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Theory. .. Why should you care?

Computational Complexity

and

Evolutionary Computation foundations — firm ground

Proofs provide insights and understanding.

o
°
Thomas Jansen Frank Neumann @ generality — wide applicability
Universitdt Dortmund MPI Saarbriicken @ knowledge vs. beliefs
Germany Germany o fundamental limitations — saves time
°
°
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Topics and Structure

@ Introduction and Motivation

©

provide an overview of

. @ (an extremely short) introduction to evolutionary algorithms
@ goals and topics

o methods and their applications @ overview of topics in theory (as presented here today)
@ enhance your ability to @ analytical tools and methods — and how to apply them
@ read, understand, and appreciate such papers o fitness-based partitions
o make use of the results obtained this way @ expectations and deviations
@ enable you to @ simple general lower bounds
o expected multiplicative decrease in distance
o apply the methods to your problems X .
o produce such results yourself o drift analysis .
@ random walks and cover times
° @ typical runs
@ what is doable with the currently known methods @ instructive example functions

@ where there is need for more advanced methods @ general limitations

9 o NFL
@ black box complexity
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About EAs About EAs
History Points of Views

Evolution Strategies (Bienert, Rechenberg, Schwefel) Bionics/Engineering
@ developed in the '60s / '70s of the last century. @ evolution is a “natural”enhancing process.
@ continuous optimization problems, rely on mutation. @ bionics: algorithmic simulation = “enhancing” algorithm.
Genetic Algorithms (Holland) @ used for optimization.
@ developed in the '60s / '70s. Biology
@ binary problems, rely on crossover. @ evolutionary algorithms.
Genetic Programming (Koza) @ understanding model of natural evolution.
@ developed in the '90s. Computer Science
@ try to build good “computer programs”. @ evolutionary algorithms.
Nowadays @ successful applications.
@ more general view = evolutionary algorithms. @ theoretical understanding.

|
About EAs About EAs
Evolutionary Algorithms Scheme of an evolutionary algorithm

Principle

o follow Darwin's principle (survival of the fittest). ) Gamie 0 e pepleien B = [ X,
= 1y-oosXpg-

@ work with a set of solutions called population. @ while (not termination condition)

@ parent populatior? produces offspring population by variation o produce an offspring population P’ = {Y7,...,Yy} by
operators (mutation, crossover). crossover and/or mutation.
o select individuals from the parents and children to create new o create new parent population P by selecting 4 individuals from
P and P'.

parent population.
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About EAs

Design

About EAs

Representation

Important issues
@ representation
@ crossover operator
@ mutation operator

@ selection method

Properties
@ representation has to fit to the considered problem.

@ small change in the representation => small change in the
solution (locality).

@ often direct representation works fine.

Mainly in this talk
@ search space {0,1}".

@ individuals are bitstrings of length n.

About EAs

Crossover operator

@ two individuals z and y should produce a new solution z.

1-point Crossover

@ choose a position p € {1,...,n} uniformly at random
@setz;=uw;for1 <i<p
@setz;=y; forp<i<n

Uniform Crossover

@ set z; equally likely to x; or y;
o if x; =y; then z; =z; = y;
o if z; # y; then Prob(z; = z;) = Prob(z; = y;) =1/2
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About EAs

Mutation

@ produce from a current solution = a new solution z.

Some Possibilities

o flip one randomly chosen bit of = to obtain z.

o flip each bit of = with probability p to obtain z (often
p=1/n).
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Selection methods (1 + M)-EA

Fitness-proportional selection

@ choose new population from a set of 7 individuals
{33‘1,. .. ,xr}.

@ probability to choose z; in the next selection step is
F@i) /(= £(x5)).

@ 1 individuals are selected in this way.

@ Choose y individuals uniformly at random from {0, 1}".

® Produce A children by mutation.

(12, A)-selection © Apply (p + M)-selection to parents and children.

@ 1 parents produce A children. O Go to 2.)

@ select u best individuals from the children.

(1 + A)-selection

@ 1 parents produce A children.

@ select p best individuals from the parents and children.

|
About EAs Topics in Theory
Simple algorithms Topics in Theory

The most pressing open question
depends very much on what you are interested in.

® Choose s € {0,1}" randomly.
@® Produce s’ by flipping each bit of s with probability 1/n.

What you are interested in depends very much on who you are.

®© Replace s by s if f(s') > f(s). You may be
O Repeat Steps 2 and 3 forever. @ biologist  What is evolution and how does it work?
° How do | solve my problem with an EA?
_ @ computer scientist  What can evolutionary algorithms do?
® Choose s € {0,1}" randomly. Evolutionary algorithms are
@® Produce s’ from s by flipping one randomly chosen bit. @ a model of natural evolution
© Replace s by s if f(s') > f(s). °
O Repeat Steps 2 and 3 forever. @ randomized algorithms

here and today computer scientist’s point of view
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Topics in Theory Topics in Theory
Algorithms in Computer Science ‘Time’ and Evolutionary Algorithms

At the end of the day, time is wall clock time.

Two branches in computer science  more convenient: #computation steps
@ design and analysis of algorithms requires formal model of computation (Turing machine, . ..)
“How long does it take to solve this problem?” typical for evolutionary algorithms  black box optimization
® complexity theory fitness function not known to algorithm
“How much time is needed to solve this problem?" gathers knowledge only by means of function evaluations
often

For evolutionary algorithms ) . .
@ evolutionary algorithm'’s core rather simple and fast

© analysis (and design) or evolutionary algorithms @ evaluation of fitness function costly and slow

“What's the expected optimization time of this EA for this problem: L ) ) ) _
S o thus  ‘time’ = #fitness function evaluations often appropriate
® general limitations — NFL and black box complexity “How

much time is needed to solve this problem?” Definition

T = #fitness function evaluations until an
optimal search point is sampled for the first time

|
Optimization Time Analysis Optimization Time Analysis
Fitness-Based Partitions Method of Fitness-Based Partitions

For f: {0,1}" =R, Lo, Ly,..., Ly C {0,1}" with
very simple, yet often powerful method for upper bounds ©Vi#je {01 k}:LinL; =0
gagooog 2 7 —
first for (14-1)-EA only k
® U L ={0,1}"
i=0

Observation  due to plus-selection fitness is monotone increasing

Idea  for each fitness value v, find probability p, to increase ©Vi<je{01,... k}:VoeL:VyeLj: fz)<f(y)
fitness 0 Ly ={z €{0,1}" | f(z) = max{f(y) | y € {0,1}"}}
Observation  E (time to increase fitness from v) = p% is called an f-based parition.
Observation  E(T) =3 -

v

Remember  An f-based partition
partitions the search space in accordance to fitness values
grouping fitness values arbitrarily.

a bit more general  group fitness values

2421



GECCO 2008 Tutorial / Computational Complexity and Evolutionary Computation

Optimization Time Analysis Optimization Time Analysis
Upper Bounds with f-Based Partitions Very Simple Example

(14+1)-EA on ONEMAX <()NE1\IAX(.’I?) = ZN: :1~M>
i=1

First Step  define f-based partition

Consider (1+1)-EA on f: {0,1}" — R and an f-based partition
Lo, Ly, ..., Lg. k L; = {IE{O,I}” |ONEMAX(.T):'L'}, 0<i<n
Let s; ;== min > > (;)H(Iyy) (1- ;)n*H(w)

trivial  for each fitness value one L;

n n

2€Li j=it1yeL; Second Step  find lower bounds for s;
forall s € {0,1,...,k —1}.

Observation It suffices to flip any 0-bit from the n — i 0-bits.

k—1 _ n—1 1
;> (i1 -1 > n=i
E (T(11+1)eaf) < o iz (M) (-3 2%
i=0 7"
(A= '=t=0-4")
Hint most often, very simple lower bounds for s; suffice Third Step  compute upper bound
n—1 n
E (Tat1)eaonemax) < 2 2% =en- Y, + = O(nlogn)
i=0 i=1

Optimization Time Analysis Optimization Time Analysis

Example: Result for a Class of Functions

Generalizing the Method

Definition Idea not restricted to (1+1)-EA, only.

f:{0,1}"™ — R is called linear Consider (1 + A)-EA on LEADINGONES.
n .

& Jwo, w1, ..., wy, € R:Vz € {0,1}": f(z) = wo + lez - z[i] LEADINGONES(z) = > J] ;1{,)’})
= i=1j=1

Consider (1+41)-EA on linear function f: {0,1}" — R. First Step  define f-based partition

For (1+1)-EA, w.l.o.g.  wo=0, w1 2wy >+ >wy, >0 trivial  for each fitness value one L;

First Step  define f-based partition L; := {2z € {0,1}" | LEADINGONES(z) = i}, 0< i <n
i i+1

Li:=<ze{0,1}"| Y w; < f(x) < ij},()gign

_ J=1 3=1 For the (1 + A)-EA, we re-define the s;.
Second Step  find lower bounds for s; s; 1= Prob (leave L; in one generation)
Observation  There is always at least 1-bit-mutation for leaving L;. k-1

s 1 (1 _ ;)n—l S 1 Observation E (T(1+,\)_EA f) <AL

Si =y n = en ’ =%
n—1

Third Step E (T(1+1)_EA7f) < 3 en =en? =0(n?)
| .|
2422
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Optimization Time Analysis

(14 X)-ES on LEADINGONES

Second Step  find lower bounds for s;

It suffices to flip exactly the leftmost 0-bit.
si>1— (1= L) > 1 - Mem

Observation

Case Inspection Casel A >en
S; Z 1-— %

Case Inspection Case2 A <en
Si 2 ﬁ

Third Step  compute upper bound

n—1 n—1
E (T(1+>\)—EA,LEAD1NGONES) < A <(Z:0 1i—1) + (z:o Qin>)
oA (n+%))=0(A-n+n?)

Optimization Time Analysis

Some Useful Background Knowledge

a short detour into very basic probability theory
We already know, we care for E (T") — an expected value.

Often, we care for the probability to deviate from an expected
value.

A lot is known about this, we should make use of this.

Optimization Time Analysis

Markov Inequality and Chernoff Bounds

Theorem (Markov Inequality)

X > 0 random variable, s > 0
Prob(X >s-E(X)) <1

Theorem (Chernoff Bounds)
Let X1, Xo,...,Xp: 2 — {0,1} independent random variables

with

Vie{1,2,...,n}: 0 < Prob(X; =1) < 1.
n

Let X := ZXZ

- s \EX)
V6>0:Pr0b(X>(1+5).E(X))<(W)
Y0 < § < 1: Prob(X < (1 —4)-E(X)) < e E(X)#?/2

|
Optimization Time Analysis
A Very Simple Application

Consider = € {0,1}1% selected uniformly at random

1 i-thbitis1l
0 otherwise
with Prob (B; = 0) = Prob (B; = 1) = %

100
B:=> B; clearly E(B)=50

i=1
What is the probability to have at least 75 1-bits?
Prob (B > 75) = Prob (M > 3 -50) < 3
Prob (B > 75) = Prob (B > (1 + 1) - 50)

50
< (@) <0.0045

100
Truth Prob (B > 75) = 3. ('%°)27100

=75
_ 89,310,453,796,450,805,935,325
— 316,912,650,057,057,350,374,175,801,344

more formal  fori € {1,2,...,100}: B; :=

Markov
Chernoff

< 0.000000282
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Optimization Time Analysis

Optimization Time Analysis
A Very Simple Example

The Law of Total Probability

Theorem (Law of Total Probability)

Let B; with ¢ € I be a partition of some probability space (2.
VA C Q: Prob(A) = > Prob (A | B;) - Prob (B;)
i€l

immediate consequence  Prob (A4) > Prob (A | B) - Prob (B)

Useful for lower bounds
when some event “determines” expected optimization time

Consider (14+1)-EA on f: {0,1}" — R
n— % if =07

with /(@) = ONEMAX(z)

otherwise

E (Tasryea, f) =2 ((3)")

Define event B: (1+41)-EA initializes with x = 0"
clearly ProbB =27"

Observation E (T(lJrl)—EAaf | B) =n"

since all bits have to flip simulatneously

Law of Total Probability
E (Ta+1)ea, f) = n"-27" = (5)" O

R R R R R R R RRRRRRRRRRRRRRRRRRRRRRRRRRRDDEDRZZZII___mR=A

Optimization Time Analysis

Lower bound for OneMax

Chernoff bounds
@ Expected number of 1-bits in initial solution is n/2.
@ At least n/3 0-bits with probability 1 — e=2(") (Chernoff).

Lower Bound

@ Probability that at least one 0-bit has not been flipped during
t=(n—1)Inn steps is

1—(1—(1—1/p)Dimn/3 5 _ =13 (1),

@ Expected optimization time for ONEMAX is (nlogn)

Generalization

o Q(nlogn) for each function with poly. number of optima.

2424

Optimization Time Analysis

Coupon Collector’s Theorem

Given n different coupons. Choose at each trial a coupon uniformly
at random. Let X be a random variable describing the number of
trials required to choose each coupon at least once. Then

holds, where H,, denotes the nth Harmonic number, and

lim Prob(X <n(lnn —c¢)) =e

n—oo

holds for each constant c € RR.
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Optimization Time Analysis Optimization Time Analysis
Expected multiplicative distance decrease Figure: Distance Decrease

D = f(zop) — f(2))

Basic idea

@ Assumption: Function values are integers.

@ Define a set O of [ operations to obtain an optimal solution.
f(woptl)*f(f) _

1 accepted operations that turn = into x,,y

@ Average gain of these [ operations is

1 operation t operations

Optimization Time Analysis Optimization Time Analysis

Expected multiplicative distance decrease Example

Linear Functions
9 Let dmar = maxge(o1)n flxopt) — f(x). o w; € 7.
@ 1 operation: expected distance at most (1 — 1/1) - dnqz- @ Wy = MAX; Wj.

@ t operations: expected distance at most (1 — 1/1)! - dpnaz.

| A

@ Expected number of O(l - log dyqz) Operations to reach Upper bound

optimum.

©

Consider all operations that flip a single bit.

@ Assume: expected time for each operation is at most r. Each necessary operation is accepted.

maz = N * Wnag-

@ Upper bound O(r - I - log dya) to obtain an optimal solution.

Expected number of operations O(nlog dpaz)-
Waiting time for a single bit flip O(1).
Upper bound O(n(logn + log waz))-

¢ © ¢ ¢ ¢ ¢

If Winar = poly(n), upper bound O(nlogn).
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Optimization Time Analysis

Optimization Time Analysis
Drift

A More Flexibel Proof Method

Sad Facts
@ f-based partitions restricted to "well behaving” functions Define  distance d: Z — Ry, (Z set of all populations)

o direct lower bound often too difficult with d(P) = 0 < P contains optimal solution

How can we find a more flexibel method? Observation T = min{t | d(P;) = 0}

Observation  f-based partition measure progress by f(z:11) — f(z+) Consider maximum distance M := max {d(P) | P € Z},
decrease in distance Dy := d(P;—1) — d(P;)

Idea  consider a more general measure of progress Definition E(D; | T > t) is called drift.
Pessimistic point of view A :=min{E(D; |T >1t)|t € Ny}

Defi dist d: Z — R, (Z set of all lati
erne  asrane — Ry (£ set of all populations) Drift Theorem (Upper Bound) A >0=E(T) < M/A

with d(P) = 0 < P contains optimal solution

Caution  “Distance” need not be a metric!

Optimization Time Analysis Optimization Time Analysis

Upper Bound Drift Theorem Proof of the Drift Theorem (Upper Bound)

Drift Theorem (Upper Bound)

T T

Let A be some evolutionary algorithm, P; its t-th population, f M > E ZDt _ i Prob (T =1t)-E ZDz T =t
some function, Z the set of all possible populations, d: Z — ]Rar o ] part =
some distance measure with 00 ¢
d(P) = 0 & P contains an optimum of f, = Z Prob (T = t) - Z E(D; | T =t)
M =max{d(P) | P € Z}, D; :=d(Pi—1) — d(P;), t=1 i=1
A:=min{E(D; | T >t)|te Ny} oot
A>0=E(Tas) <M/A = Y ) Prob(T=t)-E(D; | T =1)

t=1 i=1
Proof . >

= P T=t)-E(D; | T=
Observe M > E (E Dt) ;; rob ( b-EDi] b
i=1 —1 =
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Optimization Time Analysis
A Simple Application

Optimization Time Analysis

Proof of the Drift Theorem (Upper Bound) (cont.)

iiProb(T:t)~E(Di|T:t)

=1 t=1
oo oo

= > > Prob(T >i)-Prob(T=t|T >1i)-E(D; | T =t)
i=1 t=t

%

o0 oo

= Y Prob(T >i)) Prob(T=t|T >i)-E(D; |T=tAT >1i)
=1 t=i
oo o0

= > Prob(T'>i)Y Prob(T'=t|T >i)-E(D;|T=tAT >i)
i=1 t=1

= Y Prob(T >i)E(D; | T >1i) >A-) Prob(T >i) =A-E(T)
=1 =1
thus E(T) <X O

Consider (1, n)-EA on LEADINGONES

£ (T(l, n)—EA,LEADINGONEs) = 0(n?)

d(z) := n — LEADINGONES(z) ~

v
—_
—_

|

thus  E(T) = O(n)
thus E (T(l, n) EA,LEADINGONES) =n-E(T)= O(n2) O

|
Optimization Time Analysis
Another Example

Consider (1+1)-EA on linear function f: {0,1}" — R

now with drift analysis

remember  f(x) = Xn: w; - x[d]
i=1

with wy > we > -+ > w, >0

n/2 n

Define d(z):=1n (1 +23> (1 —2f]) + _ > (1- m[z]))
i=1 =(n/2)+1

Observe
M =max{d(z) |z € {0,1}"} =In (1 + 3n) = © (Inn)

2427

Optimization Time Analysis

Drift Analysis for (14+1)-EA on general linear functions

n/2 n
d(z) :=In (1—0—22(1—:10[1’])—1— > (1—x[z})>
i=1 i=(n/2)+1

Need lower bound for E (d(x¢—1) — d(z:) | T > t)
Observe  minimal for ;¢ =011---10or11---101---1
S——

left right

Consider separately and do tedious calculations. . .
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Optimization Time Analysis

Calculation for 011 - - -

Optimization Time Analysis

Calculation for 1%/201(/2)-1

E(d(zi—1) —d(xy) | T > t)
n—1
- 2(1-1) @ -ww)

n(l+1))

@ )
(- s

n/2) 1 n/2

SEEE > oy

bi=1 b=0
(In(1 + 2b; + b,) — In(3))

()Y -3 e-w
SR ) e

Optimization Time Analysis

Result for (1+1)-EA on General Linear Functions

We have
n/2 n
o d(z):=1In <1+2§:(1—x[i])+ > (1—x[z])>
i=1 i=(n/2)+1
o d(z) <In(1+ (3/2)n) = O(logn)
o E(d(zt—1) —d(zy) | T >t) = Q(1/n)
together  E (T(141) ea,r) = O(nlogn) for any linear f

2428
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Optimization Time Analysis
Drift Analysis of Lower Bounds

We have

How can we obtain lower bounds when analyzing drift?

drift analysis for upper bounds

Check proof of drift theorem (upper bound).
Can inequalities be reversed?

Idea

T 00
Remember M>E (Z Dt> =--=>"Prob(T >)E(D; | T >1)
=1 i=1
>A-> Prob (T >i)=A-E(T)

i=1

with
o M =max{d(P) | P € Z}
o A =min{E(d(P—1) —d(P) | T > 1)}
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Optimization Time Analysis
Closing the Distance

Optimization Time Analysis

Modification for a Lower Bound Technique

observation  only two inequalities need to be reversed

@ M>> - with M =max{d(P) | P € Z}

(2] Z ZAI'Z"' with
A; = min{E (d(P—1) — d(P) | T > t)}

clearly  for lower bound A, = max{E (d(P,—1) —d(P) | T > t)}
sensible and sufficient for “<”
clearly  for lower bound instead of M min{d(P) | P € Z}

possible and sufficient for “<",
but pointless, since min{d(P) | P € Z} =0

T
clearly E (Z Dt) fixed, if initial population is known
=1

thus  lower bound on d(Py) yields lower bound on E (T)

making this concrete
° E(T | d(PO) > Mu) > Mu/Au
hd E(T) > Prob (d(PO) > Mu) ' E(T I d(PO) > Mu) >
Prob (d(Fo) > M,) - My/A,
o E(T) > 3 Prob (d(Ry) > d) - d/Ay > E (d(Ry)) /A,

thus  drift analysis suitable as method for

upper and lower bounds

Optimization Time Analysis

Optimization Time Analysis

Lower Bound for (1+1) EA on LEADINGONES

Define  trivial distance

d(x) := n — LEADINGONES(z)

Observation  necessary for decreasement of distance

left-most 0-bit flips

thus  Prob (decrease distance) < 1
How can we bound the decrease in distance?

Observation  trivially, by n — not useful

better question  How can we bound the expected

decrease in distance?

2429

Expeced Decrease in Distance on LEADINGONES

Note decrease in distance = increase in fitness
two sources for increase in fitness
@ the left-most 0-bit

@® bits to the right of this bits that happen to be 1-bits

Observation

Observation  bits to the right of the left-most 0-bit
have no influence on selection and

never had influence on selection

Claim  These bits are uniformly distributed.
obvious  holds after random initialization
Claim  standard bit mutations do not change this
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Optimization Time Analysis

Standard Bit Mutations on Uniformly Distributed Bits

Claim Vt € Ny: Vo € {0,1}": Prob (zy = z) =27"

clearly  holds for t =0

Prob (z; = x)

Z Prob ((z¢—1 = ') A (mut(a’) = z))

z'e{0,1}"
= Z Prob (z;-1 = ') - Prob (mut(a") = )
z'€{0,1}n
= Z 27" - Prob (mut(z') = z)
z'e{0,1}n
= 9" Z Prob (mut(z) = )
z'e{0,1}"

Optimization Time Analysis

Expected Increase in Fitness and Expected Intial Distance

E (increase in fitness)

i - Prob (fitness increase = 1)

)
FINAE

IN
3\)—‘

E(d(zg)) = n-— Zz Prob (LEADINGONES () = 4)
i=1
) 1= i
= n_ZQ’FFl* 52@ n—1
i=1 i=1
thus E (T(1+1) EA,LEADINGONES) > (n—21)n = Q(nz)
thus E (T(1+1) EA,LEADINGONES) = 6(77’2)

Optimization Time Analysis

Random Walks

Random Walks on Graphs

Given: An undirected connected graph.
@ A random walk starts at a vertex v.

@ Whenever it reaches a vertex w, it chooses in the next step a
random neighbor of w.

2430
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Optimization Time Analysis
Result Cover Time

Theorem (Upper bound for Cover Time)

Given an undirected connected graph with n vertices and m edges,
the expected number of steps until a random walk has visited all
vertices is at most 2m(n — 1).
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Optimization Time Analysis Optimization Time Analysis
Example: Plateaus Result: PLATEAU

Definition
|2]o oz g {10"10<i<n}
PLATEAU(z) :=¢ n+1 : x€{l'0"%0<i<n} 0"
n+2 : x=1"

1i—10n—i+1 1i0n—i 1i+10n—i—1

Upper bound (RLS)
L @ Solution with fitness > n + 1 in expected time O(nlogn).
Random walk on the plateau of fitness n + 1.

Probability 1/2 to increase (reduce) the number of ones.
o Expected waiting time for an accepted step O(n).

r Optimum reached within O(n?) expected accepted steps.
Upper bound O(n?) (same holds for (1+1)-EA).

e © ¢ ¢ ¢

Optimization Time Analysis Optimization Time Analysis

Method of Typical Runs From Success Probability to Expected Optimization Time

Phase 1: Given EA starts with random initialization, with
probability at least 1 — pq, it reaches a population

satisfying condition C] in at most T} steps. Sometimes

Phase 2: Given EA starts with a population satisfying “Phase 1: Given EA starts with random initialization”
condition C', with probability at least 1 — po, it can be replaced by
reaches a population satisfying condition C5 in at “Phase 1: EA may start with an arbitrary population”

most 15 steps.
In this case, a failure in any phase can be described as a restart.

Phase k: Given EA starts with a population satisfying

k
condition Cx_1, with probability at least 1 — py, it This yields: E (Ta,f) < El
reaches a population containing a global optimum in T i pi
at most T}, steps. i=1

k k
This yields: Prob (TEA,f S Z T,L) Z 1-— Z Pi
L =1

=1

______________________________________... ________________________________________________
2431
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Optimization Time Analysis

Optimization Time Analysis
A Steady State GA

A Concrete Example

Jumpg(z): {0,1}" — R with k € {1,2,...,n}

n — ONEMAX(x) if n —k < ONEMAX(z) <n
Jumpg(x) := ) ®
k + ONEMAX(z) otherwise
®
o
o
o
o
o
° o
2 .o
S °
< o ?
° @
k T °
o
number of ones n—=k n

(n+1)-EA with prob. p. for uniform crossover

1. Initialization
Choose z1,...,z, € {0,1}" uniformly at random.
2. Selection and Variation
With probability p.:
Select z1 and zy independently from xq, ...
z := uniform crossover(z1, z2)
y := standard 1/n bit mutation(z)
Otherwise:
Select z from zy, ..., z,.
y := standard 1/n bit mutation(z)
3. Selection for Replacement
If £(y) = min{ f(@1), .., f(2)}
Then Replace some x; with min. f-value by y.
4. “Stopping Criterion”
Continue at 2.

L Ty

Optimization Time Analysis

Optimization Time Analysis

Definition of the Phases

GA on JuMPg

Let k = O(logn), c € RT a sufficiently large constant, u = n°W),

p > klogn, 0 < p. < 1/(ckn).
E(TGA(#, pc)) = O(un’k + 2%% /p,)

Method of Proof: Typical Run

2432

Notation:
x;]j] is the j-th bit of z;
OPT: n+k € {Jumpy(z1),...,JuMPL(z,)

i | Ciz1 Cs T;
11 0 min{JUMPg(z1),...,JUMPg(z,)} > n O(unlogn)
I
2| Oy (Vj e{l,...,n}: > (1 —uxzpj]) < ﬁ) VOPT | O(un?k)
h=1
3] O OPT 0(2% /p,)
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Optimization Time Analysis
Phase 1: Towards the Gap

Reaching some point & with JUMPy(z) > n
is not more difficult than optimizing ONEMAX.

Optimization Time Analysis
Phase 2: At the Gap

For u =1, O(nlogn) follows. We are going to prove:

After ¢ un®k generations (¢’ const. suff. large)

with probability at most p),

With probability at least (1 —p.) - (1 —1/n)™ = Q(1) there are at most yu/(4k) zero-bits at the first position.
a copy of a parent is produced.

For larger p, observe:

Making a copy of some x; with JuMPy(x;) > JUMPy(x;) This implies:

is not worse than choosing z;. After ¢ un®k generations (¢’ const. suff. large)

This implies O(unlogn) as expected length. th.ere are at most 1/ (4k) zero-bits at any position

with probability at most ps := n - ph.

Markov's inequality: failure probability p; < ¢
for any constant € > 0

|
Optimization Time Analysis Optimization Time Analysis
Zero-Bits at the First Position A Closer Look at A}

“Smaller/Simpler” Events:

event description probability
Consider one generation. B, do crossover De
C, at selection for replacement,
Let z be the current number of zero-bits in first position. select x with 1 at first position (n—2)/1
D, at selection for reproduction,
The value of z can change by at most 1. select parent with 0 at first position  z/pu
E, no mutation at first position 1- %
event A  changes to z + 1 FY, outof k — 1 0-bits i mutate and
event A7 : z changesto z — 1 out of n — k_ 1'?&5 ¢ mutate (kzl) (n:k) (%)Ql ( o %)n :
GY; outof k O-bits i mutate and
Goal: Estimate Prob (A}) and Prob (A;). out of n — k — 1 1-bits 4 — 1 mutate (lf) (njl_l) (%)2%1 (1- %)7%2
Observe:

_ k—1 - k
AY C B, U (Bzmczm KDszzm U FZQ) U (Dszm U GjJD
=0 i=1

[ [
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Optimization Time Analysis

Optimization Time Analysis

A Still Closer Look at A

Using

_ k—1 - k
Ar C B, U (Bzmczm [(Dszm U Fjl) U (Dszzm U GZ)D
=0 i=1

together with

Prob (B,) = pC
Prob (C.,) = u
Prob ) = Zu

Prob
Prob

Prob

(¢

(D

( .
(F ) RIGWIC RIE R
( ) = i nzkl 1) (%)22 ' (1 - %)n_zl

yields some bound on Prob (A}).

A Closer Look at A7

“Smaller/Simpler” Events:

event description probability
B, do crossover Pe
C, at selection for replacement,
select = with 1 at first position (n—2)/1
D, at selection for reproduction,
select parent with 0 at first position  z/u
E, no mutation at first position 1-— %
i out of £ — 1 0-bits ¢ — 1 mutate and
out of n — k 1-bits ¢ mutate (1;;:11) (”Zk) (%)21_1 (1- %)n_Q
i out of k£ 0-bits ¢ mutate and
out of n — k — 1 1-bits ¢ mutate " (" (%)21_1 (1- %)n_g
Observe:

_ K - k
A;QBZOCZH[(DZOEZHUF“-)U<DZHEZHUG“>}
i=1 i=0

Optimization Time Analysis

A Still Closer Look at A7

Using
N . k

A22B2002m|:<DzﬁEszFz_ﬂ'> (D NE, ﬂUG
i=1

o)

1=0
together with the known probabilities
yields again some bound.

Instead of considering the two bounds directly,
we consider their difference:

. oo,
If 2 is large, say z >

Prob (A7) — Prob (A7) = Q ()

2434

Bias Towards 1-Bits

Optimization Time Analysis

We know: z > & => Prob (A7) — Prob (Af) = Q (%)

Consider ¢*un’k generations; c¢* sufficiently large constant
E (difference in 0-bits) = Q ( n%) Q(nk)

Having ¢* sufficiently large implies < u/(4
the phase.
Really?

Only if z > p/(8k) holds all the time!

k) O-bits at the end of
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Optimization Time Analysis

Optimization Time Analysis

Coping with Our Assumption

As long as z > n/(8k) holds, things work out nicely.

Consider last point of time, when z < 11/(8k) holds in the c¢*n%k
generations.

Case 1: at most p/(8k) generations left

number of 0-bits < p/(8k) + 1/ (8k) = p/(4k)

no problem

Case 2: more than p/(8k) generations left

Observation: u/(8k) = Q(log? n)

For Q(log®n) generations, our assumption holds.

Apply Chernoff’s bound for these generations.

Yields ply, = e~os )

Q(log? n)+Inn —Q(log? n)

Together: py =n-p) =e~ =e

Phase 3: Finding the Optimum

In the beginning, we have at most p/(4k) O-bits at each position.

In the same way as for Phase 2, we make sure that we always have
at most u/(2k) 0-bits at each position.

Prob (find optimum in current generation)
> Prob(crossover and select two parents without common 0-bit and
create 1™ with uniform crossover and no mutation)

Prob (crossover) = p,

Prob (create 1™ with uniform crossover) = (1/2)2*

Prob (no mutation) = (1 —1/n)"

Prob (select two parent without common 0-bit) < & - ”/(ik) =1

Together:
Prob (find optimum in current generation) = Q(p,. - 272¥)

|
Optimization Time Analysis
Concluding Phase 3

We have
Prob (find optimum in current generation) = Q(p, - 272¥)

Prob (find optimum in ¢32%% /p, generations) >1—e(e3)

failure probability p3 < &’ for any constant ¢/ > 0

2435

|
Optimization Time Analysis
Concluding the Proof

Length of the three phases:
O(unlogn) + O(unk) + O(2°% /p;) = O(un*k + 2°* /p.)

Sum of Failure Probabilities: & + e—(08%n) 4 o/ <eg* <1

E (TGA(H, /J,;,)) = ()(/m,zk + 2%’/])(.) O
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General Limitations

Black Box Optimization

Given two finite spaces S and R.
Find for a given function f: S — R an optimal solution.

Count number of fitness evaluations.

¢ © ¢ ¢

No search point is evaluated more than once.

Definition (Black Box Algorithm)

An algorithm A is called black box algorithm if its finds for each
f:S — R an optimal solution after a finite number of fitness
evaluations.

General Limitations

NFL

Given two finite spaces R and S and two arbitrary black box
algorithms A and A’. The average number of fitness evaluations
among all functions f: S — R is the same for A and A’.

General Limitations

What Follows from NFL?

Implications

@ Considering all functions, each black box algorithm has the
same performance.

@ Considering all functions, each algorithm is as good as
random search.

@ Hill climbing is as good as Hill descending.

@ Is the result surprising ? Perhaps

@ Is it interesting? No!!!

2436

General Limitations

What Does Not Follow from NFL?

Drawbacks

@ No one wants to consider all functions!!!

@ More realistic is to consider a class of functions or problems.
@ NFL Theorem does not hold in this case.
°

NFL Theorem useless for understanding realistic szenarios.

| A\

Implication
@ Restrict considerations to class of functions/problems.

@ Are there general results for such cases where NFL does not
hold?

@ = black box complexity.

| |
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General Limitations General Limitations
Motivation for Complexity Theory Black Box Optimization

When talking about NFL we have realized

If our evolutionary algorithm performs poorly classical algorithms and black box algorithms work in

is it our fault or is the problem intrinsically hard? different scenarios.
n

Example  NEEDLE(z) := [] «[i] classical algorithms ‘ black box algorithms
i=1

problem class known problem class known

Such questions are answered by complexity theory. problem instance known | problem instance unknown

Typically one concentrates on computational complexity

) ; This different optimization scenario requires
with respect to run time.

a different complexity theory.

Is this really fair when looking at evolutionary algorithms? We consider Black Box Complexity.

We hope for general lower bounds for all black box algorithms.

| |
General Limitations General Limitations
Notation Comparison With Computational Complexity

F =

Let F C {f: S — W} be a class of functions, A a black box F{0, 11" - R f(z) = wo + i wizi + % wijxixj}
algorithm for F, x; the t-th search point sampled by A. i=1 I<i<j<n

with w;, w; ;€ R

optimization time of A on f € F:

Tap =min{t | f(z;) = max{f(z) € S}} known: Optimization of F is NP-hard since MAX-2-SAT is

contained in F.

worst case expected optimization time of A on F: Theorem: By = O(n?)
TA’]: = maX{E(TAJ) | fe F}
Proof
black box complexity of F: wo = f(0™) (1 search point)
By =min{T4 7 | A is black box algorithm for F} w; = f (0°7110"%) — wy (n search points)

w;; = f (071107771107 77) — w; — w; — wo ((3) search points)

Compute optimal solution z* without access to the oracle.

f(z*) (1 search point)

together: (3) + n + 2 = O(n?) search points O
|
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General Limitations
A General Upper Bound
Observation: VF: Br < |F|
Consequence: By = 1 for any f — pointless For any F C {f: {0,1}" — R}, By < 271 + 1/2 holds.

Can we still have meaningful results for our example functions?

General Limitations
From Functions to Classes of Functions

Proof
Consider pure random search without re-sampling of search points.
For each step ¢, Prob (find global optimum) > 27",

Evolutionary algorithms are often symmetric
with respect to Os and 1s.

277/
Definition: For f: {0,1}" — R, we define f*:={f,|a € {0,1}"} Br <> i-2"
— i=1
where fo(z) := f(a ® ). _ 2n§:j1) —gn—1 % ]

Clearly, such EAs perform equal on all f/ € f*.

very powerful general tool for lower bounds known

| |
General Limitations General Limitations

BNeepLer = 2" 4 1/2

Theorem (Yao's Minimax Principle) Proof by application of Yao's Minimax Principle
The upper bound coincides with the general upper bound.

For all distributions p over Z and all distributions ¢ over A:
miny E (TAJp) < max;E (TAQJ)

We consider each NEEDLE, as possible input.

We choose the uniform distribution.

Deterministic algorithms sample the search space in a pre-defined
order without re-sampling.

Since the position of the unique global optimum is chosen

in words:
We get a lower bound for the

worst-case performance of a randomized algorithm by

proving a lower bound on the worst-case performance of an uniformly at random,
optimal deterministic algorithm we have Prob (T'=1t) =27 for all t € {1,...,2"}.
. S . 2" —
for an arbitrary probability distribution over the inputs. This implies E (T) = S 42" = §H+J1r ) —on—1 % 0

i=1
Remark  We aIread}j knew this from NFL.

[ [
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General Limitations General Limitations
Unimodal Functions

Consider f: {0,1}" — R.

BoxeMax* = Q(n/ logn)

We call € {0,1}" a local maximum of f,
Proof by application of Yao's Minimax Principle: iff for all ' € {0,1}™ with H(z,2') =1
We choose the uniform distribution. f(x) > f(2') holds.

A deterministic algorithm is a tree with at least 2" nodes:

. . We call f unimodal, iff f has exactly one local optimum.
otherwise at least one f € ONEMAX* cannot be optimized. ! f y P

The degree of the nodes is bounded by n + 1: We call f weakly unimodal, iff all local optima are global optima,
this is the number of different function values. too.

ThereforeT,L the average depth of the tree is bounded below by Observation: (Weakly) Unimodal functions can be optimized by
(log 1 27) — 1 hill-climbers.

:m:Q(n/logn). O
Does this mean unimodal functions are easy to optimize?
Remark: Boygmax* = O(n) is easy to see.

| |
General Limitations General Limitations
Unimodal functions Path Functions

class of unimodal functions:

U:={f:{0,1}" - R | f unimodal} Consider the following functions:
What is By? P = (p1,p2,--,Pi(n)) With py = 1" is a path — not necessarily a
simple path.

We want to find a lower bound on By,.

Remember: For any point not optimal under a unimodal function, fp(z) =

there exists a path to the global optimum

n+i if £ =p; and x # p; for all j > 4,
ONEMAX(z) ifx ¢ P

Definition: [ points p1, p2, ..., p; with H(p;, pir1) = 1 for all Observation: fp is unimodal.

<
1 < i <[ form a path of length [. Piwy = {fp | P has length ()}

2439
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General Limitations General Limitations
Random Paths A lower bound on By,

Construct P with length I(n) randomly: Theorem: V& with 0 < § < 1 constant: By > 27°.
1L.pp:=1"1:=2
2. While i <I(n) do

3. Choose p; € {z | H(z,pi—1) = 1} uniformly at random. We define a probability distribution in the following way:
4. =141

For a proof, we want to apply Yao's Minimax Principle.

€

0 < e <1 constant; [(n) := 2"

For each path P with length I(n), For all f € U we define

we can calculate the probability to construct P randomly this way. Prob (f) {p if f € Pin) and P is constructed with prob. p,
ro =

. . L 0 otherwise.
Remark: Paths P constructed this way are likely to contain circles.

|
General Limitations General Limitations
Our Proof Strategy Deterministic Algorithm Too Strong?

We need to prove that

an optimal deterministic algorithm Omit all circles froms P.

needs on average more than 2" steps The remaining length I’(n) is called the true length of P.

to find a global optimum. What lower bound can be proven this way?

We strer.lgth.en the posi.tion of the deterministic arl.gorithm by at best: (I'(n) —n + 1)/n
@ letting it know which functions have probability 0.

@ giving away for free the knowledge about any p; with Observation: We need a good lower bound on I'(n).

f(pi) < f(pj) once p; is sampled,
© giving away for free the knowledge about pjy1,...pj4n if pj is How likely is it to return to old path points?

the current known best path point and some point not on the

path is sampled, alternatively: What is the probability distribution for the Hamming
O giving away for free the knowledge about py(, (the global distance points on the path?

optimum) once p;, is sampled while p; is the current known
best path point.

[ [
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General Limitations General Limitations
Distance Between Points on the Path Proof of Lemma Continued

Define v := min{1/10, j/n}.
VB > 0 constant: Ja(B) > 0 constant: Vi <l(n)— On: Observations:
Vj > Bn: Prob(H(p;, pit;) < a(B)n) = 274 e y<1/10

@ v > 5a(p)
@ -y bounded below and above by positive constants

Proof: Due to symmetry:

Considering ¢ = 1 and some j > (n suffices.
Hy == H(p1, pt) Consider the last yn steps towards p;.
We want to prove: Prob (H; < a(8)n) = 2~ Let ¢ be the first of these steps.

We choose «(3) := min{1/50, 3/5}. Note: (y <j/n) = (yn < j)

Due to the random path construction: Case 1: [, > 2yn

o Hyyy € {Ht —1,H + 1} number of steps
@ Prob(Hyy1 =Hy+1)=1—H;/n Clearly, Hj > 2yn - n =yn > a(f)n.
@ Prob (Ht+1 = Ht — 1) = Ht/n in the beginning

| |
General Limitations General Limitations
Proof of Lemma Continued Proof of Lemma Continued

Case 2: H; < 2yn
Clearly, H; < 3yn for all i € {¢,...,j}.

Therefore, Prob (H; = Hi_1 +1) > 1 —3v > 7/10, We have yn independent random variable S;, Si41,...,S; € {0,1}
Prob (H; = H;_1 — 1) < 3/10. J
(Hi=Hi-a = 1) <3/ with Prob (S; = 1) = 7/10 and S := 3 Sy

Define independent random variable Sy, Siy1,...,S; € {0,1} with k=t
Prob (S, = 1)j: 7/10. Apply Chernoff Bounds:
Define S := kX::t Sk. E(S) = (7/10)yn
Prob (S < 2vn)
= Prob (S < (1 — %) 1—70771)

SinceH . < = (7/10yn(1/7)?/2 _ —(1/140)yn _ 9-Q(n) [
0 H >

® Prob(H; = H;_1+1) > Prob(S; = 1)

® > (3/5)yn increasing steps = < (2/5)yn decreasing steps

© Hj > (3/5)yn —(2/5)yn
|

Observation: Prob (S > (3/5)yn) < Prob (H; > (1/5)yn)
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General Limitations General Limitations
True Path Length An Optimal Deterministic Algorithm

Let NV denote the points known not to belong to P.

Let p; denote the best currently known point on the path.
Lemma with 3 =1 yields:
Prob (return to path after n steps) = 2~(") Initially, N =0, i > 1.

Prob (return to path after > n steps happens anywhere) Algorithm decides to sample = as next point.
— 9n° 279(71) — 2fﬂ(n)
Case 1: H(p;,z) < a(1)n

Prob (I'(n) > I(n)/n) = 1 — 27" Prob (z = p; with j > n) = 29

We can prove at best lower bound of . .

S T Case 2: H(p;,z) > a(1)n
T s P .
" " Consider random path construction starting in p;.

Similar to Lemma:
Prob (hit z) = 2"

| |
General Limitations General Limitations
Later steps Later Steps With Close Known Points

N#0

Partition N:

Near :={y € N | H(y, pi) = a(1/2)n}

Nnear := N\ Ngyyr Case 2: Npear # 00

Case 1: Npear =0 Knowing points near by can increase Prob (A).

Consider random path construction starting in p;.

A: path hits z
E: path hits no point in Ng,, Prob (Npear = 0 now) = 1 — 2=

Clearly, optimal deterministic algorithm avoid Ng,,.

Ignore the first n/2 steps of path construction; consider Ditn/2-

Repeat Case 1. O
Thus, we are interested in Prob (A | E)
Prob(ANE) < Prob(A)

Prob(E) — Prob(E)"

Clearly, Prob (E) =1 — 279,
Thus, Prob (A | E) < (1 +27%") Prob (A) = 25
e
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Conclusions

Conclusions

Conclusions

Overview of Known Results

...and that was it for today.

There is more,
but you have a good idea of what can be done.
Reminder — What we have just seen:
@ analysis of the expected optimization time of some
evolutionary algorithms by means of
o fitness-based partitions
Markov's inequality and Chernoff bounds
coupon collector’s theorem
expected multiplicative distance decrease
drift analysis
random walks and cover times
typical runs
o example functions
@ general limitations for evolutionary algorithms by means of
s NFL
@ black box complexity

¢ ¢ ¢ ¢ ¢ ¢

Are there just these methods and results for toy examples?

Is there nothing really cool, interesting, and useful?

By these and other methods there are results for evolutionary
algorithms for

@ “real" cominatorial optimization problems
(Tutorial of Carsten Witt, Sun, 13:30)
o Euler circuits, Ising model, longest common subsequences
e maximum cliques, maximum matchings, minimum spanning
trees
@ shortest paths, sorting, partition
@ “advanced” evolutionary algorithms
@ coevolutionary algorithms, memetic algorithms
@ with crossover, different (offspring) population sizes,
problem-specific variation operators
@ other randomized search heuristics
@ ant colony optimization
@ estimation of distribution algorithms

Conclusions
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Conclusions

Conclusions

Reminder — What we have just seen:

@ analysis of the expected optimization time of some
evolutionary algorithms by means of

o fitness-based partitions

Markov's inequality and Chernoff bounds
coupon collector's theorem

expected multiplicative distance decrease
drift analysis

random walks and cover times

typical runs

o example functions

¢ ¢ ¢ ¢ ¢ ¢

@ general limitations for evolutionary algorithms by means of
o NFL
@ black box complexity



