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Introduction

The theory of genetic algorithms is beginning to come together into a
coherent framework. However, there are still many gaps, and much
that we do not know.

This tutorial will provide an introduction to the framework, and
describe some of the areas of development. I will include pointers to
other research directions, some of which are covered in other tutorials.

Overview of tutorial

The main topics covered in this tutorial are:
o Genetic algorithms as Markov chains.

e Finite and infinite populations.

Selection, mutation and crossover.

Schemata, projections and coarse-grainings.

Generalisation to other search spaces.
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The Simple Genetic Algorithm

A basic object of study is the Simple Genetic Algorithm. At any
time-step (or generation) there is a population (of size V) of binary
strings (of length £). We use genetic operators (selection, crossover,
mutation) to produce the next population.

We will consider generalisations to other search spaces later.



Producing the next population

To produce the next population we follow these steps N times:
1. Select two items from the population.
2. Cross them over to form an offspring.
3. Mutate the offspring.

4. Insert the result into the new population.

ot

Markov chains

There are a finite number of possible populations of size N. The
probability of producing a particular population in one generation,
depends only on the population at the previous generation.

This kind of random process is called a Markov chain. It can be
characterised by a transition matriz Q.

(q.p 1s the probability of going from population p to population q.

Populations as distributions

We can think of a population p as a distribution over the search
space €.

Pk is the proportion of copies of item k in the population. That is, it
is the number of copies of k divided by V.

pEA:{mGR"ZwkzlandkaOforallk}
k
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The heuristic function

If the current population is p, then there is a certain probability of
producing item & in the next generation. Call this probability G(p).

That is, G(p) € A and G can be thought of as a map
G:AN— A

which we call the heuristic function.



Random Heuristic Search

An equivalent way of characterising a single generation of the Simple
Genetic Algorithm is as follows:

1. p is the current population
2. Calculate G(p).
3. Take N random samples from G(p).

4. The sample is the next population.

The transition matrix

If we know the heuristic function G, we can write down the transition

matrix.

(G(p)i) ™
Qap =N T =05, 5

This is called a multinomial distribution.
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The expected next population

The next population is a random variable. If p is the current
population, then we can calculate what the expected next population
is.

This turns out to be simply G(p).

11
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The variance

We can also ask for the variance of the distribution. It is:
1-G(p)"G(p)
N

You can see that the variance decreases as IV increases. That means
that for large population sizes, the next generation is likely to be
close to G(p).
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The infinite population model

As N — oo, we can see that the variance decreases to zero. So the
behaviour of the random heuristic search becomes closer and closer
to simply iterating G.

More formally, given a number of time steps 7, and distance ¢ > 0
and a probability d > 0, there exists a population size NV so that the
random heuristic search algorithm stays within e of the iterates of G
for 7 time steps, with probability greater than 1 — 6.
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Finite population behaviour

We know that, if N is big enough, a finite population will stay close

to the trajectory of G in the short-term. We are also interested in:

e In what states does it spend most of its time (in the medium and

long term)?

e How long does it take to reach a particular state (e.g. one

containing the optimal solution to a problem)?

We will take a look at the first problem. The second problem can

only be addressed for specific cases.
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Metastable states

A genetic algorithm often seems to “stall” in certain states. This is
particular obvious with some fitness functions (e.g. Royal Road

functions).

These states are called metastable and correspond to sets of
populations which have the property that ||G(p) — p|| (called the
force of G at p) is small.
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Fixed-points and metastability

One place we find populations with small force is close to fixed-points
of G (at which the force is, of course, zero). These fixed-points may
themselves be outside, but close to A, since G remains well-defined

and continuous.

It is also sometimes possible to find much larger sets of populations,
which the GA appears to wander around at random. These are called

neutral networks as they have (almost) constant fitness.
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Genetic operators and G

We will now look at the different genetic operators: selection,
mutation, crossover. We will look at them singly, and in various

combinations.

For each combination, we will write down the corresponding heuristic
function G. We will then consider what is known about the

fixed-points of G and the behaviour of (finite population) algorithms.
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Selection and fitness

A selection operator chooses items from the current population. It

makes use of a fitness function, which is a function
f:Q—R"

We can also think of the fitness function as a vector f € R", with
fe = f(k).
We usually require a selection operator to assign a higher probability

to elements that have higher fitness.
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Proportional selection

One common method of selection is to select elements with
probability proportional to their fitness. This corresponds to a
heuristic function

_ diag(f)p
p

where diag(f) is a diagonal matrix with the elements of f along the

F(p)

diagonal.
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Trajectory of proportional selection

Given an initial population p(0), let p(t) = F'(p) be the
corresponding trajectory of the infinite population model.

It can be shown that:

2539
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Example trajectory — proportional selection

Figure 1: The proportion of each solution in the population for the
trajectory, starting with p(0) = (0.01,0.24,0.75). The fitness function
if £=(3,2,1).

Fixed-points and absorbing states

The fixed-points of F are the homogeneous populations. That is,
populations that have copies of just one item. They are represented

by vectors with a 1 in one position and zeros elsewhere.

The trajectory will converge to the homogeneous population
containing copies of the fittest individual in the original population.

Homogeneous populations are also absorbing states of the Markov

chain for finite populations.

21 22
Binary tournament selection
Behaviour of tournament selection
An alternative selection method is to choose two items from the
population uniformly at random, and then keep the best one (as This function is harder to analyse, as it is quadratic. However, its
measured by the fitness function). The corresponding heuristic fixed-points are again the homogeneous populations (as are the
function is® absorbing states of the Markov chain).
F(p); = (p')2 +2p; Zp[f(]) < £(i)] It is sometimes said that tournament selection is stronger than
= A A J
J proportional selection, as it moves more quickly towards a
homogeneous population.
alexpr] equals 1 if ezpr is true, and 0 otherwise.
2540
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Example trajectory — tournament selection

Figure 2: The proportion of each solution in the population for the
trajectory, starting with p(0) = (0.01,0.24,0.75). The fitness function
if £=(3,2,1).

Mutation

In general, mutating a particular item can produce any other item
(with some probability). Write U; ; to be the probability that item j
mutates to item ¢. Then the heuristic function for mutation is

Up)=Up
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Example — mutation by a rate

For example, if we mutate binary strings of length £ bitwise, with

mutation rate u, then
Uij= ud(i,j)(l _ u)f—d(i,j)

where d(4,7) is the Hamming distance between i and j.

27
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Mutation commutes with exclusive-or

Standard mutation on binary strings satisfies the following curious
property:
Uij = Ukeikoj

for all 4,7,k € €, where @ represents bitwise exclusive-or. We say

that it commutes with this operator.

This means that if you mutate k @ i, you get the same result as if you
mutated ¢ by itself (to form j) and then formed k @ j.

28



Long-term behaviour of mutation

Any mutation operator that commutes with @ has a unique
fixed-point in A, which is the uniform distribution over 2. We denote
this distribution by (1/n)1 (where 1 is the vector of all ones).

(U(1/n)1); = (1/n) > Ui = (1/n) Y Ujeio = (1/n) Y Uro = 1/n
J J k

The corresponding Markov chain is irreducible, and the stationary
distribution is uniform over all populations. That is, all populations
are visited equally often.
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Characterising mutation

We can characterise all mutations which commute with @ as follows.
For any probability distribution o € A, set

Uij = Qi
Then
Ukoikej = Mkajorsi = Yo = Ui j

Such a mutation can be implemented as follows: to mutate 7, pick an
element k €  according to distribution o and form j @ k.

30

Proportional selection and mutation

If we first perform proportional selection, and then mutation, we get

a combined heuristic function
Udiag(f)p
Gp)=WUoF)p)=—7 "
f'p
The fixed-points of this function are easily found. They must satisfy

Udiag(f)p = (f" p)p

31
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Perron-Frobenius theorem

The fixed-points are therefore eigenvectors of the matrix Udiag(f).
The corresponding eigenvalues are the average fitness at the
fixed-point.

The Perron-Frobenius theorem tells us that exactly one of these
fixed-points is in A, corresponding to the largest eigenvalue. The
others are outside A but may still influence the dynamics inside.
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Example — OneMax

10 20 30 46 50
Figure 3: The fixed-point population, shown as a distribution over

unitation classes, for the OneMax function with £ = 50, u = 0.05 and
no crossover. The corresponding average fitness is 28.65.
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Transitory behaviour

The Markov chain corresponding to a selection+mutation genetic
algorithm is irreducible, and therefore has a stationary distribution.
It visits all populations infinitely often, but some more frequently
than others.

For particular fitness functions, it is possible to analyse some aspects
of the transient behaviour, such as the expected time to reach the
optimum solution (see Wegener et al.).
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Metastable states

The states in which the algorithm spends a lot of its time can

sometimes be found by analysing the fixed-points of G.

One needs to take into account fixed-points inside and outside A as
they can all have an effect. This can enable us to establish
metastable states and neutral networks.
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Example — fixed-points

For example, consider the function of unitation
f = (9787 17273747 5767 7)

(a trap function), with mutation rate 0.05.

We find there is one fixed-point in A, around the optimum, and
another just outside, but near the false optimum.
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Example — metastable states

Figure 4: The fixed-point population in A (solid line) and one just
outside (dashed line). The fitness function is f = (9,8,1,2,3,4,5,6,7)
(as a function of unitation). Mutation rate is 0.05.
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Crossover

Crossover takes two individuals and produces an offspring. For each
1,7,k € Q we need to specify the probability that crossing ¢ and j will
produce k. We denote this probability r (i, j, k).

The corresponding heuristic function is

,J
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Crossover by masks

Crossing two binary strings is usually done by selecting a binary mask
according to some probability distribution. The mask indicates which
bits come from the first parent and which come from the second.

In this case we get
Cp)k =Y pin; Y Xp[(b® ) & (b® j) = K]
i, b

where X3 is the probability of picking mask b.

39
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Crossover commutes with exclusive-or

Crossover by masks satisfies the following curious property:
rla®i,a®jadk)=r(,7,k)

for all 4,7, k,a € Q. We say that it commutes with this operator.

This means that if you cross a ® i, with a @ j, you get the same result
as if you crossed ¢ with j (to form k) and then formed a @ k.
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The mixing matrix

This means that crossover is determined by the matrix
Mi,j = T(i,j, 0)

called the mizxing matriz. We can find all the other probabilities from
this:

T(iuja k) = 7a(k &1, ko jv 0) = MkEBi,k@]'

41

Group representation

The set of binary strings 2 forms a group under the operator &.

For each element k € 2, we can define a corresponding matrix oy
(Uk)i,j =li=ka ]|

This set of matrices forms a group (under normal matrix

multiplication) which is isomorphic to (2, ®).

42

The crossover heuristic

We can now re-write the crossover heuristic function, in terms of the

mixing matrix, and the group of permutation matrices:

C(p)k =p oMo p

43

Characterising crossover

All crossovers which commute with @& can be characterised as follows.
1. Start with any row stochastic matrix, A.
2. Define a new matrix M; ; = Aig; .

3. Let M be the mixing matrix defining C.
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The twist

The mixing matrix M is called the twist of the matrix A. Twists play
an important role in the study of crossover. For example, the
derivative dCg of the heuristic function at a point x is the matrix

dCq = 2 Z oxM*of x
k

where M™* is the twist of the mixing matrix.

Linkage equilibrium

Geiringer’s theorem is a classic result from population genetics. It
describes the fixed-points of C defined by masks.

The set of fixed-points are populations that are in linkage
equilibrium. This means that if you take a string at random from
such a population, the probability of finding a 1 at any position is
independent of the contents of the rest of the string.

46

Geiringer's theorem

The theorem also says that if you start with some population vector
p and repeatedly apply C, then the limit will be one of these
fixed-points.

The probability of finding a 1 in a given bit position at this
fixed-point will be simply equal to the proportion of 1s in that
position in the initial population.

47

2546

Finite population behaviour

Geiringer’s theorem was originally proved in the infinite population
model. A version of the theorem has recently been proved for finite
populations.

In this version, we look at the stationary distribution of the Markov
chain. Select a population at random from this distribution, and pick
a string at random. The probability of finding a 1 in any given
position depends only on the proportion of 1s in that position in the
initial population.
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Selection and crossover

Suppose we have a genetic algorithm with proportional selection and
crossover. Then G =Co F.

Homogeneous populations are fixed-points. They are also absorbing

states of the Markov chain. However, there can be other fixed-points.

It is conjectured that the only asymptotically stable fixed-points are
homogeneous populations. Proving this is an open problem.
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Fixed-points and local optima

Some of the homogeneous populations are asymptotically stable, and

some are unstable.

Suppose we have an asymptotically stable population that contains
only copies of a bitstring k. Then if we consider the fitness of k, and
the fitness of all its Hamming neighbours we find that:

Asymptotically stable homogenous populations contain (Hamming)

local optima.

Genepool crossover

There is another form of crossover sometimes used call genepool or

population crossover. It is used, for example, in UMDA.

In each bit position, this operator shuffles the bits in the entire
population. It brings the population immediately to linkage

equilibrium.

It is like performing lots of normal crossovers between each selection.

2547

Fixed-points of genepool crossover

When we use genepool crossover and proportional selection, then it
can be proved that:

1. The only asymptotically stable fixed-points are homogeneous
populations.

2. Moreover, they correspond exactly with the Hamming local
optima.

3. This follows from the fact that average fitness increases

monotonically.



Mutation and crossover

Suppose we have mutation and crossover, but no selection. The
heuristic function is again a quadratic operator M = C o/ which
commutes with @.

The mixing matrix is U MU, where U is the mutation matrix and
M is the mixing matrix of crossover alone.

If mutation is by a rate, then it doesn’t matter which order we do
mutation and crossover — the effect is the same.
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Long-term behaviour

As long as there is a positive mutation rate, M has a unique
fixed-point (1/n)1.

The corresponding Markov chain is irreducible. Its stationary
distribution is uniform over all possible (ordered) populations of size

N. This means that all strings are equally likely to appear.

We see that in both the finite and infinite population case, a
vanishingly small (but non-zero) mutation rate is sufficient to destroy
the fixed-points described by Geiringer’s theorem.

Schemata

A schema is a pattern of bit-values at certain defining positions. For

example:
1x+x0%*x0x%

is the set of all strings which have a 1 in the first position, and 0s in

the fourth and seventh positions. The * symbol acts as a “don’t care”.

Schemata are important for understanding crossover and mutation.

ot
ot
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Schema families

A schema family is a collection of schemata, which all have the same

defining positions (and the same “don’t care” positions). For example:

* % %0 % %0 %
* % %0 % %1%
Kk ok 1k x 0%

*x k] k%] x



The Schema Projection Theorem

Mutation and crossover done by masks can be projected onto a
schema family. That is, one can define a corresponding crossover and
mutation that act only on the defining bit positions of the family.

The effects of crossover and mutation on those bits is independent of
what happens on the other bits.

57

Coarse-graining

This kind of effect is called a coarse-graining, for it enables us to
study the effects of operators on aggregated chunks of the search
space.

The Schema Projection theorem tells us that crossover and mutation

can be exactly coarse-grained using schemata.

Selection and schemata

It would have been convenient if selection could also be projected
onto schema, families. Then we could have tracked the entire GA on
aggregated “building blocks”. Unfortunately this can’t be done in a

time-independent manner.

That is, the building blocks at one generation are different from those

at another.
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Coarse-graining at a fixed-point

If we start at a fixed-point p = G(p), then nothing changes from one
time-step to another. At such a point it is possible to coarse-grain
selection (as well as crossover and mutation) using schemata.

This is because the “fitness” of a schema can no longer change from
one time-step to another, and so we can aggregate in a

time-independent manner.
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Order-1 schemata fitness

Let G include proportional selection, crossover and mutation (with

rate u). Specify some bit position, and some population p.

e Let go(p) be the proportion of the population with a 0 at that

position.
e Let ¢1(p) be the proportion with a 1. Clearly go + ¢1 = 1.

e Let fo(p) be the average fitness of strings with a 0 at that

position.

e Let fi(p) be the average fitness of strings with a 1.

Schemata fitness at a fixed-point

If p is a fixed-point of G, then

ro (2

Notice that this result holds for any fitness function and for any kind

of crossover (by masks).
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Example Example (cont'd)
At this fixed-point we have:
Let © = {00,01,10,11} and f = (4.0,4.1,0.1,4.11). Choose say,
uniform crossover and a mutation rate of u = 0.006. We choose to fo(p) — (0.843
focus on the second bit position. h(p)
The stable fixed-point is p = (0.032,0.737, 0.005, 0.226). Notice that this means the schema *1 has higher fitness than * 0,
even though the system is in stable equilibrium.
2550
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Other coarse-grainings

We can determine exactly what coarse-grainings are possible:
e Crossover by masks can only be projected onto schema families.

e Mutation by a rate can be projected onto schema families and

unitation classes.

e Proportional Selection can only be projected onto classes of equal

fitness.

e Binary tournament selection can only be projected onto classes of
contiguous fitness.

The Walsh Transform

The Walsh Transform is given by the matrix

(~1)"7
NG

where ¢ - j is the number of 1s that ¢ and j have in common.

Wij=

Applying the transform gives us a change of basis.
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Effects of the Walsh Transform

In the Walsh basis, crossover and mutation become considerably

easier to deal with:
e The mutation matrix becomes diagonal.
e All the matrices o} become diagonal.

e The mixing matrix is untouched (but is generally sparse).

67
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Applications of the Walsh Transform

Because of these simplifications, a number of results can be proved
using the Walsh basis. For example:

e The operator C can be inverted.
e The twist is lower triangular in the Walsh basis.

Genepool crossover (with and without mutation) also becomes easier
to analyse in the Walsh basis.
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Selection and the Walsh basis

Proportional selection is not so nice in the Walsh basis. However, the
following result is curious:

Let S = diag(f), and let S =WSW. Then § commutes with ®.

Selection appears to be a dual of mutation.

Generalising to other search spaces

Most of the existing theory of genetic algorithms has been worked
out for the search space of fixed-length binary strings.

But what if we have a different search space (for example, the
Travelling Salesman Problem)? How much of the theory can be
generalised?
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Operators that commute with &
Search space groups
Again we say that mutation commutes with & if
It turns out that quite a lot can be done in the case where the search
space €, together with some operator @ forms an arbitrary finite Ukoikoj = Ui
group. We also say that crossover commutes with & if
For example, 2 could' be the set of permutations of cities (in TSP) r(a®i,a®jad®k) =r(,jk)
and @ could be function composition.
Such operators can be completely characterised as before.
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Mixing matrices

In this case, we can again define the crossover heuristic in terms of a

mixing matrix
C(p)k = p oxMojp

where the matrices (o), ; = [i = k @ j| form a group isomorphic to

(Q, ).
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Generalised schemata

Given a collection N of subgroups of €2, then an A/-schema is a set of
the form

a®G={a®dglg €G}

where G € N. That is, schemata are cosets of subgroups of Q.
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Example — TSP

A route in TSP is an ordering 7 : {1,2,... ,m} — {1,2,... ,m} of
the m cities, where 7(i) = the ith city in the tour.
Choose some subset C' C {1,2,... ,m} and consider permutations

that have the property that w (i) = ¢ for all i € C. These
permutations form a subgroup.
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Schemata in TSP

The schemata corresponding to such a subgroup are those tours
which specify that certain cities must be visited at positions specified

by C. For example, %2 % 5+ is the schema

(1,2,3,5,4),(1,2,4,5,3),(3,2,1,5,4), (3,2,4,5,1), (4,2,1,5,3), (4,2,3,5,1)
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Respectfulness

Crossover is said to respect a subset of Q if whenever we cross two
elements of that subset, the offspring is guaranteed to also be in the

subset.

It can be shown that if crossover respects all the subgroups of N/
then it also respects all N'-schemata.

T

Pure crossover

Crossover is said to be pure if crossing an element with itself always
gives you the same element back again (that is, it is cloning).

It can be shown that crossover is pure if and only if it respects the
subgroup {0}, where 0 is the identity element of the group.
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Separative matrices

Given any n X n matrix A, we call it separative with respect to N if
whenever A; ; > 0, and ¢ and j are both elements of some A -schema,

then the identity element 0 is also an element of that N-schema.

Crossover respects all A-schemata if and only if the mixing matrix is

seperative.
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Example — binary strings

For binary strings, this theorem means that for any crossover (that
commutes with @) to respect schemata, then if it is possible for ¢ and
j to produce the string of all zeros, the only bit-values at which they

agree must also be zeros.
10010011
01100000

U
00000000
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Example — TSP

The theorem can be used to show that a number of standard
crossovers defined for TSP do not repsect the schemata that we have
defined.

It is also possible to use the theorem to help design crossovers which
do respect those schemata.
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The Fourier Transform

Since the Walsh Transform is so helpful in unravelling the effects of
crossover and mutation on binary strings, we would like to know if a
generalised (Fourier) Transform exists for other groups. We have the
following result:

A change of basis in which all the matrices oy are diagonal exists if
and only if the search space group is commutative.
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Commutative groups

In this case, elements of the group can be represented as strings over
alphabets of possibly varying cardinality. This is because any finite
commutative group can be written as a direct sum of cyclic groups.

For this type of search space, we can make use of crossover by masks
and mutation by a rate in the standard way. Schemata correspond to
the usual definition, and the Schema Projection Theorem still holds.

83
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Group actions

It may not always be possible to define a natural group structure on
a search space. In this case, it might be possible to define a group

action.

This is a set of bijections on 2, which form a group under function

composition.
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Transitivity

Much of the theory of genetic algorithms can be generalised to this

situation.

The main requirement is that the group action is transitive, that is,
given any two elements i, j € €2, there is always a group element a
such that a(i) = j.

Landscape graphs

It is interesting to ask how such group actions might naturally arise
in the study of search problems. One possibility is to consider the
properties of an associated landscape graph.

This would correspond, for example, to the Hamming cube in tha
case of binary strings.
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Neighbourhoods

Start by defining a neighbourhood structure on €2. Every point in 2
has a subset of neighbours, such as one might use to define a local
search algorithm.

The neighbourhood structure is symmetric if y is a neighbour of z

implies z is a neighbour of y.

We make 2 into a graph by putting an edge between neighbouring

elements.

87
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Automorphisms

We now consider all permutations of 2 which preserve the graph
structure. That is, 7 :  —  is such a permutation if whenever ¢ and
j are neighbours, so are 7(i) and 7 (j).

This set of permutations forms a group action on € called the
automorphism group.
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Search space symmetries

The automorphism group characterises the different symmetries that
exist in the landscape graph. The idea is that the labels we give to
elements of the search space do not matter so much as the
relationships between elements.

The study of landscapes and their relationship to genetic algorithms
is a subject of current research.
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Important research areas

The development of systematic approximations (e.g. using
statistical mechanics).

Relating aspects of the infinite population model to
time-complexity analysis for finite populations.

Investigating the relationship of fitness landscapes to genetic

operators.

Generalisation to infinite search spaces.
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Further reading

The Simple Genetic Algorithm by Michael Vose.

Genetic Algorithms: Principles and Perspectives by Colin Reeves

and Jonathan Rowe.

Theoretical Aspects of FEvolutionary Computing by Leila Kallel,
Bart Naudts and Alex Rogers.

Foundations of Genetic Algorithms, volumes 1-9.
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