEA,f ≤

k∑
i=1

Ti

)
≥ 1 −

k∑
i=1

pi
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From Success Probability to Expected Optimization Time

Sometimes
“Phase 1: Given EA starts with random initialization”
can be replaced by
“Phase 1: EA may start with an arbitrary population”

In this case, a failure in any phase can be described as a restart.

This yields: E (TEA,f) ≤

k∑
i=1

Ti

1−

k∑
i=1

pi
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A Concrete Example

Jumpk(x) : {0, 1}n → R with k ∈ {1, 2, . . . , n}

Jumpk(x) :=

{
n − OneMax(x) if n − k < OneMax(x) < n

k + OneMax(x) otherwise

number of ones

f
-v

al
u
e

n

k

n − k
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A Steady State GA

(μ+1)-EA with prob. pc for uniform crossover

1. Initialization
Choose x1, . . . , xμ ∈ {0, 1}n uniformly at random.

2. Selection and Variation
With probability pc:

Select z1 and z2 independently from x1, . . . , xμ.
z := uniform crossover(z1, z2)
y := standard 1/n bit mutation(z)

Otherwise:
Select z from x1, . . . , xμ.
y := standard 1/n bit mutation(z)

3. Selection for Replacement
If f(y) ≥ min{f(x1), . . . , f(xμ)}
Then Replace some xi with min. f -value by y.

4. “Stopping Criterion”
Continue at 2.
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GA on Jumpk

Theorem

Let k = O(log n), c ∈ R
+ a sufficiently large constant, μ = nO(1),

μ ≥ k log2 n, 0 < pc ≤ 1/(ckn).
E

(
TGA(μ, pc)

)
= O(μn2k + 22k/pc)

Method of Proof: Typical Run

Jansen/Wegener (2002): On the analysis of evolutionary algorithms - a proof that crossover really can help. Algorithmica 34(1):47–66
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Definition of the Phases

Notation:

xi[j] is the j-th bit of xi

OPT : n + k ∈ {Jumpk(x1), . . . ,Jumpk(xμ)

i Ci−1 Ci Ti

1 ∅ min{Jumpk(x1), . . . ,Jumpk(xμ)} ≥ n O(μn log n)

2 C1

(
∀j ∈ {1, . . . , n} :

μ∑
h=1

(1 − xh[j]) ≤ μ
4k

)
∨ OPT O(μn2k)

3 C2 OPT O(22k/pc)
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Phase 1: Towards the Gap

Reaching some point x with Jumpk(x) ≥ n
is not more difficult than optimizing OneMax.

For μ = 1, O(n log n) follows.

For larger μ, observe:

With probability at least (1 − pc) · (1 − 1/n)n = Ω(1)
a copy of a parent is produced.

Making a copy of some xj with Jumpk(xj) ≥ Jumpk(xi)
is not worse than choosing xi.

This implies O(μn log n) as expected length.

Markov’s inequality: failure probability p1 ≤ ε
for any constant ε > 0
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Phase 2: At the Gap

We are going to prove:

After c′μn2k generations (c′ const. suff. large)
with probability at most p′2
there are at most μ/(4k) zero-bits at the first position.

This implies:

After c′μn2k generations (c′ const. suff. large)
there are at most μ/(4k) zero-bits at any position
with probability at most p2 := n · p′2.
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Zero-Bits at the First Position

Consider one generation.

Let z be the current number of zero-bits in first position.

The value of z can change by at most 1.

event A+
z : z changes to z + 1

event A−
z : z changes to z − 1

Goal: Estimate Prob (A+
z ) and Prob (A−

z ).
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A Closer Look at A+
z

“Smaller/Simpler” Events:
event description probability

Bz do crossover pc

Cz at selection for replacement,
select x with 1 at first position (μ − z)/μ

Dz at selection for reproduction,
select parent with 0 at first position z/μ

Ez no mutation at first position 1 − 1
n

F+
z,i out of k − 1 0-bits i mutate and

out of n − k 1-bits i mutate
(
k−1

i

)(
n−k

i

) (
1
n

)2i (
1 − 1

n

)n−2i

G+
z,i out of k 0-bits i mutate and

out of n − k − 1 1-bits i − 1 mutate
(
k
i

)(
n−k−1

i−1

) (
1
n

)2i−1 (
1 − 1

n

)n−2

Observe:

A+
z ⊆ Bz ∪

(
Bz ∩ Cz ∩

[(
Dz ∩ Ez ∩

k−1⋃
i=0

F+
z,i

)
∪

(
Dz ∩ Ez ∩

k⋃
i=1

G+
z,i

)])
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A Still Closer Look at A+
z

Using

A+
z ⊆ Bz ∪

(
Bz ∩ Cz ∩

[(
Dz ∩ Ez ∩

k−1⋃
i=0

F+
z,i

)
∪

(
Dz ∩ Ez ∩

k⋃
i=1

G+
z,i

)])
together with

Prob (Bz) = pc

Prob (Cz) = μ−z
μ

Prob (Dz) = z
mu

Prob (Ez) = 1 − 1
n

Prob
(
F+

z,i

)
=

(
k−1

i

)(
n−k

i

) (
1
n

)2i (
1 − 1

n

)n−2i

Prob
(
G+

z,i

)
=

(
k
i

)(
n−k−1

i−1

) (
1
n

)2i−1 (
1 − 1

n

)n−2i

yields some bound on Prob (A+
z ).
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A Closer Look at A−
z

“Smaller/Simpler” Events:
event description probability

Bz do crossover pc

Cz at selection for replacement,
select x with 1 at first position (μ − z)/μ

Dz at selection for reproduction,
select parent with 0 at first position z/μ

Ez no mutation at first position 1 − 1
n

F−
z,i out of k − 1 0-bits i − 1 mutate and

out of n − k 1-bits i mutate
(
k−1
i−1

)(
n−k

i

) (
1
n

)2i−1 (
1 − 1

n

)n−2

G−
z,i out of k 0-bits i mutate and

out of n − k − 1 1-bits i mutate
(
k
i

)(
n−k−1

i

) (
1
n

)2i−1 (
1 − 1

n

)n−2

Observe:

A−
z ⊇ Bz ∩ Cz ∩

[(
Dz ∩ Ez ∩

k⋃
i=1

F−
z,i

)
∪

(
Dz ∩ Ez ∩

k⋃
i=0

G−
z,i

)]
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A Still Closer Look at A−
z

Using

A−
z ⊇ Bz ∩ Cz ∩

[(
Dz ∩ Ez ∩

k⋃
i=1

F−
z,i

)
∪

(
Dz ∩ Ez ∩

k⋃
i=0

G−
z,i

)]
together with the known probabilities
yields again some bound.

Instead of considering the two bounds directly,
we consider their difference:

If z is large, say z ≥ μ
8k :

Prob (A−
z ) − Prob (A+

z ) = Ω
(

1
nk

)
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Bias Towards 1-Bits

We know: z ≥ μ
8k ⇒ Prob (A−

z ) − Prob (A+
z ) = Ω

(
1

nk

)
Consider c∗μn2k generations; c∗ sufficiently large constant

E (difference in 0-bits) = Ω
(

n2k
nk

)
= Ω(nk)

Having c∗ sufficiently large implies < μ/(4k) 0-bits at the end of
the phase.

Really?

Only if z ≥ μ/(8k) holds all the time!

GECCO 2008 Tutorial / Computational Complexity and Evolutionary Computation

2434



73/108

Introduction About EAs Topics in Theory Optimization Time Analysis General Limitations Conclusions

Coping with Our Assumption

As long as z ≥ μ/(8k) holds, things work out nicely.

Consider last point of time, when z < μ/(8k) holds in the c∗n2k
generations.

Case 1: at most μ/(8k) generations left

number of 0-bits < μ/(8k) + μ/(8k) = μ/(4k)
no problem

Case 2: more than μ/(8k) generations left

Observation: μ/(8k) = Ω(log2 n)

For Ω(log2 n) generations, our assumption holds.

Apply Chernoff’s bound for these generations.

Yields p′2 = e−Ω(log2 n).

Together: p2 = n · p′2 = e−Ω(log2 n)+ln n = e−Ω(log2 n)
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Phase 3: Finding the Optimum

In the beginning, we have at most μ/(4k) 0-bits at each position.

In the same way as for Phase 2, we make sure that we always have
at most μ/(2k) 0-bits at each position.

Prob (find optimum in current generation)
≥ Prob(crossover and select two parents without common 0-bit and

create 1n with uniform crossover and no mutation)

Prob (crossover) = pc

Prob (create 1n with uniform crossover) = (1/2)2k

Prob (no mutation) = (1 − 1/n)n

Prob (select two parent without common 0-bit) ≤ k · μ/(2k)
μ = 1

2

Together:
Prob (find optimum in current generation) = Ω(pc · 2

−2k)
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Concluding Phase 3

We have
Prob (find optimum in current generation) = Ω(pc · 2

−2k)

Prob
(
find optimum in c32

2k/pc generations
)
≥ 1 − ε(c3)

failure probability p3 ≤ ε′ for any constant ε′ > 0
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Concluding the Proof

Length of the three phases:
O(μn log n) + O(μn2k) + O(22k/pc) = O(μn2k + 22k/pc)

Sum of Failure Probabilities: ε + e−Ω(log2 n) + ε′ ≤ ε∗ < 1

E
(
TGA(μ, pc)

)
= O(μn2k + 22k/pc)
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Black Box Optimization

Setting

Given two finite spaces S and R.

Find for a given function f : S → R an optimal solution.

Count number of fitness evaluations.

No search point is evaluated more than once.

Definition (Black Box Algorithm)

An algorithm A is called black box algorithm if its finds for each
f : S → R an optimal solution after a finite number of fitness
evaluations.
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NFL

Theorem (NFL)

Given two finite spaces R and S and two arbitrary black box
algorithms A and A′. The average number of fitness evaluations
among all functions f : S → R is the same for A and A′.

D.H. Wolpert, W. G. Macready: No Free Lunch Theorems for Optimization, IEEE Transactions on Evolutionary Computation, 1997.
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What Follows from NFL?

Implications

Considering all functions, each black box algorithm has the
same performance.

Considering all functions, each algorithm is as good as
random search.

Hill climbing is as good as Hill descending.

Questions

Is the result surprising ? Perhaps

Is it interesting? No!!!
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What Does Not Follow from NFL?

Drawbacks

No one wants to consider all functions!!!

More realistic is to consider a class of functions or problems.

NFL Theorem does not hold in this case.

NFL Theorem useless for understanding realistic szenarios.

Implication

Restrict considerations to class of functions/problems.

Are there general results for such cases where NFL does not
hold?

⇒ black box complexity.
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Motivation for Complexity Theory

If our evolutionary algorithm performs poorly
is it our fault or is the problem intrinsically hard?

Example Needle(x) :=
n∏

i=1
x[i]

Such questions are answered by complexity theory.

Typically one concentrates on computational complexity
with respect to run time.

Is this really fair when looking at evolutionary algorithms?
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Black Box Optimization

When talking about NFL we have realized

classical algorithms and black box algorithms work in

different scenarios.

classical algorithms black box algorithms

problem class known problem class known
problem instance known problem instance unknown

This different optimization scenario requires
a different complexity theory.

We consider Black Box Complexity.

We hope for general lower bounds for all black box algorithms.
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Notation

Let F ⊆ {f : S → W} be a class of functions, A a black box
algorithm for F , xt the t-th search point sampled by A.

optimization time of A on f ∈ F :
TA,f = min {t | f(xt) = max{f(x) ∈ S}}

worst case expected optimization time of A on F :
TA,F = max {E (TA,f ) | f ∈ F}

black box complexity of F:
BF = min {TA,F | A is black box algorithm for F}

Droste/Jansen/Wegener (2006): Upper and lower bounds for randomized search heuristics in black-box optimization. Theory of Computing Systems 39(4):525–544
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Comparison With Computational Complexity

F :={
f : {0, 1}n → R | f(x) = w0 +

n∑
i=1

wixi +
∑

1≤i<j≤n
wi,jxixj

}
with wi, wi,j ∈ R

known: Optimization of F is NP-hard since MAX-2-SAT is
contained in F .

Theorem: BF = O(n2)

Proof
w0 = f (0n) (1 search point)
wi = f

(
0i−110n−i

)
− w0 (n search points)

wi,j = f
(
0i−110j−i−110n−j

)
− wi − wj − w0 (

(
n
2

)
search points)

Compute optimal solution x∗ without access to the oracle.
f(x∗) (1 search point)

together:
(
n
2

)
+ n + 2 = O(n2) search points
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From Functions to Classes of Functions

Observation: ∀F : BF ≤ |F|

Consequence: Bf = 1 for any f — pointless

Can we still have meaningful results for our example functions?

Evolutionary algorithms are often symmetric
with respect to 0s and 1s.

Definition: For f : {0, 1}n → R, we define f∗ := {fa | a ∈ {0, 1}n}
where fa(x) := f(a ⊕ x).

Clearly, such EAs perform equal on all f ′ ∈ f∗.
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A General Upper Bound

Theorem

For any F ⊆ {f : {0, 1}n → R}, BF ≤ 2n−1 + 1/2 holds.

Proof
Consider pure random search without re-sampling of search points.
For each step t, Prob (find global optimum) ≥ 2−n.

BF ≤
2n∑
i=1

i · 2n

= 2n(2n+1)
2n+1 = 2n−1 + 1

2
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An Important Tool

very powerful general tool for lower bounds known

Theorem (Yao’s Minimax Principle)

For all distributions p over I and all distributions q over A:
minA E

(
TA,Ip

)
≤ maxI E

(
TAq ,I

)
in words:
We get a lower bound for the

worst-case performance of a randomized algorithm by

proving a lower bound on the worst-case performance of an

optimal deterministic algorithm

for an arbitrary probability distribution over the inputs.
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BNeedle
∗

Theorem

BNeedle
∗ = 2n−1 + 1/2

Proof by application of Yao’s Minimax Principle
The upper bound coincides with the general upper bound.

We consider each Needlea as possible input.
We choose the uniform distribution.
Deterministic algorithms sample the search space in a pre-defined
order without re-sampling.
Since the position of the unique global optimum is chosen
uniformly at random,
we have Prob (T = t) = 2−n for all t ∈ {1, . . . , 2n}.

This implies E (T ) =
2n∑
i=1

i · 2n = 2n(2n+1)
2n+1 = 2n−1 + 1

2 .

Remark We already knew this from NFL.

GECCO 2008 Tutorial / Computational Complexity and Evolutionary Computation

2438



89/108

Introduction About EAs Topics in Theory Optimization Time Analysis General Limitations Conclusions

BOneMax
∗

Theorem

BOneMax
∗ = Ω(n/ log n)

Proof by application of Yao’s Minimax Principle:
We choose the uniform distribution.

A deterministic algorithm is a tree with at least 2n nodes:
otherwise at least one f ∈ OneMax

∗ cannot be optimized.

The degree of the nodes is bounded by n + 1:
this is the number of different function values.

Therefore, the average depth of the tree is bounded below by(
logn+1 2n

)
− 1

= n
log2(n+1) = Ω(n/ log n).

Remark: BOneMax
∗ = O(n) is easy to see.
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Unimodal Functions

Consider f : {0, 1}n → R.

We call x ∈ {0, 1}n a local maximum of f ,
iff for all x′ ∈ {0, 1}n with H(x, x′) = 1
f(x) ≥ f(x′) holds.

We call f unimodal, iff f has exactly one local optimum.

We call f weakly unimodal, iff all local optima are global optima,
too.

Observation: (Weakly) Unimodal functions can be optimized by
hill-climbers.

Does this mean unimodal functions are easy to optimize?
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Unimodal functions

class of unimodal functions:
U := {f : {0, 1}n → R | f unimodal}

What is BU?

We want to find a lower bound on BU .

Remember: For any point not optimal under a unimodal function,
there exists a path to the global optimum

Definition: l points p1, p2, . . . , pl with H(pi, pi+1) = 1 for all
1 ≤ i < l form a path of length l.

Droste/Jansen/Wegener (2006): Upper and lower bounds for randomized search heuristics in black-box optimization. Theory of Computing Systems 39(4):525–544
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Path Functions

Consider the following functions:

P := (p1, p2, . . . , pl(n)) with p1 = 1n is a path — not necessarily a
simple path.

fP (x) :=

{
n + i if x = pi and x �= pj for all j > i,

OneMax(x) if x /∈ P

Observation: fP is unimodal.

Pl(n) := {fP | P has length l(n)}

GECCO 2008 Tutorial / Computational Complexity and Evolutionary Computation

2439



93/108

Introduction About EAs Topics in Theory Optimization Time Analysis General Limitations Conclusions

Random Paths

Construct P with length l(n) randomly:

1. p1 := 1n; i := 2
2. While i ≤ l(n) do
3. Choose pi ∈ {x | H(x, pi−1) = 1} uniformly at random.
4. i := i + 1

For each path P with length l(n),
we can calculate the probability to construct P randomly this way.

Remark: Paths P constructed this way are likely to contain circles.
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A lower bound on BU

Theorem: ∀δ with 0 < δ < 1 constant: BU > 2nδ
.

For a proof, we want to apply Yao’s Minimax Principle.

We define a probability distribution in the following way:

δ < ε < 1 constant; l(n) := 2nε

For all f ∈ U we define

Prob (f) :=

{
p if f ∈ Pl(n) and P is constructed with prob. p,

0 otherwise.
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Our Proof Strategy

We need to prove that

an optimal deterministic algorithm

needs on average more than 2nδ
steps

to find a global optimum.

We strengthen the position of the deterministic algorithm by

1 letting it know which functions have probability 0.

2 giving away for free the knowledge about any pi with
f(pi) ≤ f(pj) once pj is sampled,

3 giving away for free the knowledge about pj+1, . . . pj+n if pj is
the current known best path point and some point not on the
path is sampled,

4 giving away for free the knowledge about pl(n) (the global
optimum) once pj+n is sampled while pj is the current known
best path point.
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Deterministic Algorithm Too Strong?

Omit all circles froms P .
The remaining length l′(n) is called the true length of P .

What lower bound can be proven this way?

at best: (l′(n) − n + 1)/n

Observation: We need a good lower bound on l′(n).

How likely is it to return to old path points?

alternatively: What is the probability distribution for the Hamming
distance points on the path?

GECCO 2008 Tutorial / Computational Complexity and Evolutionary Computation

2440



97/108

Introduction About EAs Topics in Theory Optimization Time Analysis General Limitations Conclusions

Distance Between Points on the Path

Lemma

∀β > 0 constant : ∃α(β) > 0 constant : ∀i ≤ l(n) − βn :
∀j ≥ βn : Prob (H(pi, pi+j) ≤ α(β)n) = 2−Ω(n)

Proof: Due to symmetry:
Considering i = 1 and some j ≥ βn suffices.

Ht := H(p1, pt)

We want to prove: Prob (Hj ≤ α(β)n) = 2−Ω(n)

We choose α(β) := min{1/50, β/5}.

Due to the random path construction:

Ht+1 ∈ {Ht − 1, Ht + 1}

Prob (Ht+1 = Ht + 1) = 1 − Ht/n

Prob (Ht+1 = Ht − 1) = Ht/n
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Proof of Lemma Continued

Define γ := min{1/10, j/n}.

Observations:

γ ≤ 1/10

γ ≥ 5α(β)

γ bounded below and above by positive constants

Consider the last γn steps towards pj .
Let t be the first of these steps.

Note: (γ ≤ j/n) ⇒ (γn ≤ j)

Case 1: Ht ≥ 2γn

Clearly, Hj ≥ 2γn︸︷︷︸
in the beginning

−

number of steps︷︸︸︷
γn = γn > α(β)n.
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Proof of Lemma Continued

Case 2: Ht < 2γn

Clearly, Hi < 3γn for all i ∈ {t, . . . , j}.

Therefore, Prob (Hi = Hi−1 + 1) ≥ 1 − 3γ ≥ 7/10,
Prob (Hi = Hi−1 − 1) ≤ 3/10.

Define independent random variable St, St+1, . . . , Sj ∈ {0, 1} with
Prob (Sk = 1) = 7/10.

Define S :=
j∑

k=t

Sk.

Observation: Prob (S ≥ (3/5)γn) ≤ Prob (Hj ≥ (1/5)γn)

Since

1 Ht ≥ 0

2 Prob (Hi = Hi−1 + 1) ≥ Prob (Si = 1)

3 ≥ (3/5)γn increasing steps ⇒ ≤ (2/5)γn decreasing steps

4 Hj ≥ (3/5)γn − (2/5)γn
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Proof of Lemma Continued

We have γn independent random variable St, St+1, . . . , Sj ∈ {0, 1}

with Prob (Sk = 1) = 7/10 and S :=
j∑

k=t

Sk.

Apply Chernoff Bounds:

E (S) = (7/10)γn

Prob
(
S < 3

5γn
)

= Prob
(
S <

(
1 − 1

7

)
7
10γn

)
< e−(7/10)γn(1/7)2/2 = e−(1/140)γn = 2−Ω(n)
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True Path Length

Lemma with β = 1 yields:
Prob (return to path after n steps) = 2−Ω(n)

Prob (return to path after ≥ n steps happens anywhere)
= 2nε

· 2−Ω(n) = 2−Ω(n)

Prob (l′(n) ≥ l(n)/n) = 1 − 2−Ω(n)

We can prove at best lower bound of
l′(n)−n+1

n > l(n)
n2 − 1 > 2nδ

.
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An Optimal Deterministic Algorithm

Let N denote the points known not to belong to P .
Let pi denote the best currently known point on the path.

Initially, N = ∅, i ≥ 1.

Algorithm decides to sample x as next point.

Case 1: H(pi, x) ≤ α(1)n

Prob (x = pj with j ≥ n) = 2−Ω(n)

Case 2: H(pi, x) > α(1)n

Consider random path construction starting in pi.

Similar to Lemma:
Prob (hit x) = 2−Ω(n)
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Later steps

N �= ∅

Partition N :
Nfar := {y ∈ N | H(y, pi) ≥ α(1/2)n}
Nnear := N \ Nfar

Case 1: Nnear = ∅

Consider random path construction starting in pi.

A: path hits x
E: path hits no point in Nfar

Clearly, optimal deterministic algorithm avoid Nfar.

Thus, we are interested in Prob (A | E)

= Prob(A∩E)
Prob(E) ≤ Prob(A)

Prob(E) .

Clearly, Prob (E) = 1 − 2−Ω(n).

Thus, Prob (A | E) ≤
(
1 + 2−Ω(n)

)
Prob (A) = 2−Ω(n).
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Later Steps With Close Known Points

Case 2: Nnear �= ∅

Knowing points near by can increase Prob (A).

Ignore the first n/2 steps of path construction; consider pi+n/2.

Prob (Nnear = ∅ now) = 1 − 2−Ω(n)

Repeat Case 1.

GECCO 2008 Tutorial / Computational Complexity and Evolutionary Computation

2442



105/108

Introduction About EAs Topics in Theory Optimization Time Analysis General Limitations Conclusions

Conclusions

. . . and that was it for today.

There is more,
but you have a good idea of what can be done.
Reminder — What we have just seen:

analysis of the expected optimization time of some
evolutionary algorithms by means of

fitness-based partitions
Markov’s inequality and Chernoff bounds
coupon collector’s theorem
expected multiplicative distance decrease
drift analysis
random walks and cover times
typical runs
example functions

general limitations for evolutionary algorithms by means of
NFL
black box complexity
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Overview of Known Results

Are there just these methods and results for toy examples?

Is there nothing really cool, interesting, and useful?

By these and other methods there are results for evolutionary
algorithms for

“real” cominatorial optimization problems
(Tutorial of Carsten Witt, Sun, 13:30)

Euler circuits, Ising model, longest common subsequences
maximum cliques, maximum matchings, minimum spanning
trees
shortest paths, sorting, partition

“advanced” evolutionary algorithms
coevolutionary algorithms, memetic algorithms
with crossover, different (offspring) population sizes,
problem-specific variation operators

other randomized search heuristics
ant colony optimization
estimation of distribution algorithms
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Conclusions

Reminder — What we have just seen:

analysis of the expected optimization time of some
evolutionary algorithms by means of

fitness-based partitions
Markov’s inequality and Chernoff bounds
coupon collector’s theorem
expected multiplicative distance decrease
drift analysis
random walks and cover times
typical runs
example functions

general limitations for evolutionary algorithms by means of

NFL
black box complexity
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