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NFL: No Free Lunch

All search algorithms are equivalent when compared

over all possible discrete functions.

Wolpert, Macready (1995)

No free lunch theorems for search. Santa Fe Institute.

Radcliffe, Surry (1995)

Fundamental Limitations on Search Algorithms: Springer Verlag LNCS 1000.

No Free Lunch for Gray and Binary

All search algorithms are equivalent when compared

over all possible representations.
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Variations on No Free Lunch

For ANY measure of algorithm performance:

The aggregate behavior of any two search algorithms is equivalent when

compared all possible discrete functions.

The aggregate behavior of ALL possible search algorithms isequivalent when

compared over any two discrete functions.

At each distinct “iteration” of search

the aggregate behavior of all possible search algorithms isIDENTICAL at

each and every iteration.
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Variations on No Free Lunch

Consider any algorithmAi applied to functionfj .

On(Ai, fj) outputs the order in whichAi visits the elements in the codomain

of fj . For every pair of algorithmsAk andAi and for any functionfj, there

exist a functionfl such that

On(Ai, fj) ≡ On(Ak, fl)

Consider a “BestFirst” local search with restarts.

Consider a “WorstFirst” local search with restarts.

For everyj there exists anl such that

On(BestF irst, fj) ≡ On(WorstF irst, fl)
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ENUMERATION is a search algorithm.

Thus, No Free Lunch implies that on average,

no search algorithm is better than enumeration.

Furthermore, because bias in search algorithms causes themto focus the

search, most are prone to resampling.

If resampling is considered,

“focused” search algorithms are WORSE than enumeration

NFL IGNORES RESAMPLING
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An algorithm is modeled as a permutation

representing the order in which new points are tested.

Behavior is defined in terms of the evaluation function output

which defines the co-domain of the function.
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Assume that one is given a fixed set of co-domain values.

Set of Functions = Set of Permutations.

BEHAVIORS FUNCTIONS

A1: 1 2 3 F1: A B C

A2: 1 3 2 F2: A C B

A3: 2 1 3 F3: B A C

A4: 2 3 1 F4: B C A

A5: 3 1 2 F5: C A B

A6: 3 2 1 F6: C B A
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Assume(A > B)&(B > C).

Take 2 steps, return the maximum found.

| F1 F2 F3 F4 F5 F6

___|_______________________

A1 | A A A B A B

|

A2 | A A B A B A

|

A3 | A A A B A B

|

A4 | B B A A A A

|

A5 | A A B A B A

|

A6 | B B A A A A
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NFL is just like sampling
from a grab bag.

3 6 1 ....
Values sampled so far:

Co−Domain: 1 2 3 4 5 6
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Theorem:
NFL holds for a set of functions IFF

the set of functions form a permutation set.

The “Permutation Set” is the closure of a set

of functions with respect to a permutation operator.

(Schmacher, Vose and Whitley–GECCO 2001).

F1: 0 0 1 2 F7: 0 2 0 1

F2: 0 1 0 2 F8: 0 2 1 0

F3: 1 0 0 2 F9: 1 2 0 0

F4: 0 0 2 1 F10: 2 0 0 1

F5: 0 1 2 0 F11: 2 0 1 0

F6: 1 0 2 0 F12: 2 1 0 0
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Machine Learning and NFL

1 1 1
11

1

0
0000

0

L1 ALL HD L2 ALL HD

== ======== == ========

00 0 00 1

00 01 1 10 01 2

10 1 10 0

11 2 11 1

GECCO-2008 –11

Theorem:
Given a finite set of N unique co-domain values, NFL hold over aset of N!

functions where the average description length is O(N log N).

Sketch of Proof:
Construction a Binary Tree with N! leaves. Each leaf represents one of the N!

functions. To just label each function requires log(N!) bits. Each label has

average length log(N!) = O(N log N).

Note enumeration also has cost O(N log N).

Corollary:
If a fixed fraction of the co-domain values are unique, the setof N! functions

where NFL holds has average description length O(N log N).
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NFL holds over sets with 1 member.

F = 0 0 0 0

NFL holds over needle-in-a-haystack functions.

F1 = 0 0 0 1

F2 = 0 0 1 0

F3 = 0 1 0 0

F4 = 1 0 0 0
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The set of Binary strings is a permutation set

0 0 0 0 1 1 1 1

0 0 0 1 0 0 1 1 1 1 1 0

0 0 1 0 0 1 0 1 1 1 0 1

0 1 0 0 1 0 0 1 1 0 1 1

1 0 0 0 0 1 1 0 0 1 1 1

1 0 1 0

1 1 0 0
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Let P (F ) compute the permutation closure ofF , whereF is a set of

functions.

Let K = |P (F )|.

Then the average description length needed to distinguish the members of that

set islg(K).

If lg(K) is exponential, then the permutation set isuncompressible.

If lg(K) is polynomial, then the permutation set iscompressible.
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QUESTION:

How should we evaluate search algorithms?

Let β represent a set of benchmarks.P (β) is the permutation closure overβ.

If algorithmS is better than algorithmT onβ

THEN T is better thanS onP (β) − β.
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Algorithm 1 Algorithm 2

F1: 1 2 3 f(1) --> 1 f(3) --> 3

Set A F2: 1 3 2 f(1) --> 1 f(3) --> 2

F3: 2 1 3 f(1) --> 2 f(3) --> 3

F4: 2 3 1 f(1) --> 2 f(3) --> 1

F5: 3 1 2 f(1) --> 3 f(3) --> 2

Set B F6: 3 2 1 f(1) --> 3 f(3) --> 1

Algorithm 1 Algorithm 2 Difference

Set A 2 5 3

Set B 10 7 3

The cumulative difference must be the same
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Algorithm 1 Algorithm 2

F1: 1 2 3 f(1) --> 1 f(3) --> 3

Set A F2: 1 3 2 f(1) --> 1 f(3) --> 2

F3: 2 1 3 f(1) --> 2 f(3) --> 3

F4: 2 3 1 f(1) --> 2 f(3) --> 1

F5: 3 1 2 f(1) --> 3 f(3) --> 2

Set B F6: 3 2 1 f(1) --> 3 f(3) --> 1

Algorithm 1 Algorithm 2 Difference

Set A 1 2.5 1.5

Set B 2.5 1.75 0.75

Average difference is not the same
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NO FREE LUNCH does not hold over the class of problems in NP; they are

not black box optimization problems.

For example, some problems in NP that have ratio bounds whichcan be

exploited by branch and bound algorithms.

Even, so claims about which algorithms apply to which problems is a concern.
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Machine Correlated Jobs

Job Correlated Jobs

Job 1 Job2 Job3

The PERMUTATION FLOWSHOP SCHEDULING PROBLEM.

Benchmark are typically generated randomly. Real-world problems may have

correlated structure. Job could bemachine correlatedor job correlated.
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JOB CORRELATED PROBLEMS. Performance of optimization algorithms.

The degree of randomness is indicated along the x-axis, while the deviation
from the best-known solution is indicated along the y-axis.
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MACHINE CORRELATED PROBLEMS. Performance of optimization

algorithms. The degree of randomness is indicated along thex-axis, while the
deviation from the best-known solution is indicated along the y-axis.
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S. Christensen and F. Oppacher

What can we learn from No Free Lunch?GECCO 2001

A SUBMEDIAN-SEEKER Type Algorithm

1. Evaluate a sample of points and estimate median(f).

2. If f(xi) < median(f) then sample a neighbor ofxi.

Else sample a new random point.

3. Repeat step 2 until half of space is explored.

Assumef is 1-dimensional, a bijection, and we knowmedian(f).
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Let M(f) measures the number of submedian values off

that havesupermedian successors.

There existsMcrit such that whenM(f) < Mcrit

SubMedian-Seeker is better than random search.

SUBMEDIAN-SEEKER beats random enumeration when:

1. f is a uniformly sample polynomial of degree at mostk andMcrit > k/2

2. f is a truncated Fourier series of at mostk harmonics uniformly sampled

over [0,1) atn locations andMcrit > k/2

3. Each extremum off is represented by at least 6 points on average
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Structure is Important

Random Number Generators produce functions that are in somerestricted

sense compressible. But they are designed to have minimal structure.

Consider “WorstFirst” local search again.

For everyj there exists anl such that

On(BestF irst, fj) ≡ On(WorstF irst, fl)

There are “structured functions” that do not fit our usual notion of being

“searchable.”
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NO FREE LUNCH and REPRESENTATION

Radcliffe, Surry (1995) Fundamental Limitations on SearchAlgorithms:

Springer Verlag LNCS 1000.

The behavior of any two algorithms are identical over all possible

representations of a single function.

”NO-FREE-LUNCH-like” results

The behavior of any two algorithms are identical over over the set of Gray and

the set of Binary representations over all possible functions.
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Counting Local Optima

The probability that stringi is a local minimun under an arbitrary

transformation of a k-neighborhood search space is:

P (i) =

(

N−i

k

)

(

N−1
k

) [1 ≤ i ≤ (N − k)] (1)
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R1

Ri

Rn

(N-i)  choose k
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The average number of local optima over all possible representations using a

k-neighbor search:

µ(N, k) =
N−k
∑

i=1

P (i) (2)

µ(N, k) = N/(k + 1) (3)
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”NO-FREE-LUNCH-like” results hold over

very small sets of functions for Gray and Binary representations.

BN B1        B2       B3                  B(N-1)        BN

G1       G2       G3       G4       G(N-1)       GN

F1        F2        F3                  F(N-1)         FN

The length of this “chain” is at most 2L.
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R1: 000 001 010 011 100 101 110 111

R2: 000 001 011 010 110 111 101 100

R3: 000 001 010 011 101 100 111 110

R4: 000 001 011 010 111 110 100 101

R5: 000 001 010 011 100 101 110 111
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Consider the integer-adjacency neighborhood.

1, 2, 3, 4, 5, 6, 7, 8, ... N-3, N-2, N-1, N

We consider a WRAPPING Neighborhood

where 1 and N are neighbors.

(We can also consider a NON-WRAPPED Neighborhood,

where 1 and N are not neighbors).
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FOR WRAPPING FUNCTIONS

#F # of Min # of Min

K K Min Gray Binary

1 512 512 1,024

2 14,592 23,040 27,776

3 23,040 49,152 48,896

4 2,176 7,936 2,944

Sum 40,320 80,640 80,640
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MINI-MAX: WRAPPING

K Gray Wins Binary Wins Ties

1 448 0 64

2 6752 2288 5552

3 6720 6592 9728

4 0 2160 16

Sum 13,920 11,040 15,360
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Generating the Set of All Functions

Count the Minima in the Set of All Functions

Choose
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A SubThreshold-Seeker

1. Evaluate a sample of points and estimate athreshold(f).

2. Pick pointx < threshold(f).

3. If f(x) < threshold(f) then setx = x + 1 andy = x − 1;

Else sample a new random point.

4. Whilef(x) < threshold(f) setx = x + 1;

5. Whilef(y) < threshold(f) sety = y − 1;

6. If stopping-conditions not met, goto 2.
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Define aquasi-basinas a contiguous set of points below threshold. Letα

define a threshold presenting some fraction of the search space. Suppose there

areB quasi-basins each containing at leastM points.

Theorem: Suppose that Subthreshold-Seeker is used to findB quasi-basins

each containing at leastM points. Forallα < 1/2 subtheshold-seeker beats

random search ifM >
√

NH(B−1)
B

.

√

NH(B−1)
B

does not referenceα becauseM is derived fromα.
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What about a simple bit climber using Gray Code?

Theorem: Given a quasi-basin that spans1/Q of a search space of sizeN

and a reference pointR inside the quasi-basin, the expected number of

neighbors ofR that fall inside the quasi-basin under a reflected Gray code is

greater than

⌊(log(N/Q))⌋ − 1

Corollary: Given a quasi-basin below thesholdα that spans1/Q of the

search space and a reference pointR that fall in the quasi-basin, the majority

of the neighbors ofR under a reflected Gray code representation of a search

space of sizeN will also be subthreshold in expectation when

⌊(log(N/Q))⌋ − 1 > log(Q) + 1
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This means that a simple “local search” bit climber can beat random

enumeration when restarted from a subthreshold points as long as on average

⌊(log(N/Q))⌋ − 1 > log(Q) + 1

Let N = 2100 and assume we want to largely sample a quasi-basin that spans

1/billonth of the space.

⌊(log(2100/230))⌋ − 1 > log(230) + 1

69 > 31

NOTE: An increase in precision increases⌊(log(N/Q))⌋ − 1

but does not increaselog(Q) + 1.
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10 bit Precision 20 bit Precision

Func ALG Mean Sub Evals Mean Sub Evals

ackley R-LS 0.18 62.4 19371 0.0001 75.1 77835

SubT 0.18 79.7 16214† 0.0001 89.9 73212†

grie- R-LS 0.010 59.5 13412 0.0045 80.3 66609

wangk SubT 0.005 80.1 9692† 0.0049 90.0 59935†

rana R-LS -49.6 49.5 22575 -49.76 74.2 3×106

SubT -49.4 57.6 19453† -49.83 85.0 3×106

Table 1: Local Search Results averaged over 30 runs. Threshold = 10 percent.

The† denotes statistical significance.
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