

Principle

- follow Darwin's principle (survival of the fittest).
- work with a set of solutions called population.
- parent population produces offspring population by variation operators (mutation, crossover).
- select individuals from the parents and children to create new parent population.

Basic EA

- (1) compute an initial population $P = \{X_1, \ldots, X_\mu\}$.
- 2 while (not termination condition)
 - produce an offspring population $P'=\{Y_1,\ldots,Y_\lambda\}$ by crossover and/or mutation.
 - create new parent population P by selecting μ individuals from P and P'.

◄ □ ► 7/108

Introduction About EAs Topics in Theory Optimization Time Analysis General Limitations Conclusions Design	Introduction About EAs Topics in Theory Optimization Time Analysis General Limitations Conclusions Representation
Important issues representation crossover operator mutation operator selection method 	 Properties representation has to fit to the considered problem. small change in the representation ⇒ small change in the solution (locality). often direct representation works fine. Mainly in this talk search space {0,1}ⁿ. individuals are bitstrings of length n.
Introduction About EAs Topics in Theory Optimization Time Analysis General Limitations Conclusions Crossover operator	 < □ ▶ 10/10 Introduction About EAs Topics in Theory Optimization Time Analysis General Limitations Conclusions Mutation
Aim • two individuals x and y should produce a new solution z. 1-point Crossover	Aim • produce from a current solution x a new solution x
• choose a position $p \in \{1,, n\}$ uniformly at random • set $x_i = x_i$ for $1 \le i \le n$	Some Possibilities
• set $z_i = x_i$ for $1 \le i \le p$ • set $z_i = y_i$ for $p < i \le n$	 flip one randomly chosen bit of x to obtain z. flip each bit of x with probability x to obtain z (often
Uniform Crossover	p = 1/n).
• set z_i equally likely to x_i or y_i	
• If $x_i = y_i$ then $z_i = x_i = y_i$ • if $x_i \neq y_i$ then $Prob(z_i = x_i) = Prob(z_i = y_i) = 1/2$	

◄ □ ► 19/108

2423

Let A be some evolutionary algorithm, P_t its t-th population, fsome function, Z the set of all possible populations, $d: Z \to \mathbb{R}_0^+$ some distance measure with $d(P) = 0 \Leftrightarrow P$ contains an optimum of f, $M = \max\{d(P) \mid P \in Z\}, D_t := d(P_{t-1}) - d(P_t),$ $\Delta := \min\{\mathsf{E}(D_t \mid T \ge t) \mid t \in \mathbb{N}_0\}.$ $\Delta > 0 \Rightarrow \mathsf{E}(T_{A,f}) \le M/\Delta$

Proof

Observe
$$M \ge \mathsf{E}\left(\sum_{t=1}^{T} D_t\right)$$

$$\begin{split} M &\geq \mathsf{E}\left(\sum_{t=1}^{T} D_t\right) = \sum_{t=1}^{\infty} \operatorname{Prob}\left(T=t\right) \cdot \mathsf{E}\left(\sum_{i=1}^{T} D_i \mid T=t\right) \\ &= \sum_{t=1}^{\infty} \operatorname{Prob}\left(T=t\right) \cdot \sum_{i=1}^{t} \mathsf{E}\left(D_i \mid T=t\right) \\ &= \sum_{t=1}^{\infty} \sum_{i=1}^{t} \operatorname{Prob}\left(T=t\right) \cdot \mathsf{E}\left(D_i \mid T=t\right) \\ &= \sum_{i=1}^{\infty} \sum_{t=i}^{\infty} \operatorname{Prob}\left(T=t\right) \cdot \mathsf{E}\left(D_i \mid T=t\right) \end{split}$$

< □ ▶ 39/108

< □ ▶ 43/108

2427

• $\Delta = \min\{\mathsf{E}(d(P_{t-1}) - d(P_t) \mid T \ge t)\}$

∢ □ ▶ 47/108

∢ □ ► 48/108

 $\begin{array}{c|cccc} \hline \text{(Matrix) for the determinant of the series for the series of the seri$

Image: ■ ▶ 53/108

ntroduction About EAs Topics in Theory Random Walks

Random Walks on Graphs

Given: An undirected connected graph.

- A random walk starts at a vertex v.
- Whenever it reaches a vertex w, it chooses in the next step a random neighbor of w.

Optimization Time Analysis

Introduction About EAs Topics in Theory Optimization Time Analysis General Limitations Conclusions Expected Increase in Fitness and Expected Intial Distance

$$\begin{split} \mathsf{E} \left(\text{increase in fitness} \right) \\ &= \sum_{i=1}^{n} i \cdot \operatorname{Prob} \left(\text{fitness increase} = i \right) \\ &\leq \sum_{i=1}^{n} i \cdot \frac{1}{n} \cdot 2^{-i} \leq \frac{1}{n} \sum_{i=1}^{\infty} \frac{i}{2^{i}} = \frac{2}{n} \\ &\mathsf{E} \left(d(x_{0}) \right) = n - \sum_{i=1}^{n} i \cdot \operatorname{Prob} \left(\text{LEADINGONES}(x_{0}) = i \right) \\ &= n - \sum_{i=1}^{n} \frac{i}{2^{i+1}} \geq n - \frac{1}{2} \sum_{i=1}^{\infty} \frac{i}{2^{i}} = n - 1 \\ & \mathsf{thus} \quad \mathsf{E} \left(T_{(1+1) \text{ EA, LEADINGONES}} \right) \geq \frac{(n-1)n}{2} = \Omega(n^{2}) \\ & \mathsf{thus} \quad \mathsf{E} \left(T_{(1+1) \text{ EA, LEADINGONES}} \right) = \Theta(n^{2}) \end{split}$$

ntroduction About EAs Topics in Theory Optimization Time Analysis Result Cover Time

Theorem (Upper bound for Cover Time)

Given an undirected connected graph with n vertices and m edges, the expected number of steps until a random walk has visited all vertices is at most 2m(n-1).

R. Aleliunas et al.: Random walks, universal traversal sequences, and the complexity of maze problems, FOCS 1979.

↓ □ ▶ 55/108

Introduction About EAs Topics in Theory Optimization Time Analysis General Limitations Conclusions Phase 1: Towards the Gap	Introduction About EAs Topics in Theory Optimization Time Analysis General Limitations Conclusions Phase 2: At the Gap
Reaching some point x with $\text{JUMP}_k(x) \ge n$ is not more difficult than optimizing ONEMAX.	
For $\mu = 1$, $O(n \log n)$ follows.	We are going to prove:
For larger $\mu,$ observe: With probability at least $(1-p_c)\cdot(1-1/n)^n=\Omega(1)$	After $c'\mu n^2 k$ generations (c' const. suff. large) with probability at most p'_2 there are at most $\mu/(4k)$ zero-bits at the first position.
a copy of a parent is produced. Making a copy of some x_j with $\operatorname{JUMP}_k(x_j) \ge \operatorname{JUMP}_k(x_i)$ is not worse than choosing x_i . This implies $O(\mu n \log n)$ as expected length.	This implies: After $c'\mu n^2 k$ generations (c' const. suff. large) there are at most $\mu/(4k)$ zero-bits at any position with probability at most $p_2 := n \cdot p'_2$.
Markov's inequality: failure probability $p_1 \leq \varepsilon$ for any constant $\varepsilon > 0$	18
Introduction About EAs Topics in Theory Optimization Time Analysis General Limitations Conclusions Zero-Bits at the First Position	Introduction About EAs Topics in Theory Optimization Time Analysis General Limitations Conclusions A Closer Look at A_z^+
	"Smaller/Simpler" Events:
Consider one generation.	B_z do crossover p_c
Let z be the current number of zero-bits in first position.	C_z at selection for replacement, select x with 1 at first position $(\mu - z)/\mu$ D_z at selection for reproduction.
The value of z can change by at most 1.	select parent with 0 at first position z/μ
event A_z^+ : z changes to $z+1$	E_z no indication at first position $1 - \frac{1}{n}$ $F_{z,i}^+$ out of $k - 1$ 0-bits <i>i</i> mutate and
event A_z^- : z changes to $z-1$	out of $n - k$ 1-bits <i>i</i> mutate $\binom{k-1}{i}\binom{n-k}{i}\left(\frac{1}{n}\right)^{2i}\left(1-\frac{1}{n}\right)^{n-2i}$ G^+_{i} out of <i>k</i> 0-bits <i>i</i> mutate and
Goal: Estimate $\operatorname{Prob}(A_z^+)$ and $\operatorname{Prob}(A_z^-)$.	out of $n - k - 1$ 1-bits $i - 1$ mutate $\binom{k}{i}\binom{n-k-1}{i-1}\left(\frac{1}{n}\right)^{2i-1}\left(1 - \frac{1}{n}\right)^{n-2}$ Observe: $\binom{k}{i} = \frac{k-1}{i-1} + \binom{k}{i} = \binom{k}{i} + \binom{k}{i} = \binom{k}{i} + \binom{k}{i} = \binom{k}{i} + \binom{k}{i} = \binom{k}{i} + \binom{k}{i$
	$A_z^{+} \subseteq B_z \cup \left(B_z \cap C_z \cap \left \left(D_z \cap E_z \cap \bigcup_{i=0}^{+} F_{z,i}^{+} \right) \cup \left(D_z \cap E_z \cap \bigcup_{i=1}^{+} G_{z,i}^{+} \right) \right \right)$

▲ □ ▶ 67/108

2433

Optimization Time Analysis Optimization Time Analysis A Still Closer Look at A_z^+ A Closer Look at A_{-}^{-} "Smaller/Simpler" Events: event description Using B_z $A_z^+ \subseteq B_z \cup \left(\overline{B_z} \cap C_z \cap \left[\left(D_z \cap E_z \cap \bigcup_{i=0}^{k-1} F_{z,i}^+ \right) \cup \left(\overline{D_z} \cap \overline{E_z} \cap \bigcup_{i=1}^k G_{z,i}^+ \right) \right] \right)$ do crossover C_z at selection for replacement, select x with 1 at first position together with at selection for reproduction, D_{γ} $\operatorname{Prob}(B_z) = p_c$ select parent with 0 at first position $\begin{array}{l} \operatorname{Prob}\left(C_{z}\right)=\frac{\mu-z}{\mu}\\ \operatorname{Prob}\left(D_{z}\right)=\frac{z}{mu}\\ \operatorname{Prob}\left(E_{z}\right)=1-\frac{1}{n} \end{array}$ E_z no mutation at first position $F_{z,i}^{-}$ out of k-1 0-bits i-1 mutate and out of n - k 1-bits *i* mutate $\mathsf{Prob}\left(F_{z,i}^{+}\right) = \binom{n-1}{i}\binom{n-k}{i}\left(\frac{1}{n}\right)^{2i}\left(1-\frac{1}{n}\right)^{n-2i}$ $G_{z,i}^{-}$ out of k 0-bits i mutate and $\mathsf{Prob}\left(G_{z,i}^{+}\right) = \binom{k}{i} \binom{n-k-1}{i-1} \left(\frac{1}{n}\right)^{2i-1} \left(1-\frac{1}{n}\right)^{n-2i}$ out of n - k - 1 1-bits *i* mutate Observe: yields some bound on $\operatorname{Prob}(A_z^+)$. $A_z^- \supseteq \overline{B_z} \cap C_z \cap \left[\left(D_z \cap \overline{E_z} \cap \bigcup_{i=1}^k F_{z,i}^- \right) \cup \left(\overline{D_z} \cap E_z \cap \bigcup_{i=1}^k G_{z,i}^- \right) \right]$ < □ ▶ 69/108 Topics in Theory **Optimization Time Analysis** Topics in Theory Optimization Time Analysis A Still Closer Look at A_{z}^{-} **Bias Towards 1-Bits** Using We know: $z \geq \frac{\mu}{8k} \Rightarrow \operatorname{Prob}\left(A_{z}^{-}\right) - \operatorname{Prob}\left(A_{z}^{+}\right) = \Omega\left(\frac{1}{nk}\right)$ $A_z^- \supseteq \overline{B_z} \cap C_z \cap \left[\left(D_z \cap \overline{E_z} \cap \bigcup_{i=1}^k F_{z,i}^- \right) \cup \left(\overline{D_z} \cap E_z \cap \bigcup_{i=0}^k G_{z,i}^- \right) \right]$ Consider $c^* \mu n^2 k$ generations; c^* sufficiently large constant together with the known probabilities E (difference in 0-bits) = $\Omega\left(\frac{n^2k}{nk}\right) = \Omega(nk)$ vields again some bound. Having c^* sufficiently large implies $< \mu/(4k)$ 0-bits at the end of Instead of considering the two bounds directly, we consider their difference: the phase. **Really?** If z is large, say $z \geq \frac{\mu}{2h}$: Only if $z \ge \mu/(8k)$ holds all the time! $\operatorname{Prob}(A_z^-) - \operatorname{Prob}(A_z^+) = \Omega\left(\frac{1}{m^k}\right)$

probability

 $(\mu - z)/\mu$

 $\binom{k-1}{i-1}\binom{n-k}{i} \left(\frac{1}{n}\right)^{2i-1} \left(1-\frac{1}{n}\right)^{n-2}$

 $\binom{k}{i}\binom{n-k-1}{i}\left(\frac{1}{n}\right)^{2i-1}\left(1-\frac{1}{n}\right)^{n-2}$

 p_c

 z/μ

 $1 - \frac{1}{n}$

< □ ▶ 75/108

Is it interesting? No!!!

◄ □ ► 79/108

• \Rightarrow black box complexity.

Introduction About EAs Topics in Theory Optimization Time Analysis General Limitations Conclusions Motivation for Complexity Theory	Introduction About EAs Topics in Theory Optimization Time Analysis General Limitations Conclusions Black Box Optimization
If our evolutionary algorithm performs poorly is it our fault or is the problem intrinsically hard? Example $NEEDLE(x) := \prod_{i=1}^{n} x[i]$ Such questions are answered by complexity theory. Typically one concentrates on computational complexity with respect to run time. Is this really fair when looking at evolutionary algorithms?	When talking about NFL we have realized classical algorithms and black box algorithms work in different scenarios.classical algorithmsblack box algorithmsproblem class knownproblem class knownproblem instance knownproblem instance unknownThis different optimization scenario requires a different complexity theory.
 < □ > 81/108 Introduction About EAs Topics in Theory Optimization Time Analysis General Limitations Conclusions 	We hope for general lower bounds for all black box algorithms. (=> 82/108 Introduction About EAs Topics in Theory Optimization Time Analysis General Limitations Conclusions Comparison With Computational Complexity
Let $\mathcal{F} \subseteq \{f : S \to W\}$ be a class of functions, A a black box algorithm for \mathcal{F} , x_t the <i>t</i> -th search point sampled by A . optimization time of A on $f \in \mathcal{F}$:	$ \mathcal{F} := \left\{ f \colon \{0,1\}^n \to \mathbb{R} \mid f(x) = w_0 + \sum_{i=1}^n w_i x_i + \sum_{1 \le i < j \le n} w_{i,j} x_i x_j \right\} $ $ \text{with } w_i, w_{i,j} \in \mathbb{R} $

_

2437

∢ □ ▶ 83/108

Theorem	Consider $f: \{0, 1\}^n \to \mathbb{R}$
$B_{\text{ONEMAX}^*} = \Omega(n/\log n)$	$\{0,1\} \rightarrow \mathbb{R}.$
Proof by application of Yao's Minimax Principle: We choose the uniform distribution.	We call $x \in \{0, 1\}^n$ a local maximum of f , iff for all $x' \in \{0, 1\}^n$ with $H(x, x') = 1$ $f(x) \ge f(x')$ holds.
A deterministic algorithm is a tree with at least 2^n nodes: otherwise at least one $f \in ONEMAX^*$ cannot be optimized.	We call f unimodal, iff f has exactly one local optimum.
The degree of the nodes is bounded by $n + 1$: this is the number of different function values.	We call f weakly unimodal, iff all local optima are global optima, too.
Therefore, the average depth of the tree is bounded below by $(\log_{n+1} 2^n) - 1$	Observation: (Weakly) Unimodal functions can be optimized by hill-climbers.
$= \frac{n}{\log_2(n+1)} = \Omega(n/\log n).$	
$= \frac{n}{\log_2(n+1)} = \Omega(n/\log n).$ Remark: $B_{\text{ONEMAX}^*} = O(n)$ is easy to see. duction About EAs Topics in Theory Optimization Time Analysis General Limitations Conclusions nimodal functions	Does this mean unimodal functions are easy to optimize?
$= \frac{n}{\log_2(n+1)} = \Omega(n/\log n).$ Remark: $B_{\text{ONEMAX}^*} = O(n)$ is easy to see. Auction About EAs Topics in Theory Optimization Time Analysis General Limitations Conclusions nimodal functions	Does this mean unimodal functions are easy to optimize?
$= \frac{n}{\log_2(n+1)} = \Omega(n/\log n).$ Remark: $B_{\text{ONEMAX}^*} = O(n)$ is easy to see. $\exists uction \text{About EAs Topics in Theory Optimization Time Analysis General Limitations Conclusions}$ nimodal functions class of unimodal functions: $\mathcal{U} := \{f: \{0, 1\}^n \to \mathbb{R} \mid f \text{ unimodal}\}$	Does this mean unimodal functions are easy to optimize?
$= \frac{n}{\log_2(n+1)} = \Omega(n/\log n).$ Remark: $B_{\text{ONEMAX}^*} = O(n)$ is easy to see. Huction About EAs Topics in Theory Optimization Time Analysis General Limitations Conclusions nimodal functions class of unimodal functions: $\mathcal{U} := \{f: \{0, 1\}^n \rightarrow \mathbb{R} \mid f \text{ unimodal}\}$ What is $B_{\mathcal{U}}$?	Does this mean unimodal functions are easy to optimize? Introduction About EAs Topics in Theory Optimization Time Analysis General Limitations Con Path Functions Consider the following functions: $P := (p_1, p_2,, p_{l(n)})$ with $p_1 = 1^n$ is a path — not necessarily a
$= \frac{n}{\log_2(n+1)} = \Omega(n/\log n).$ Remark: $B_{\text{ONEMAX}^*} = O(n)$ is easy to see. (uction About EAs Topics in Theory Optimization Time Analysis General Limitations Conclusions nimodal functions: class of unimodal functions: $\mathcal{U} := \{f: \{0, 1\}^n \to \mathbb{R} \mid f \text{ unimodal}\}$ What is $B_{\mathcal{U}}$? We want to find a lower bound on $B_{\mathcal{U}}$.	Does this mean unimodal functions are easy to optimize? Introduction About EAs Topics in Theory Optimization Time Analysis General Limitations Co Path Functions Consider the following functions: $P := (p_1, p_2,, p_{l(n)})$ with $p_1 = 1^n$ is a path — not necessarily a simple path.
$= \frac{n}{\log_2(n+1)} = \Omega(n/\log n).$ Remark: $B_{\text{ONEMAX}^*} = O(n)$ is easy to see. (under the set of the set o	Does this mean unimodal functions are easy to optimize? Introduction About EAs Topics in Theory Optimization Time Analysis General Limitations Co Path Functions Consider the following functions: $P := (p_1, p_2,, p_{l(n)})$ with $p_1 = 1^n$ is a path — not necessarily a simple path. $f_P(x) := \begin{cases} n+i & \text{if } x = p_i \text{ and } x \neq p_j \text{ for all } j > i, \\ ONEMAX(x) & \text{if } x \notin P \end{cases}$

Introduction About EAs Topics in Theory Optimization Time Analysis General Limitations Conclusions True Path Length	Introduction About EAs Topics in Theory Optimization Time Analysis General Limitations Conclusions An Optimal Deterministic Algorithm
Lemma with $\beta = 1$ yields: Prob (return to path after n steps) $= 2^{-\Omega(n)}$ Prob (return to path after $\geq n$ steps happens anywhere) $= 2^{n^{\varepsilon}} \cdot 2^{-\Omega(n)} = 2^{-\Omega(n)}$ Prob $(l'(n) \geq l(n)/n) = 1 - 2^{-\Omega(n)}$ We can prove at best lower bound of $\frac{l'(n)-n+1}{n} > \frac{l(n)}{n^2} - 1 > 2^{n^{\delta}}$.	Let N denote the points known not to belong to P . Let p_i denote the best currently known point on the path. Initially, $N = \emptyset$, $i \ge 1$. Algorithm decides to sample x as next point. Case 1: $H(p_i, x) \le \alpha(1)n$ Prob $(x = p_j \text{ with } j \ge n) = 2^{-\Omega(n)}$ Case 2: $H(p_i, x) > \alpha(1)n$ Consider random path construction starting in p_i . Similar to Lemma: Prob (hit $x) = 2^{-\Omega(n)}$
Introduction About EAs Topics in Theory Optimization Time Analysis General Limitations Conclusions	Introduction About EAs Topics in Theory Optimization Time Analysis General Limitations Conclusions Later Steps With Close Known Points
$N \neq \emptyset$ Partition N: $N_{\text{far}} := \{y \in N \mid H(y, p_i) \ge \alpha(1/2)n\}$ $N_{\text{near}} := N \setminus N_{\text{far}}$ Case 1: $N_{\text{near}} = \emptyset$ Consider random path construction starting in p_i . A: path hits x E: path hits no point in N_{far} Clearly, optimal deterministic algorithm avoid N_{far} . Thus, we are interested in Prob $(A \mid E)$ $= \frac{\operatorname{Prob}(A \cap E)}{\operatorname{Prob}(E)} \le \frac{\operatorname{Prob}(A)}{\operatorname{Prob}(E)}.$ Clearly, Prob $(E) = 1 - 2^{-\Omega(n)}$. Thus, $\operatorname{Prob}(A \cap E) \le (1 + 2^{-\Omega(n)})$.	Case 2: $N_{\text{near}} \neq \emptyset$ Knowing points near by can increase Prob (A). Ignore the first $n/2$ steps of path construction; consider $p_{i+n/2}$. Prob ($N_{\text{near}} = \emptyset$ now) = $1 - 2^{-\Omega(n)}$ Repeat Case 1.
Thus, $\operatorname{Prob}(A \mid E) \le (1 + 2^{-\omega(n)}) \operatorname{Prob}(A) = 2^{-\omega(n)}$.	

- general limitations for evolutionary algorithms by means of
 - NFL
 - black box complexity

• D. Sudholt (2006): Local search in evolutionary algorithms: the impact of the local search frequency. In 17th International

• R. Watson, T. Jansen (2007): A building-block royal road where crossover is provably essential. In GECCO. To appear

Symposium on Algorithms and Computation (ISAAC), 359-368.