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intro goals

Goals in Evolutionary Computation

(RG-1) Investigation. Specifying optimization problems, analyzing
algorithms. Important parameters; what should be optimized?

(RG-2) Comparison. Comparing the performance of heuristics
(RG-3) Conjecture. Good: demonstrate performance. Better: explain

and understand performance
(RG-4) Quality. Robustness (includes insensitivity to exogenous

factors, minimization of the variability) [Mon01]
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intro goals

What happend so far?

• Presentations at MIC, HM, PPSN, CEC, GECCO, . . .

• More than a dozen talks, workshops and tutorials
• A few tens publications
• Next steps?
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intro goals

Next steps

• Learning from history
• Some ideas presented today
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intro history

A Totally Subjective History of Experimentation in
Evolutionary Computation

• Palaeolithic: Mean values
• Yesterday: Mean values and

simple statistics
• Today: Correct statistics,

statistically meaningful
conclusions

• Tomorrow: Scientific meaningful
conclusions
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intro history

Some myth

• GAs are better than other algorithms (on average)
• Comparisons based on the mean
• One-algorithm, one-problem paper
• Everything is normal
• 10 (100) is a nice number
• One-max, Sphere, Ackley
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intro history

Today: Based on Correct Statistics

Example (Good practice?)

• Authors used
• Pre-defined number of

evaluations set to 200,000
• 50 runs for each algorithm
• Population sizes 20 and 200
• Crossover rate 0.1 in

algorithm A, but 1.0 in B
• A outperforms B significantly

in f6 to f10

• We need tools to
• Determine adequate number of

function evaluations to avoid floor or
ceiling effects

• Determine the correct number of
repeats

• Determine suitable parameter
settings for comparison

• Determine suitable parameter
settings to get working algorithms

• Draw meaningful conclusions

• Problems of today:
Adequate statistical methods, but wrong scientific conclusions
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intro drawing conclusions

High-Quality Statistics

• Fantastic tools to generate statistics: R, S-Plus, Matlab, Mathematica,
SAS, ec.

• Nearly no tools to interpret scientific significance
• Fundamental problem in every experimental analysis: Is the observed

value, e.g., difference, meaningful?
• Standard statistic: p-value
• Problems related to the p-value
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intro drawing conclusions

High-Quality Statistics

• Fundamental to all comparisons - even to high-level procedures
• The basic procedure reads:

Select test problem (instance) P
Run algorithm A, say n times
Obtain n fitness values: xA,i
Run algorithm B, say n times
Obtain n fitness values: xB,i
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intro drawing conclusions

R-demo

• > n=100
> run.algorithm1(n)
[1] 99.53952 99.86982 101.65871...

> run.algorithm2(n)
[1] 99.43952 99.76982 101.55871...

• Now we have generated a plethora of important data - what is the next
step?

• Select a test (statistic), e.g., the mean
• Set up a hypothesis, e.g., there is no difference
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intro drawing conclusions

R-demo. Analysis

• Minimization problem
• For reasons of simplicity: Assume known standard deviation σ = 1
• Compare difference in means:

d(A, B, P, n) =
1
n

n∑

i=1

(xA,i − xB,i)

• Formulate hypotheses:
H0: d <= 0 there is no difference in means vs.
H1: d > 0 there is a difference (B is better than A)
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intro drawing conclusions

R-demo. Analysis
• > n=5
> run.comparison(n)
[1] 0.8230633

• Hmmm, that does not look very nice. Maybe I should perform more
comparisons, say n = 10

• > n=10
> run.comparison(n)
[1] 0.7518296

• Hmmm, looks only slightly better. Maybe I should perform more
comparisons, say n = 100

• > n=100
> run.comparison(n)
[1] 0.3173105

• I am on the right way. A little bit more CPU-time and I have the expected
results.
> n=1000
> run.comparison(n)
[1] 0.001565402

• Wow, this fits perfectly.
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intro drawing conclusions

Large n problem
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intro drawing conclusions

Scientific?

Figure: Nostradamus
0 200 400 600 800 1000

0.
0

0.
2

0.
4

0.
6

0.
8

Index

pv
al

Bartz-Beielstein, Preuss (Cologne, Dortmund) Experimental Research Sunday, 13 July 2008 15 / 65

2520



intro tomorrow

Tomorrow: Correct Statistics and Correct Conclusions

• Tomorrow:
• Consider scientific meaning
• Severe testing as a basic concept
• First Symposium on Philosophy, History, and Methodology of Error, June

2006

• To discover the scientific meaning of a result, it is necessary to pose the
right question in the beginning

• In the beginning: before we perform experiments
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experimental study objective

Why are we performing experiments?

• Why are we interested in improving the
algorithm’s performance?

• Because it does not find any feasible solution
or

• Because it has to be competitive to the best
known algorithm

• How do we define importance or significance?
• Many statistics available
• Each measure will produce its own ranking
• Planning of experiments
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experimental study objective

First step: Archeology—Detect factors

Figure: Schliemann in Troja

• “Playing trumpet to tulips” or “experimenter’s
socks”

• In contrast to field studies: Computer
scientists have all the information at hand

• First classification:
algorithm
problem
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experimental study objective

Classification

• Algorithm design
• Population size
• Selection strength

• Problem design
• Search space dimension
• Starting point
• Objective function

• Vary problem design =⇒ effectivity (robustness)
• Vary algorithm design =⇒ efficiency (tuning)
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experimental study objective

Efficiency

• Tuning
• Problems

• Many factors
• Real–world problem: complex objective

function (simulation) and only small number of
function evaluations

• Theoretical investigations: simple objective
function and many function evaluations

• Screening to detect most influential factors
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experimental study objective

Factor effects

• Important question: Does a factor influence the algorithm’s performance?
• How to measure effects?
• First model:

Y = f (�X ),

where
• �X = (X1, X2, . . . , Xr ) denote r factors from the algorithm design and
• Y denotes some output (i.e., best function value from 1000 generations)

• Problem design remains unchanged
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experimental study measures

Measures for factor effects

• Overview
Statistics: Variance (V ’s)
Calculus: Derivation (∂’s)
DoE: Regression coefficients (β’s)
DACE: Coefficients (θ’s)
Graphics: Visualizations
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experimental study measures

Measures: Variance

Example (Toy problem)

Y = f (�X ) =
r∑

i=1

αXi

• Xi ∼ N(0, σ2
i )

• r = 4, σ2
i = i
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experimental study measures

Measures: Variance

Example (Toy problem)

Y = f (�X ) =
r∑

i=1

αXi

• Effect should produce shape or pattern
• Effect of factor

Vi(E−i(Y |Xi))

V (Y )
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experimental study measures

Measures: Variance

Example (Summary: Toy problem)

• Y = f (�X ) =
∑r

i=1 αXi far too simple
• Which of the factors can be fixed without affecting Y
• Detect important less important factors
• Interactions
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experimental study measures

Measures: Derivation based

• Evaluate the function at a set of different points in the problem domain
• Define the effect of the i th factor as incremental ratio

f (X1, X2, . . . , Xi + Δ, . . . , Xr ) − f (X1, . . . Xr )

Δ
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experimental study measures

Measures: regression based

• Regression based measures
• Relate the effect of the i th factor to its regression coefficient

Y = β0 +
r∑

i=1

βiXi

• Related: Kriging based measures
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experimental study example: ES

Screening Evolution Strategies

• Detect important factors
• CMA-ES [HO01]
• Screening uses tools from SPOT
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spot demo

SPO in Action

• Sequential Parameter Optimization Toolbox (SPOT)
• Introduced in [BB06]

• Software can be downloaded from http://www.gm.fh-koeln.de/
~bartz/experimentalresearch/spot.zip
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spot demo

SPO Installation

• Create a new directory, e.g., g:\myspot
• Unzip SPO toolbox
• Unzip MATLAB DACE toolbox:
http://www2.imm.dtu.dk/~hbn/dace/

• Unzip CM-ES package from Nikolas Hansen’s WWW-page.
• Start MATLAB
• Add g:\myspot to MATLAB path
• Run spotdriver(’demo1000’)
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spot demo

SPO Region of Interest (ROI)

• Region of interest (ROI) files specify the region, over which the algorithm
parameters are tuned

name low high isint pretty
NPARENTS 1 10 TRUE ’NPARENTS’
NU 1 5 FALSE ’NU’
TAU1 1 3 FALSE ’TAU1’

Figure: demo1000.roi
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spot demo

SPO Configuration file

• Configuration files (CONF) specify SPO specific parameters, such as the
regression model

new=0
defaulttheta=1
loval=1E-3
upval=100
spotrmodel=’regpoly2’
spotcmodel=’corrgauss’
isotropic=0
repeats=3
...

Figure: demo1000.m
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spot demo

SPO Output file
• Design files (DES) specify algorithm designs
• Generated by SPO
• Read by optimization algorithms

TAU1 NPARENTS NU TAU0 REPEATS CONFIG SEED STEP
0.210507 4.19275 1.65448 1.81056 3 1 0 1
0.416435 7.61259 2.91134 1.60112 3 2 0 1
0.130897 9.01273 3.62871 2.69631 3 3 0 1
1.65084 2.99562 3.52128 1.67204 3 4 0 1
0.621441 5.18102 2.69873 1.01597 3 5 0 1
1.42469 4.83822 1.72017 2.17814 3 6 0 1
1.87235 6.78741 1.17863 1.90036 3 7 0 1
0.372586 3.08746 3.12703 1.76648 3 8 0 1
2.8292 5.85851 2.29289 2.28194 3 9 0 1
...

Figure: demo1000.des
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spot demo

Algorithm: Result File

• Algorithm run with settings from design file
• Algorithm writes result file (RES)
• RES files provide basis for many statistical evaluations/visualizations
• RES files read by SPO to generate stochastic process models

Y NPARENTS FNAME ITER NU TAU0 TAU1 KAPPA NSIGMA RHO DIM CONFIG SEED
3809.15 1 Sphere 500 1.19954 0 1.29436 Inf 1 2 2 1 1
0.00121541 1 Sphere 500 1.19954 0 1.29436 Inf 1 2 2 1 2
842.939 1 Sphere 500 1.19954 0 1.29436 Inf 1 2 2 1 3
2.0174e-005 4 Sphere 500 4.98664 0 1.75367 Inf 1 2 2 2 1
0.000234033 4 Sphere 500 4.98664 0 1.75367 Inf 1 2 2 2 2
1.20205e-007 4 Sphere 500 4.98664 0 1.75367 Inf 1 2 2 2 3
...

Figure: demo1000.res
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spot demo

Summary: SPO Interfaces

• SPO requires CONF and ROI files
• SPO generates DES file
• Algorithm run with settings from DES
• Algorithm writes result file (RES)
• RES files read by SPO to generate

stochastic process models
• RES files provide basis for many

statistical evaluations/visualizations
(EDA) Figure: SPO Interfaces
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spot demo

SPO live demo: some impressions
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spot demo

SPO and EDA

• Interaction plots
• Main effect plots
• Regression trees
• Scatter plots

• Box plots
• Trellis plots
• Design plots
• ...
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spot demo

SPO Open Questions

• Models?
• (Linear) Regression models
• Stochastic process models
• Tree-based models

• Designs?
• Space filling
• Factorial
• Combinations

• Statistical tools
• Significance
• Standards

• TBD
• Provide SPOT interfaces for

important optimization
algorithms

• Tools to derive
meta-statistical rules

• Other tools needed,
because p value is not
sufficient
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rethinking experimentation beyond nfl

The Art of Comparison
Orientation

The NFL1 told us things we already suspected:
• We cannot hope for the one-beats-all algorithm (solving the general

nonlinear programming problem)
• Efficiency of an algorithm heavily depends on the problem(s) to solve and

the exogenous conditions (termination etc.)

In consequence, this means:
• The posed question is of extreme importance for the relevance of

obtained results
• The focus of comparisons has to change from:

• Which algorithm is better? to questions like
• What exactly is the algorithm good for?

How can we generalize the behavior of an algorithm?
⇒ Rules of thumb, finally theory?

1no free lunch theorem
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rethinking experimentation beyond nfl

The Art of Comparison
Efficiency vs. Adaptability

Most existing experimental studies focus on the efficiency of optimization
algorithms, but:

• Adaptability to a problem is not measured, although
• It is known as one of the important advantages of EAs

Interesting, previously neglected aspects:
• Interplay between adaptability and efficiency?
• How much effort does adaptation to a problem take for different

algorithms?
• What is the problem spectrum an algorithm performs well on?
• Systematic investigation may reveal inner logic of algorithm parts

(operators, parameters, etc.)
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rethinking experimentation parametrized algorithms

What is the Meaning of Parameters?
Are Parameters “Bad”?

Cons:
• Multitude of parameters dismays potential users
• It is often not trivial to understand parameter-problem or

parameter-parameter interactions
⇒ Parameters complicate evaluating algorithm performances

But:
• Parameters are simple handles to modify (adapt) algorithms
• Many of the most successful EAs have lots of parameters
• New theoretical approaches: Parametrized algorithms / parametrized

complexity, (“two-dimensional” complexity theory)
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rethinking experimentation parametrized algorithms

Possible Alternatives?

Parameterless EAs:
• Easy to apply, but what about performance and robustness?
• Where did the parameters go?

Usually a mix of:
• Default values, sacrificing top performance for good robustness
• Heuristic rules, applicable to many but not all situations; probably not

working well for completely new applications
• (Self-)Adaptation techniques, these cannot learn too many parameter

values at once, and not necessarily reduce the number of parameters

⇒ We can reduce number of parameters, but usually at the cost of either
performance or robustness
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rethinking experimentation parameter tuning

Parameter Control or Parameter Tuning?

The time factor:
• Parameter control: during algorithm run
• Parameter tuning: before an algorithm is run

But: Recurring tasks, restarts, or adaptation (to a problem) blur this distinction

And: How to find meta-parameter values for parameter control?
⇒ Parameter control and parameter tuning
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rethinking experimentation parameter tuning

Tuning and Comparison
What do Tuning Methods (e.g. SPO) Deliver?

• A best configuration from {perf (alg(argexo
t ))|1 ≤ t ≤ T} for T tested

configurations
• A spectrum of configurations, each containing a set of single run results
• A progression of current best tuning results
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rethinking experimentation parameter tuning

How do Tuning Results Help?
...or Hint to new Questions

What we get:
• A near optimal configuration, permitting top performance comparison
• An estimation of how good any (manually) found configuration is
• A (rough) idea how hard it is to get even better

No excuse: A first impression may be attained by simply doing an LHS

Yet unsolved problems:
• How much amount to put into tuning (fixed budget, until stagnation)?
• Where shall we be on the spectrum when we compare?
• Can we compare spectra (⇒ adaptability)?
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spo similarities

Similarities and Differences to Existing Approaches

• Agriculture, industry: Design of
Experiments (DoE)

• Evolutionary algorithms:
Meta-algorithms

• Algorithm engineering:
Rosenberg Study (ANOVA)

• Statistics: Design and Analysis of
Computer Experiments (DACE)
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spo Example: Rosenberg Study

Empirical Analysis: Algorithms for Scheduling
Problems

• Problem:
• Jobs build binary tree
• Parallel computer with ring topology

• 2 algorithms:
Keep One, Send One (KOSO) to
my right neighbor
Balanced strategy KOSO∗: Send
to neighbor with lower load only

• Is KOSO∗ better than KOSO?
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spo Example: Rosenberg Study

Empirical Analysis: Algorithms for Scheduling
Problems

• Hypothesis: Algorithms influence running time
• But: Analysis reveals

# Processors und # Jobs explain 74 % of the variance of the running
time
Algorithms explain nearly nothing

• Why?
Load balancing has no effect, as long as no processor starves.
But: Experimental setup produces many situations in which
processors do not starve

• Furthermore: Comparison based on the optimal running time (not the
average) makes differences between KOSO und KOSO∗.

• Summary: Problem definitions and performance measures (specified as
algorithm and problem design) have significant impact on the result of
experimental studies
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spo basics

Designs

• Sequential Parameter Optimization based on
• Design of Experiments (DOE)
• Design and Analysis of Computer Experiments (DACE)

• Optimization run = experiment
• Parameters = design variables or factors
• Endogenous factors: modified during the algorithm run
• Exogenous factors: kept constant during the algorithm run

• Problem specific
• Algorithm specific
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spo overview

SPO Overview

1 Pre-experimental planning
2 Scientific thesis
3 Statistical hypothesis
4 Experimental design: Problem, constraints, start-/termination criteria,

performance measure, algorithm parameters
5 Experiments
6 Statistical model and prediction (DACE, Regression trees, etc.).

Evaluation and visualization
7 Solution good enough?

Yes: Goto step 8
No: Improve the design (optimization). Goto step 5

8 Acceptance/rejection of the statistical hypothesis
9 Objective interpretation of the results from the previous step: severity etc.
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spo models

Statistical Model Building and Prediction
Design and Analysis of Computer Experiments (DACE)

• Response Y : Regression model and random process
• Model:

Y (x) =
∑

h

βhfh(x) + Z (x)

• Z (·) correlated random variable
• Stochastic process.
• DACE stochastic process model

• Until now: DACE for deterministic functions, e.g. [SWN03]
• New: DACE for stochastic functions
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spo models

Expected Model Improvement
Design and Analysis of Computer Experiments (DACE)

Figure: Axis labels left: function value, right: expected improvement. Source: [JSW98]

(a) Expected improvement: 5 sample points
(b) Another sample point x = 2.8 was added
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spo heuristic

Heuristic for Stochastically Disturbed Function Values

• Latin hypercube sampling (LHS) design: Maximum spread of starting
points, small number of evaluations

• Sequential enhancement, guided by DACE model
• Expected improvement: Compromise between optimization (min Y ) and

model exactness (min MSE)
• Budget-concept: Best search points are re-evaluated
• Fairness: Evaluate new candidates as often as the best one

Table: SPO. Algorithm design of the best search points

Y s c1 c2 wmax wscale witer vmax Conf. n
0.055 32 1.8 2.1 0.8 0.4 0.5 9.6 41 2
0.063 24 1.4 2.5 0.9 0.4 0.7 481.9 67 4
0.061 32 1.8 2.1 0.8 0.4 0.5 9.6 41 4
0.058 32 1.8 2.1 0.8 0.4 0.5 9.6 41 8
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spo heuristic

Data Flow and User Interaction

• User provides parameter ranges and tested algorithm
• Results from an LHS design are used to build model
• Model is improved incrementally with new search points
• User decides if parameter/model quality is sufficient to stop

�
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tools for experimentation performance measuring

“Traditional” Measuring in EC
Simple Measures

• MBF: mean best fitness
• AES: average evaluations to solution
• SR: success rates, SR(t) ⇒ run-length distributions (RLD)
• best-of-n: best fitness of n runs

But, even with all measures given: Which algorithm is better?

(figures provided by Gusz Eiben)
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tools for experimentation performance measuring

Aggregated Measures
Especially Useful for Restart Strategies

Success Performances:

• SP1 [HK04] for equal expected lengths of successful and unsuccessful
runs E(T s) = E(T us):

SP1 =
E(T s

A)

ps
(1)

• SP2 [AH05] for different expected lengths, unsuccessful runs are stopped
at FEmax :

SP2 =
1 − ps

ps
FEmax + E(T s

A) (2)

Probably still more aggregated measures needed (parameter tuning depends
on the applied measure)
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tools for experimentation performance measuring

Choose the Appropriate Measure

• Design problem: Only best-of-n fitness values are of interest
• Recurring problem or problem class: Mean values hint to quality on a

number of instances
• Cheap (scientific) evaluation functions: exploring limit behavior is

tempting, but is not always related to real-world situations

In real-world optimization, 104 evaluations is a lot, sometimes only 103 or less
is possible:

• We are relieved from choosing termination criteria
• Substitute models may help (Algorithm based validation)
• We encourage more research on short runs

Selecting a performance measure is a very important step
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tools for experimentation reporting experiments

Current “State of the Art”

Around 40 years of empirical tradition in EC, but:
• No standard scheme for reporting experiments
• Instead: one (“Experiments”) or two (“Experimental Setup” and “Results”)

sections in papers, providing a bunch of largely unordered information
• Affects readability and impairs reproducibility

Other sciences have more structured ways to report experiments, although
usually not presented in full in papers. Why?

• Natural sciences: Long tradition, setup often relatively fast, experiment
itself takes time

• Computer science: Short tradition, setup (implementation) takes time,
experiment itself relatively fast

⇒ We suggest a 7-part reporting scheme

Bartz-Beielstein, Preuss (Cologne, Dortmund) Experimental Research Sunday, 13 July 2008 58 / 65

tools for experimentation reporting experiments

Suggested Report Structure

ER-1: Research Question the matter dealt with
ER-2: Pre-experimental planning first—possibly explorative—program

runs, leading to task and setup
ER-3: Task main question and scientific and derived statistical hypotheses to

test
ER-4: Setup problem and algorithm designs, sufficient to replicate an

experiment
ER-5: Results/Visualization raw or produced (filtered) data and basic

visualizations
ER-6: Observations exceptions from the expected, or unusual patterns

noticed, plus additional visualizations, no subjective assessment
ER-7: Discussion test results and necessarily subjective interpretations for

data and especially observations

This scheme is well suited to report 12-step SPO experiments
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tools for experimentation visualization

Objective Interpretation of the Results
Comparison. Run-length distribution
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tools for experimentation visualization

(Single) Effect Plots
Useful, but not Perfect

• Large variances originate from averaging
• The τ0 and especially τ1 plots show different behavior on extreme values

(see error bars), probably distinct (averaged) effects/interactions
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tools for experimentation visualization

One-Parameter Effect Investigation
Effect Split Plots: Effect Strengths

• Sample set partitioned into 3 subsets (here of equal size)
• Enables detecting more important parameters visually
• Nonlinear progression 1–2–3 hints to interactions or multimodality
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tools for experimentation visualization

Two-Parameter Effect Investigation
Interaction Split Plots: Detect Leveled Effects
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Updates

• Please check
http://www.gm.fh-koeln.de/~bartz/
experimentalresearch/ExperimentalResearch.html

for updates, software, etc.
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Discussion

• SPO is not the final solution—it is one possible (but not necessarily the
best) solution

• Goal: continue a discussion in EC, transfer results from statistics and the
philosophy of science to computer science

• Standards for good experimental research
• Review process
• Research grants
• Meetings
• Building a community
• Teaching
• ...
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tools for experimentation visualization

Anne Auger and Nikolaus Hansen.
Performance Evaluation of an Advanced Local Search Evolutionary
Algorithm.
In B. McKay et al., editors, Proc. 2005 Congress on Evolutionary
Computation (CEC’05), Piscataway NJ, 2005. IEEE Press.

Thomas Bartz-Beielstein.
Experimental Research in Evolutionary Computation—The New
Experimentalism.
Springer, Berlin, Heidelberg, New York, 2006.

Nikolaus Hansen and Stefan Kern.
Evaluating the cma evolution strategy on multimodal test functions.
In X. Yao, H.-P. Schwefel, et al., editors, Parallel Problem Solving from
Nature – PPSN VIII, Proc. Eighth Int’l Conf., Birmingham, pages
282–291, Berlin, 2004. Springer.

N. Hansen and A. Ostermeier.
Completely derandomized self-adaptation in evolution strategies.
Evolutionary Computation, 9(2):159–195, 2001.

D.R. Jones, M. Schonlau, and W.J. Welch.
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tools for experimentation visualization

Efficient global optimization of expensive black-box functions.
Journal of Global Optimization, 13:455–492, 1998.

D. C. Montgomery.
Design and Analysis of Experiments.
Wiley, New York NY, 5th edition, 2001.

T. J. Santner, B. J. Williams, and W. I. Notz.
The Design and Analysis of Computer Experiments.
Springer, Berlin, Heidelberg, New York, 2003.
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