GECCO 2008 Tutorial / No Free Lunch

No Free Lunch: 1995-2008

Darrell Whitley
Colorado State University

Copyright is held by the author. GECCOO08, July 1216, 200& 4,
Georgia, USA. ACM 978-1-60558-130-9/08/07.

GECCO0-2008 -1

NFL: No Free Lunch

All search algorithms are equivalent when compared
over all possible discrete functions.

Wolpert, Macready (1995)
No free lunch theorems for search. Santa Fe Institute.

Radcliffe, Surry (1995)
Fundamental Limitations on Search Algorithms: SpringetagLNCS 1000.

No Free Lunch for Gray and Binary

All search algorithms are equivalent when compared
over all possible representations.

Copyright is held by the author/owner(s).
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Variationson No Free Lunch

For ANY measure of algorithm performance:

The aggregate behavior of any two search algorithms is atprivwhen
compared all possible discrete functions.

The aggregate behavior of ALL possible search algorithregiisvalent when
compared over any two discrete functions.

At each distinct “iteration” of search
the aggregate behavior of all possible search algorithiiBENTICAL at
each and every iteration.
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Variationson No Free Lunch

Consider any algorithmd; applied to functiony;.

On(4;, f;) outputs the order in whicH; visits the elements in the codomain
of f;. For every pair of algorithmd,, andA; and for any functiory;, there
exist a functionf; such that

On(A;, f;) = On(Ag, f1)

Consider a “BestFirst” local search with restarts.

Consider a “WorstFirst” local search with restarts.
For everyj there exists ahsuch that

On(BestFirst, f;) = On(WorstFirst, f)
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ENUMERATION is a search algorithm.

Thus, No Free Lunch implies that on average,
no search algorithm is better than enumeration.

Furthermore, because bias in search algorithms causedadfesus the
search, most are prone to resampling.

If resampling is considered,
“focused” search algorithms are WORSE than enumeration

NFL IGNORES RESAMPLING

GECCO0-2008 -5

An algorithm is modeled as a permutation
representing the order in which new points are tested.

Behavior is defined in terms of the evaluation function otitpu
which defines the co-domain of the function.
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Assume that one is given a fixed set of co-domain values.
Set of Functions = Set of Permutations.

BEHAVI ORS FUNCTI ONS
Al: 12 3 F1: A BC
A2: 1 3 2 F2: A CB
A3: 213 F3: B AC
Ad: 231 F4: B CA
As: 31 2 F5: CAB
Aé: 3 21 F6: CBA
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Assume(A > B)&(B > C).
Take 2 steps, return the maximum found.

FIL F2 F3 F4 F5 F6

Al

A4 B B A A A A
A5 A A B A B A
A6 B B A A A A

I
I
I
I
I
I
AB| A A A B A B
I
I
I
I
I
I
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NFL is just like sampling
from a grab bag.

Co-Domain: 123456

Values sampled so far:
361 ...
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Theorem:
NFL holds for a set of functions IFF
the set of functions form a permutation set.

The “Permutation Set” is the closure of a set
of functions with respect to a permutation operator.
(Schmacher, Vose and Whitley—GECCO 2001).

F1: 0012 F7: 0201
F2: 010 2 F8: 0210
F3: 100 2 F9: 1200
F4: 0021 F10: 2 00 1
F5: 0120 F11: 2 010
F6: 1020 F12: 2 100
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Machine Learning and NFL

11111
1 1
0 0
00|00
L1 ALL HD L2 ALL HD
00 O 00 1
00 01 1 10 01 2
10 1 10 0
11 2 11 1
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Theorem:
Given a finite set of N unique co-domain values, NFL hold oveetaof N!
functions where the average description length is O(N log N)

Sketch of Proof:

Construction a Binary Tree with N! leaves. Each leaf repmessene of the N!
functions. To just label each function requires log(N!sbiEach label has
average length log(N!) = O(N log N).

Note enumeration also has cost O(N log N).

Corollary:
If a fixed fraction of the co-domain values are unique, theo$ét! functions
where NFL holds has average description length O(N log N).

GECCO-2008 -12
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NFL holds over sets with 1 member.

F=0000

NFL holds over needle-in-a-haystack functions.

F1=0001
F2=0010
F3=0100
FA=1000
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The set of Binary strings is a permutation set

0000O 1
0001 0011 1
0010 0101 1
0100 1001 1
1000 0110 0
1010
1100

GECCO-2008 -14
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Let P(F') compute the permutation closure Bf whereF is a set of
functions.

LetK = |P(F)].

Then the average description length needed to distinghesmembers of that
setislg(K).

If Ig(K) is exponential, then the permutation setis-ompressible.

If lg(K) is polynomial, then the permutation setisnpressible.
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QUESTION:
How should we evaluate search algorithms?

Let 3 represent a set of benchmark¥(3) is the permutation closure ovar

If algorithm Siis better than algorithnT on
THEN T is better tharSon P(5) — S.

GECCO-2008 -16
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Algorithm1 Al gorithm 2
F1: 1 2 3 f(1l) -->1 f(3) --> 3
Set A F2: 1 3 2 f(1) -->1 f(3) --> 2
F3: 213 f(1) -->2 f(3) -->3
F4: 2 31 f(l) -->2 f(3) -->1
F5: 3 1 2 f(1) -->3 f(3) --> 2
Set B F6: 3 21 f(1) -->3 f(3) -->1
Algorithm 1 | Algorithm 2 | Difference
Set A 2 5 3
Set B 10 7 3
The cumulative difference must be the same
GECCO-2008 —17
Al gorithm1l Al gorithm 2
F1: 1 2 3 f(1l) -->1 f(3) --> 3
Set A F2: 1 3 2 f(1) -->1 f(3) --> 2
F3: 213 f(1) -->2 f(3) -->3
F4: 2 31 f(1l) -->2 f(3) -->1
F5: 31 2 f(1) -->3 f(3) --> 2
Set B F6: 3 21 f(1) -->3 f(3) -->1
Algorithm 1 | Algorithm 2 | Difference
Set A 1 25 15
Set B 2.5 1.75 0.75

Average difference is not the same

GECCO-2008 -18
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NO FREE LUNCH does not hold over the class of problems in N&y tire
not black box optimization problems.

For example, some problems in NP that have ratio bounds vdaictbe
exploited by branch and bound algorithms.

Even, so claims about which algorithms apply to which proidés a concern.
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Machine Correlated Jobs

e, -

Job Correlated Jobs

P J0b 1 Il o L] Job3

The PERMUTATION FLOWSHOP SCHEDULING PROBLEM.

Benchmark are typically generated randomly. Real-wortibgms may have
correlated structure. Job could beachine correlatedr job correlated

GECCO0-2008 -20
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JOB CORRELATED PROBLEMS. Performance of optimization aitns.
The degree of randomness is indicated along the x-axiseultind deviation
from the best-known solution is indicated along the y-axis.
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MACHINE CORRELATED PROBLEMS. Performance of optimization
algorithms. The degree of randomness is indicated along-theés, while the
deviation from the best-known solution is indicated alomg y-axis.
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S. Christensen and F. Oppacher
What can we learn from No Free Luncl&ECCO 2001

A SUBMEDIAN-SEEKER Type Algorithm

1. Evaluate a sample of points and estimate median(f).

2. If f(z;) < median(f) then sample a neighbor of.
Else sample a new random point.

3. Repeat step 2 until half of space is explored.

Assumef is 1-dimensional, a bijection, and we knewedian(f).

GECCO-2008 —24
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Let M (f) measures the number of submedian values of
that havesupermedian successors

There existd\l.,.;; such that whed/ (f) < M,
SubMedian-Seeker is better than random search.
SUBMEDIAN-SEEKER beats random enumeration when:

1. fis a uniformly sample polynomial of degree at mbstnd M,.;; > k/2

2. fis atruncated Fourier series of at médtarmonics uniformly sampled
over [0,1) atn locations andV/....;; > k/2

3. Each extremum of is represented by at least 6 points on average

GECCO-2008 -25
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Structure is Important

Random Number Generators produce functions that are in sestricted
sense compressible. But they are designed to have minimatste.

Consider “WorstFirst” local search again.
For everyj there exists ahsuch that

On(BestFirst, f;) = On(WorstFirst, f)

There are “structured functions” that do not fit our usualerobf being
“searchable.”
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NO FREE LUNCH and REPRESENTATION

Radcliffe, Surry (1995) Fundamental Limitations on Seakidorithms:
Springer Verlag LNCS 1000.

The behavior of any two algorithms are identical over allgiole
representations of a single function.

"NO-FREE-LUNCH-like” results

The behavior of any two algorithms are identical over overgat of Gray and
the set of Binary representations over all possible funstio

GECCO-2008 -28
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Counting Local Optima

The probability that string is a local minimun under an arbitrary
transformation of a k-neighborhood search space is:

piy=4x) i< vop W

GECCO0-2008 —29

R1—

(N-i) choose k

GECCO0-2008 -30
2603



GECCO 2008 Tutorial / No Free Lunch

The average number of local optima over all possible reptatens using a
k-neighbor search:

((N, k) = ‘ P(i) (2)

p(N, k) = N/(k+1) 3)

GECCO-2008 -31
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BINARY GRAY
000 0 000
001 1 001
010 2 011
011 3 010
100 4 110
101 5 111
110 ——~| 6 —— 101
111 7 100
Gray Matrix Degray Matrix
110 111
3-bits 011 011
001 00
11000 11111
01100 01111
5bits 0o 110 00111
00011 00011
00001 00001
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4-bit Binary Encoding 4-bit Gray Encoding
[1121] —[1120]  [1010] —J1011] [1121 ] — [1120 | —[1010 | — [1011]
15 | 14 | [ 10 | [[11 ] [ 10 | [[11 ] [12 ] [ 13 ]
( )
[1101 ] —1100]  [1000 ] —[1001 ] [1101 ] —1100]  [1000 | —[1001 ]
(3] [12] [8] [9] Lol | ? | [ ] [1a]
[0101 ] — 0100 | [0000 | —J0001 | [0101 ] — 0100 | [0000 | —[0001 |
Ls] [a] [of [z] \ ? oLz Lo | B
[0111] — Jo110]  [o010] — J0011] [0111 ]| — [o110 | — J0010 | — [0011 ]
L7 [el [2] [3] (s [« [3] [=2
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"NO-FREE-LUNCH-like” results hold over
very small sets of functions for Gray and Binary represéomat

F1  F2  F3 F(N-1) FN
X X | | |

BN Bl B2 B3 B(N-1) BN
NAYAYA YR YRS

Gl G2 G3 G4 G(N-1) GN

The length of this “chain” is at most 2L.
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Consider the integer-adjacency neighborhood.

1,2,3,4,5,6,7,8, ... N-3,N-2,N-1, N

We consider a WRAPPING Neighborhood
where 1 and N are neighbors.

(We can also consider a NON-WRAPPED Neighborhood,
where 1 and N are not neighbors).
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FOR WRAPPING FUNCTIONS

#F # of Min | # of Min
K Min | Gray Binary
512 512 1,024

14,592 | 23,040 | 27,776
23,040| 49,152 | 48,896
2,176 | 7,936 2,944

Sum | 40,320| 80,640 | 80,640

A W N | X

GECCO-2008 -38
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MINI-MAX: WRAPPING

K | Gray Wins | Binary Wins | Ties

1 | 448 0 64

2 | 6752 2288 5552

3 | 6720 6592 9728

4 |0 2160 16
Sum| 13,920 11,040 15,360
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Generating the Set of All Functions

‘\lOﬁU‘I-bwl\)l—‘O‘

Ry

Choose
Encoding

Fy

Count the Minima in the Set of All Functions

2

N 2
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A SubThreshold-Seeker

1. Evaluate a sample of points and estimat&rashold(f).
2. Pick pointr < threshold(f).

3. If f(x) < threshold(f)thensetr =z + 1 andy =z — 1;
Else sample a new random point.

4. While f(x) < threshold(f) setz = x + 1;
5. While f(y) < threshold(f) sety =y — 1;

6. If stopping-conditions not met, goto 2.

GECCO-2008 —42
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Define aquasi-basims a contiguous set of points below threshold. d.et
define a threshold presenting some fraction of the searatesfaippose there
are B quasi-basins each containing at le&époints.

Theorem: Suppose that Subthreshold-Seeker is used tadigdasi-basins
each containing at least/ points. Foralla < 1/2 subtheshold-seeker beats

random search if\/ > / %.

«/% does not reference becausé\/ is derived from.
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What about a simple bit climber using Gray Code?

Theorem: Given a quasi-basin that spang( of a search space of siZ€é

and a reference poink inside the quasi-basin, the expected number of
neighbors ofR that fall inside the quasi-basin under a reflected Gray cade i
greater than

[(log(N/Q))] — 1

Corollary: Given a quasi-basin below theshaldhat spand /@ of the

search space and a reference palithat fall in the quasi-basin, the majority
of the neighbors oR under a reflected Gray code representation of a search
space of sizéV will also be subthreshold in expectation when

[(log(N/Q))] =1 >1og(Q) + 1

GECCO-2008 -44
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This means that a simple “local search” bit climber can baatiom
enumeration when restarted from a subthreshold pointsngsas on average

[(log(N/Q))] =1 >1og(Q) + 1

Let N = 21%0 and assume we want to largely sample a quasi-basin that spans
1/billon'" of the space.

[(10g(2'%°/2%°))] = 1 > log(2%°) +1

69 > 31

NOTE: An increase in precision increaségog(N/Q))] — 1
but does not increadeg(Q) + 1.

GECCO-2008 -45
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10 bit Precision 20 bit Precision
Func | ALG | Mean| Sub | Evals Mean | Sub | Evals

ackley | R-LS | 0.18 | 62.4| 19371 0.0001| 75.1| 77835
SubT | 0.18 | 79.7 | 16214 0.0001| 89.9| 73212

grie- | R-LS | 0.010 | 59.5| 13412 0.0045| 80.3 | 66609
wangk | SubT | 0.005| 80.1 | 9692 0.0049| 90.0 | 59935
rana | R-LS | -49.6 | 49.5| 22575 -49.76 | 74.2 | 3x10°

SubT | -49.4 | 57.6 | 19453 -49.83 | 85.0 | 3x10°

Table 1: Local Search Results averaged over 30 runs. THoesHd® percent.
The T denotes statistical significance.
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