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e A Random Variables

* Regular variables
- Represents one or more values

« Used in equations or inequalities that places restrictions
on what values the variable can hold

¢ Random variables

-+ Same as regular variables with one addition
« Each value is associated with a probability of occurring
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Review of Simple

Statistical Concepts Part 1

Random Variables
Common Probability Distributions

Probability

Probability Function
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e’&,; Example Variables

Qe " 0.02,

.00 0.01,

,0.00 0.06,

.0.06 0.02,

0.02 0.00,
0.08 0.04,

,,,,, s OV
- 1 - F
008 0.05 %=y~ 0.09
Y=01X2-1 017 ¢10 0.14
1

‘wﬁ& Common Probability
e Distributions

¢ Uniform Distribution

« Discrete _
- All values are equally like 01
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1

- ie probabilities are all the same

0.1
0.05 ”
0 1 ]
X

P(¥)

Olo|([N[(o(a|d]|wWw]|N |-

[y
o
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N
6‘% Example Random Variables

Y=01X2-1 J

éﬁ& Common Probability

Distributions

2SR ISEUISE) * Binomial Distribution

+ Discrete
Probabiliy associated with a binomial
— rundom variable
« Bmomial random variable
Counts binomial (two state) events

Probability Function

B(X=xn, p)=[ Jp*(l— p)™*
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& Common Probability
Distributions

X=x;n=10,p=025 £ % o .
Bir=xn=10,p ' Binomial Distribution

. + Discrete
Probabilny associated with a binomial
random variable

« Binomal random variable
Counss binomial (two state) events

Probability Function

B(X =kn, p)=[Eka(1— Pt

LU,

< iy Common Probability
- Distributions
Normal (Gaussian) Distribution

+ Continuous
AKA Bell Curve
Most common continuous distribution
found in nature (we will see why later)
X—p)? ,

exp( ( 207

PIX=Xuo)=
wO)= T Tam
X ~ ‘\I(.uv Gz)

Standard Normal Distribution
X ~ N, 1
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@ e
@ﬁx Probability Density Function

The greater the density of observed outcomes, the larger the density

function’s value
Probability = integration of the density function within an interval

Note: probability for a point value is 0

Sisudq)

-
-
..'

& éﬁbx

* Linearity
+ Any linear combination of normally distributed
random variable is normally distributed

If X~ N(u, o» and Y ~ N(uy, 6,2
X+Y ~ N(uy+py 02 +07)
X=Y ~ N(uy — gy, 62 +02) {

Common Probability
Distributions

then

In General

v=Yax
i=l

Normally distributed
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Review of Simple
Statistical Concepts Part 2

Means and Variances

@ 33y . .
@ . Properties of Expectations
Linearity Composition

E(b)=b
E(aX+Db)=aE(X)+b
E(aX+DbY)=aE(X)+bE(Y)

E(E(X) =E(u)=p=E(X)

Similarly assuming that the expected
value of f(X) is defined and is equal
to the value denoted ¢

E(E(F (X)) =E(9) = ¢ =E(f(X))

where @, b, c are real numbers
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Mean vs Average

Expectation: taking the sum of the values of a random variable weighted by
the probability of their occurrence
- result called expected value or mean

u=E(X)=ipi->q (x.p)eX ipi =1

Average: the straight sum of the values of a population (a set that allows duplicates)
divided by the number of values n in the population

\7=Avg(P)=%Zvi v eP

i=1

If we have a uniform probability distribution mean = average

Variation in a Population

« Various Possibilities:

- 1) How different are the values from the average value:

@ Varl(P):%zn]vi -V

» Basic question:
» How much variation is there in the population?

- Canuse L,-norm

- Can use L,-norm i=1
- has nice mathematical properties when dealing with real values

- called variance
1 n
Var, (P) == (v~ ¥)°
i=1

- 2) Pair-wise Diversity 1 &&
@ Div,(P) =23 >,(v =V,
2n” 39
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& :".iﬁ Variance of a @ 3 e
. . : Various Variances
@ - Random Variable @ o

var(X) = E((X- 1))  AKA.th d deviati
i X)=E(X-w)?) e mean squared deviation Variance var(X) = E((X - p)?)

var(X) can be written as o2 or ¢

Standard Deviation
Variance is measured in unit?
So the standard deviation is

o = Jvar(X) = E((X - u)*) « Sample Variance var(X) = ﬁi("i -V)?

Statistical values are usually reported in terms of o
Most statistics are computed use variance

Variance of a Population var(X) = 1z:(\/I —V)?
n

i=1

® 4 . .
*,; Variance Properties

Basic Statistical Tests

Basic Properties

-
. . . o
1) Variance is never negative _ e
Because the squares are positive or zero LD *

2) If all elements of X are equal then var(X) =0
For example, the variance of 2, 2, 2,2 is 0

3) If some elements of X are unequal then the var(X) > 0 USil’lg Confidence Intervals

«  Point Estimation: Finding the Mean

Linear Transformations
var(aX + b) = a’ var(X)
Note: It follows that the variance in independent of the mean since

var(X — u) = var(X)

2644
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@ St
@ - What Are We Interested In?

*  For most statistical analysis for CS the question is
+ Is my new way better than the old way?
Statistically this translates into a statement about the
difference between means: “Is the difference between ‘my
mean’ and ‘the old mean’ greater than zero?”
»  We will approach this question in 2 steps:
1. What can we say about the true mean of a single distribution?
Called point estimation
2. How can we compare the true means of two or more
distributions?

Distribution of the Mean
(Standard Normal Distribution)

Mean of one sample Mean of 5 samples

A b

Mean of 25 samples Mean of 100 samples

2645

Y
6’&“ Distribution of the Mean

« Consider the distribution of the average of a set of
independent samples

« 1f n = 1, the distribution of the average is just the distribution
itself, since we have only the single data point

« If n is larger than one, the distribution of the mean must be
narrower than the distribution of the population

- i.e. the variance and standard deviation must be smaller

+ In fact, the standard deviation of the mean of n samples is

given by G, = o

~n

® ok
’b; Confidence Intervals

* As the “finger” gets narrower, the mean of the samples
approaches the true mean

» We’d like to say that in the overwhelming majority of
all possible experiments, the true mean of this
distribution will lie within a specified interval

« Example: In 99% of cases, the true mean of the distribution,
estimated from our 50 samples, lies within the interval
[ 64,79 ]— called a confidence interval for the mean
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t Distribution

* Of course, we don’t know the true mean, i, or true standard
deviation, o B
* We do know the mean of the samples, X, the sample size, 7,
and the sample standard deviation, s y
+ If the source distribution is normally distributed, the shape and
size of the “finger” is known exactly!
+ We can determine the odds that the true mean lies within a
specified range of X
+ The distribution of the sample average follows a
t distribution with n - 1 degrees of freedom, where
o (X-p _(X-p

Sy Sy /

/In

Distribution of Sample Variances

» Remember when we square a random variable
4 « the probabilities “double-up”
‘ A « changes the probability distribution

|

|

Y=01X2-1 J
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& @sg

What is the T random variable’s distribution?
We know that the sample average is normally distributed

+ Sum of normally distributed random variables is normally distributed

t Distribution

S0 numerator is normally distributed

Standard Deviation based on Variance var(X)= E((X - u)?)
« 1ke square of a random variable has a different distribution
+ sv what is the denominator’s probability distribution?

o X=) _ ()7—//1)
Sx Sx /

/n

-
-
..'

& é;@

* Variance has a Chi-Squared Distribution
« Sample variances have different Chi-Squared distribution

- Depends on the number of samples
« Called degrees of freedom

Chi-Squared Distribution
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t Distribution

¢ What is the T random variable’s distribution?

*  We know that the sample average is normally distributed

+ So numerator is normally distributed

« Standard Deviation, based on Variance
« so the denominator has a Chi distribution ~ var(X) = E((X - ,u)z)
* A normal divided by a chi distribution produces a T distribution

o X=) (Y—,y)
Sy Sy /

/In

@ 3 e

Estimating the Mean:

% Confidence Intervals Around the Average

If samples taken from a standard normal distribution (L =0, ¢ = 1),

Based on 50 runs
a=0.05
l 95

the sample average has a t distribution.
i t°'—§5 (49)=2.01 » For Confidence Intervals, we can
use cutoff t values
The wider the cutoff values,
the more likely the true mean

%

2,01 o 200 Tl b h
B too (49)=2.68 Willfal etween them
o =0.01 2 (49) <« is the probability of obtaining
99% values outside the cutoffs
- |7, R PRRNSE:- N e Confidence Level is1—-a
288 o 268 « Cut off t values can be computed
o =0.001 t%(49) =3.50 using Excel: =TINV(a, n - 1)
99.0% * Note: TINV() is already 2 sided
»3’.5L0’/’ S0 3.50
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@ S iy

..."’ — ‘
t Distribution

P

+ The ¢ “distribution” is really a family of distributions — the
shape of the distribution changes as the number of samples, 7,
changes

I'his parameter is called the
degrees of fireedom of the
distribution

In the limit of many d.f,
1 distribution approaches
a standard normal
distribution

™~

99 d.f.; n=100

9d.f;n=10
4d.f;n=5

o jﬁ Estimating the Mean:
= Confidence Intervals Around the Average

We know that -
7= -Hy)

Sx/
 n

Using the *t, (n—1) cutoff t-values we can form a Confidence Interval
2
that hasa 1 - o C.L with n - 1 degrees of freedom
Substituting the cutoff values from the C.I. into the above equation produces

t1,(n=1) =()§j7/”‘)7)

which can be rewritten as - Sy
Uy =XTt,(n—-1)—%
X S
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* S ’& Estimating the Mean:
@ = Confidence Intervals Around the Average

+ Confidence Intervals can be written in 3 equivalent ways

Error Bounds

Ly :Yit%(n—l)%

Confidence Intervals
- S - S
X—to(n=-DX <y, <X +t,(n-D)=%
7( )\/; :uX 7( )\/Z

,uXeli)?—t%(n—l)%,)?+t%(n—l)%}

P * Estimating the Mean:
% Confidence Intervals Around the Average

From the problem we know that the average NEA run produced tours of

X =272 thathad sy, =87

s
We know that ULy =Xit%(n—l)TX
n

Also from the problem » =50 and o. = (1 - 0.99) = 0.01

so the +t cutoff value is t% 50-1H= t% (49)
using Excel we see that TINV(0.01,49) is 2.68

i.e. thereisonly a

1% chance that the true
mean lies outside the
confidence interval

SXO = X+0.38s,

) U, =X£2.68

andso 239 < py <305 witha99% C.L. formed around average
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@ 3 H

Estimating the Mean:
% Confidence Intervals Around the Average

Example

An experimenter runs a New Evolutionary Algorithm on a TSP

At the end of each run, the smallest length tour
thar had been found during the run was recorded

NEA is run 50 times on the same TSP problem

« On average NEA found solutions with a tour length of 272

I'he standard deviation of these tours is 87

\We want to compute a Confidence Interval using a 99% Confidence level

ééiﬁ

Basic Statistical Tests

<

% Comparisons:
Non-Overlapping Confidence Intervals
and the Student’s T Test
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@ * Using Confidence Intervals to

= Determine Whether My Way is Better

If we have two different EC systems how can we tell if one is better
than the other?

Trivial method: Find confidence intervals around both means
. If the CIs don't overlap

Then it is a rare occurrence when the two systems do have identical means

The system with the better mean can be said to be better on average with a
probability better than the Confidence Level

. If the CIs do overlap

Can't say that the two systems are different with this technique
Either:

1. The two systems are equivalent

2

2. We haven't sampled enough to discriminate between the two

@ 3 4
éﬁh’; Confidence Interval Example

-75

_2.50 ‘7.9 75
- ,- “ F ,‘_‘:‘ - :.‘:‘ -
. .o PR .
B2 B TP Ll L)
[ : ] :
95% Confidence Level
u o n X Sy 1»96% Lower | Upper
+10 50 100 79[ 47.1 9.2 -1.3 17.1
-10 50 100 -2.51 52.1 10.2 -12.7 7.7
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\ -
-
«

@ S iy

. Confidence Interval Example

-75 _9‘_7 0 10‘.5 75

95% Confidence Level

u o n X Sy 1963ﬁ Lower | Upper
| 10 100 10.5] 10.0 33 721 13.8
10 10 100 -9.7( 10.1 33 -13.1 -6.4

Improving the Sensitivity:
. The Student ¢ Test

e The Student ¢ Test is the basic test used in statistics

+ Idea: Gain sensitivity by looking at the difference between the
means of the two systems

« If there is no difference between the actual means of the 2
systems

- then the difference between the sample averages should be 0,
with some error that should follow the 7 distribution
- this is because the difference btw 2 normal distributions is also normal
« so the sample average should be a ¢ distribution as usual
- now we can see if the computed difference of the sample

averages falls outside a confidence interval (for some o) for the
t distribution




Based on 50 runs I
o =0.01 _ _
99% X, - X
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The Student ¢ Test

Where the normalized difference falls on the t distribution determines whether
difference expected if both systems were actually performing the same

* Normalized difference called the t score

t score =
Sx,  Sx
il R A
noom
- Distribution again differs for different
sample sizes

+ Degrees of Freedom is now
=n +tn,-2

- ttest either succeeds or fails

« t score greater than cutoff for a
given C.L. or not

288 g 268

“w»ok L

- t Test Step by Step

Compute the 2 averages X, and X,
Compute standard deviations s, and s,
Compute degrees of freedom: n; + n, - 2
Calculate T statistic: 7 = M

51,52

— + <=
Compute the p-value n

«  p-value = the area under the 7 distribution outside [-7, 7]
+ Use =TDIST(T, n, + n, - 2, 2) in Excel

The final “2” in Excel means “two-sided”

2650

The Student ¢ Test: p-values

Based on S0 runs

/ < The cut-off values produces a binary
0.5 decision: true or false
— * loses information
- Better to report the probability that two
systems are different
= This is the complement of the probability
that they are the same

1 — Pr(T < ¢t score)

/ \ - Called the p-value
i o001
N

o=
-
HK

-
-
..'

@ 3 Uy t Test with Binary
% Distributions

» Often, we are counting the number of successes versus the
number of failures
same as counting the number of heads vs number of tails in a coin flip

_ * This produces a Binomial
,, Distribution
b is the binomial count for the n
repetitions
+ i.e. the number of successes

- the number of repetitions are called
Bernoulli trials

« pis the true probability of success

« g =1 - p is the probability of failure
""""" ) © B~B(n,p)
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t Test with Binary
Distributions

» Often, we are counting the number of successes versus the
number of failures
- same as counting the number of heads vs number of tails in a coin flip
- * Binomial Distribution
mE © E(b)=np
+ Var(b) = np(1 - p)

© 0, =+/np(1-p)

Tests on Non-Normally
Distributed Random Variables

Central Limit Theorem
Data Reexpression
Non-Parametric Statistics

2651

& 6;@

P = b/n is a random variable that equals p as n— ©
The sample standard deviation is

11— [p@p_ PP
o, =20,=2 @ p)\/ : _\/ :

I'he error bounds would be

t Test with Binary
Distributions

o
p=Pit%(n—1)\/M

I'wo compare two Binomial Distributions, use the # Test using
the above standard deviation and success frequency

@ 384
@ . Assumptions, assumptions

» All we have said so far applies only if the source distribution is a
normal distribution

*  What if the source distribution is not a normal distribution?
» In EC, the source distribution is rarely normal!
» Fortunately, there is one nice property that can help us out

» The Central Limit Theorem: the sum of many identically
distributed random variables tends to a Gaussian

» Equation of the mean:
_1ax
X==-Yx
=1

+ So the mean of any set of samples tends to a normal
distribution
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P
G‘E Central Limit Theorem

* The sum of many independent, identically distributed (IID)
random variables approaches a Gaussian normal curve

* E.g. Uniform distribution on [0, 1]:
Mean of one sample Mean of two samples

« Mean of one sample Mean of two samples

& é‘ Exponential Distribution

>

ﬁ H NN

Mean of five samples Mean of 25 samples

| S —
@ 3 He
- Central Limit Theorem
+ E.g. Uniform distribution (continued):
) Mean of five samples Mean of 25 samples
< T E =PI T
@ * Binomial Distribution (p =0.1)
6 « Mean of one sample Mean of five samples
j
. | N
Mean of 25 samples Mean of 100 samples
i |
(N
| |
i "
’ \
.. .
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When The CLT Fails You

» Everything we have done so far depends on
the Central Limit Theorem holding
- But this is not always true
« Inin many areas of CS it rarely holds
* Problems occur when
+ ...you have a non-zero probability of obtaining infinity
+ Mean and standard deviation are infinite!
 ...the sample average depends highly on a few scores

+ When the mean of your distribution is not measuring what you want,
consider using the median instead (rank-based statistics)

+ ...youdon’t know how fast your sample series converges to normal

- if your sample average distribution converges very slowly than the number
of samples may be insufficient to assume normality

P Testing for Normality

e

» It would be nice to know if a random variable is normally
distributed

« To see if reexpression worked

+ (or if there is no need for remedial measures)
* Many approaches

+ Jarque-Bera test

+ Anderson-Darling test

« Cramér-von-Mises criterion

« Lilliefors test for normality

+ Variant of the Kolmogorov-Smirnov (KS) test

» Pearson's chi-square test

+ Shapiro-Francia test for normality

+ Regression on a normality plot

2653

So what should we do?

There are 4 approaches:
Test for Normality

Transforming data to make them normally distributed
also called data re-expression
traditional approach

Rz-sampling techniques

Non-parametric statistics

@

...
- 4

o078

=

Testing for Normality:
Normality Plot

* Normal Distribution Plot is a scatter plot

« Compares with data that one would expect to
be produced from a normal distribution

- If there is a good correlation with your data,
then it is normally distributed

- Scatter plot produces a straight line
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... — ... —
-

@25 i& Testing for Normality: 'S ib‘ Testing for Normality:
@ N Normality Plot - Normality Plot

 To create a normality plot Computing a rankit

 Produce known values from a standard normal distribution
+ Generate linear cumulative probabilities
. (ranky+0.5)/n
« Compute Z-values
- Use the inverse normal function

- Takes a probability and produces the Z-value z that ‘produces’ it p= 0.75
when the standard normal curve is integrated from -oo to z

- In Excel - NORMSINV(p), where p is a probability
+ We would expect these values to be produced by n samples from a
standard normal distribution
- Called rankits

N - L

-
-
..'
-~

- Testing for Normality: -3 Testing for Normality:
. Normality Plot . Normality Plot

-
-
..'

* To create a normality plot . Normality Plot: not normally distributed
+ Sort data

+ Compare sorted data with rankits using a scatter plot
+ Called a normal probability plot, normality plot, or rankit plot
« If linear, can assume normal distribution
- The more linear, the more normal
« To compute how linear:
+ Add a linear least square regression line to the displayed series
- Compute 72

- anumber between 0 (uncorrelated) and 1(linear/correlated)

- Heuristic: if 2> 0.92 data can be treated as normally distributed
if r2> 0.87 data may be normally distributed
0.w assume not data is not normally distributed

2654
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?“.iﬁ Data Transformation /
. Reexpression

» Basic idea
- transform data so that result is approximately normal

» Reexpression Heuristics

Type Reexpression Function

Categorical N/A

Counts X =X

Amounts since X > 0 it is often skewed; then X — log(X)
Balances often difference of two amounts

if so transform amounts and take difference or ratio

if X> a treat X — a as an amount
Bounds if a > X treat a — X as an amount
if a <X <b treat (X — a)/(b — a) as a counted fraction

Counted Fractions
(int num / int denom)

p—(1-p) or log(p/(1-p)) or Gau™(p) or 2sin*(Jp-=/2)

etc.

. Non-Parametric Statistics

» Basic Idea
+ Sort the data and then rank them
« Use Ranks instead of actual values to perform statstics
* Also known as
 order statistics,
« ordinal statistics
 rank statistics
* Measures how interspersed the samples are from the 2 treatments
« If the result is “alternating” it is assumed that there is no difference
» Can’t be affected by outliers (extrememly large or small values)
« Just the highest or lowest rank
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@ 3 H

P

Resampling

+ Estimate the precision of sample statistics
(medians, variances, percentiles) by using
drawing randomly with replacement from a set of data points
- Bootstrapping
subsets of available data
« Jackknife
+ Also used in machine learning for training/testing: n-fold validation
« performing significance tests
Exchanging labels on data points
+ Permutation test

- A type of non-parametric statistic

-
-
..'

® 3 i

- Non-Parametric Tests

» Reason behind the appropriateness of non-parametric tests
+ Both the sum of ranks and average of ranks will be approximately
normally distributed
- because of the Central Limit Theorem,
- as long as we have 5 or more samples
- result is independent of the underlying distribution

* Ranked T-test

» Perform a ¢ test on the ranks of the values
- instead of the values themselves
2 other techniques with similar results are commonly seen
« Wilcoxon’s Rank-Sum test
+ Mann-Whitney U test
« All are effectively equivalent
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How To Rank the Data

* Augment each data point with a treatment identifier and
an additional slot for its rank

» Sort the data sets together by value

« record the ranks of all values in their rank slot

- assign the average rank of tied values to each tied value

* Resort by the original order thus splitting the data sets back out
 keep the combined ranking with each data point

* Apply your ¢ test on the ranked values

@ 3 e

0.99

0.91

0.91

0.64

>|>(>|>|>

0.64

0.64

0.64

0.27

0.27

0.16

0.16

0.16

0.16

0.16

0.08

0.03

0.03

0.03

0.02

0.01

Combine the data into a
single array and sort

Ranked Example
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@ 3 H

P

0.03

0.91

0.64

0.99

0.64

0.16

0.16

0.91

0.16

S| (>|>[>>|>(>>]|>

0.27

0.64
0.08
0.16
0.27
0.02
0.01
0.16
0.03
0.03
0.64

Two sets of Data

Ranked Example

Give each data element

its corresponding rank

A |0.99 1
A |0.91 2
A |0.91 3
A | 0.64 4
A | 0.64 5
0.64 6
0.64 7
A | 0.27 8
0.27 9
A |0.16 | 10
A |0.16 | 11
A |0.16 | 12
0.16 | 13
0.16 | 14
0.08 | 15
A |0.03| 16
0.03 | 17
0.03 | 18
0.02 | 19
0.01| 20

Ranked Example
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B 11
& ‘“ * A |0.99 1
A0Sl 2l Average tied ranks
w [AJOS1)] sld together
A [ 0.64 4 1t2
A | 0.64 5|t2 2.5
= |o64| 6|t2 5.5
= | 0.64 7|2 8.5
0.27| 8|t 12
= 0.27 9|t3 17
A | 0.16 10 |t4 . .
NEaEaM Identify ties
A |0.16 | 12 |t4
=11 0.16 | 13 |t4
=016 | 14 |ta
=1 | 0.08 15
0.03| 16 15
=1 | 0.03 17 |t5
=1 | 0.03 18 | t5
=1 | 0.02 19
Jooi] = Ranked Example
S, ———wme
0 ‘a-* A | 0.99 1
A [0.91]| 25
K‘ A [ 09125
A | 0.64 | 5.5
A | 0.64 |55
A | 0.27 | 8.5
A [ 0.16 | 12
A [ 0.16 | 12
A [ 0.16| 12
A 1003) 17 Resort by treatment
:1 | 0.64 |55
:1 | 0.64 | 5.5
=1 | 0.27 | 8.5
= | 0.16 | 12
= | 0.16 | 12
=1 | 0.08 | 15
B 0.03| 17
=1 | 0.03 | 17
=1 | 0.02 | 19
2 Ranked Example
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S R — 1
0 \‘ * A |099| 1
A 109125 |l Average tied ranks
3; A [091|25]|t1 together
A [0.64 |55 |t2
A | 0.64|5.5|t2 2.5
= |0.64 55|t 5.5
=1 10.64 |55 |t2 8.5
0.27 [ 85 |13 12
| 0.27|85]|t3 17
A |0.16 | 12 |t4 -
aTois| 121w  Replace tied ranks
A lo1e| 12|t With average tied ranks
=016 12 |t4
=1 10.16 | 12 |t4
=1 0.08 | 15
0.03| 17 |15
=1 0.03| 17 |t5
=1 0.03| 17 |t5
= 10.02| 19
o0 20 Ranked Example
-
1.
0 0‘ A 099 1
A [0.91]| 25
2 [Alosies Perform t test on Ranks
A | 0.64 | 5.5
A | 06455 Avak Brank
A |027]85 avg 7.85]13.15
A |0.16| 12 stdDev | 5.28 | 5.33
A | 0.16 | 12
A [016] 12 Ranked 7 Test
A | 0.03| 17
:1| 06455 si Slzg
5 |oe6a|s5 Sp =4t 2.37 n=10
. - ny npg
=1 | 0.27 | 8.5
o6 12 (avg4—avgp)/sr 2.23 t,, score
Cll 0.16 | 12 p-value 0.038
=1 | 0.08 | 15
=1 | 0.03| 17
=1 | 0.03 | 17
=1 | 0.02 | 19
2 S Ranked Example
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@3
’& Ranked ¢ Test: What do we pay?

 t Test is optimized for the normal distribution
¢t Test on the ranks is not

« How much do we pay?

Distribution # Samples # Samples for # Samples of
fort Test | ¢ Test on Ranks normalized to 50
runs of ¢
Normal 31 32 52
Exponential 29 16 27
Uniform 31 34 55
Bimodal 31 34 54
Chubby Tails 40 12 15

@38 ‘ﬁ A Confidence Interval Around
* the Median: Thompson-Savur

* Find the b the binomial value that has a cumulative
upper tail probability of o/2
» b will have a value near n/2

* The lower percentile / = %

* The upper percentile u =1 —/

+ Confidence Interval is [value,value,]
« i.e. valug < median<value,
- With a confidence level of 1—¢

2658

@34y A Non-Parametric ‘Mean’:
6 . The Median

+ Average of a data set that is not normally distributed
produces a value that behaves non-intuitively

« Especially if the probability distribution is skewed
Large values in ‘tail’ can dominate

- Average tends to reflect the typical value of the “worst” data
not the typical value of the data in general

* Instead use the Median
+ 50" percentile
. . .. . n+1 .
« Counting from 1, it is the value in the - position
« If n is even, (n+1)/2 will be between 2 positions,

average the values at that position

@38 ’@ A Confidence Interval Around
@ “  the Median: Thompson-Savur

e In Excel:

» To calculate b use
CRITBINOM (n, 1/2,0/2)

« to compute the value, use the function
PERCENTILE (dataArray, u)

- to compute the value, use the function
PERCENTILE (dataArray, /)
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\.... N ‘
@ i& A Confidence Interval
* Alternative to the Ranked ¢ Test

« Find the median confidence interval for the two data
scts
If the confidence intervals do not overlap
« Data sets are taken from different distributions

« With a confidence level of 1 - a where a is the upper tail
probability used in computing b

+ Advantages:

« Gives better understanding of system

- see median values with error bounds

- Easy to draw and productive on a graph
+ Disadvantage:

- Not as sensitive as the ranked ¢ test

ol ——
o 85k
. Does My Difference Matter?
* Okay, so your results are significantly better than the
published results. So what?
- Statistics can answer, “is it better?”, but not “does it matter?”
* You perform 100 000 runs of your classifier and
100 000 runs of the reference classifier
* You geta ¢t score of 31.6! ©
+ The p-score is reported by Excel as 0! (Actually 2.0x10-21%)

+ But...your way classifies data at 91.0% accuracy, whereas the
reference technique classifies at 90.8% accuracy.

» Not much difference!
- Especially if your technique is much slower than the reference way

2659

Effect Size and Repetitions

Cohen’s d’
Hedges §
Number of Repetitions

@ 3 iy

=

Measuring Effect Size

* One statistic for effect size: Cohen’s d’

. t
o d'is computed byd'=—-———
P Y 4= iy +10)/2
» Measures the difference between means in terms of

the pooled standard deviation

+ Cohen suggests that 0.25 is a small difference; 0.50 is
a medium-sized difference; 0.75 is a large difference

« For our example, d'is 0.10
- Essentially an insignificant difference

* Problem: we did too many runs!
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Hedges’ g

* Problem with Cohen's d’
+ d'is independent if sample sizes
- Generally good, but there is a problem
- If one variance is larger than the other
- the denominator is weighted in that direction
- the effect size is more conservative
» But it makes more sense to put stock in the larger sample size
* One solution: Hedges' §
« Hedges and Olkin (1985)
- Balances respective variances with sample size

e
(n,—1)o?+(n,-1)o? 4(n+ny)
n+n,-2

b

z :::.;ﬁb .
@ . Perils of Stats for EC

* Don’t confuse Population averages with Best-of-Run
averages!
+ In any GA or GP, the average of the population tells you
almost nothing of interest
» Use the median of the best-of-run,
- do the WHOLE experiment several times
 In GP use the tree size of the best-of-run individuals as well!

- They are the Heroes — hence they are of interest, unless you’re really
looking to optimize average tree size during evolution

2660

Perils of Stats for EC

» We can generate lots of data very quickly
+ Leads to over-complicated experimental designs
« Always draw a scatter plot or histogram of your data!

+ This alerts you to strange things
¢.¢. the mean is very bad, but some individuals are very good

« Always record the performance of ALL the individuals
* You’ll need this for doing the ¢ test on the ranks
« In EC, we mean ALL individuals of interest; i.c. best of run

& i,@

: Repetitions

* What is the number of repetitions needed to see
if there is a difference between two means or
between two medians?

+ Depends on the underlying distributions

- But underlying distributions are unknown
* Rule of thumb
- Perform a minimum of 30 repetitions for each system
- Performing 50 to 100 repetitions is usually better
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Multiple Levels and Factors

@ 3 e
@ = Multiple Levels
Post-Hoc Analysis: Bonferonni Correction
Simple Intro to Multiple Factors

Factorial Design

Multiple Levels:
o Post-hoc Analysis

* For 4 levels of mutation there are 6 comparisons possible

« Each one of the comparison holds at a 95% C.L. independent
of the other comparisons

« 1f all comparisons are to hold at once the odds are
095x0.95x0.95x ... x 0.95=(0.95)°=0.735

+ So in practice we only have 73.5% C.L
Wrong 1/4 of the time

= For 7 levels of mutation there are 21 comparisons

possible
« C.L,= (0.95)2' =0.341
Chances are better than half that at least one of the decisions may be
wrong!

2661

More Than 2 Treatments

* Preceding stats to be used for simple experiment designs
* More sophisticated stats needs to be done if:

» Comparing multiple systems instead of just 2 treatments

+ E.g. comparing the effect on a Genetic Algorithm of using
no mutation, low, medium and high levels of mutation

- We say there are 4 /evels of the mutation variable

4 . . .
- Need [zJ: 6 possible comparisons to test all pairs of treatments

« Called a ‘multi-level’ analysis

-

@ 3 The Bonferroni Correction
. for Tests
« To correct, choose a smaller o
o=
m

« Where m is the number of comparisons

+ So for 95% CL use o = 0.025/6 = 0.004167

« For a Z test the critical value changes from 1.96 to 2.64
+ Called a Bonferroni post-hoc correction

+ Other post-hoc techniques such as Tukey and Scheffé that are more
powerful than Bonferroni; also Holm’s and Sidak’s procedures can be useful

* You should apply the Bonferroni correction:
« Tot tests (¢ tests and ranked ¢ tests)
+ To Confidence Intervals and Error Bounds
+ Whenever you mean "all the significant results we found hold at once"
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@384y The Bonferroni Correction
. for Experiments

» The Bonferroni Correction is more widely applicable than
just for multi-level comparisons
* We really need to control for the dilution of the confidence
levels throughout the study, whether or not the CLs are
applied to analyses of independent 'phenomena’
« We must divide the o used for each CL test by the total number of CL
tests in the study
» To apply the Bonferroni correction to p-values multiply the
p-values by the number of CL tests performed
« “Probabilities” bigger than 1 means “not significant”

Multiple Factors

* Most of the time, there are many different properties
we are interested in studying
- e.g. We may be trying out various kinds of crossovers, with
and without mutation, under different selection pressures
+ Each of the above parameters has multiple levels
« This is called a multiple factor analysis
- with each factor having multiple levels
+ Use Analysis of Variance or General Linear Models to
analyze
- See text books on ANOVA and GLMs

2662

@34y The Bonferroni Correction
. for Experiments

« Example:
A robot dog has been created
« Genetic Programming is used to control the ear wiggles of the robot
+ a Genetic Algorithm is used to optimize its tail wagging ability
A study is being done to improve both the ears and the tail
independently, and we want to be 95% confident in our over
all tests
« For the ears the GP is tested with 3 different sets of terminal nodes
« For the tail the GA is tested with 4 different fitness functions

3) (4
« There are [2 J+[2 J: 3+6=9 total CL inferences used in the study

- Consequently the o used for any CL should be &= 0.025/9 =0.0028

Multiple Factors:
’ Factorial Design

* When dealing with multiple factors with multiple levels
« Important that all combinations of factor levels are tried
A given combination of factor levels is called a treatment
- If you want accurate information about each possible
interaction, each treatment should be repeated at least 30
times

- If you interested largely in main effects, 10 repetitions is often fine, if
you have enough levels
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Multiple Factors:
Factorial Design

E.g. if we have 2 EC systems, new and standard (New and Std)

and we want to see their behavior under

+ crossover and no crossover (x and-%)

3 different selection pressures (p1, p2 and p3)

tl | 2 [ t3 [ t4 [ t5|t6|t7[t8[t9 |tlO|tll|tl2
S | New | New | New | New | New | New | Std | Std | Std | Std | std | Std
X [ X | x| |x|x|x|x|x|*x|x]|=*
Pipl|{p2|p3|pl|p2|p3|pl|p2|p3|pl|p2]|p3

Statistical Myths

A fun summary...
with some new information

2663

Multiple Factors:
Factorial Design

+ It we are performing 50 reps per treatment
« In previous example we have
SxXxPx50=2x2x3x50=12x 50 =600 experiments
to perform
* The number of experiments goes up as the product of
the number of levels in each factor
« This is exponential in the number of factors
+ Consequently, carefully choose the factors and factor levels
that you study in your experiments

+ Minimize what factors you vary
(focus your experiments on the relevant factors)

&"

R Top 5 Experimental Analysis
Myths in CS

1. Results from 1 run is all that is needed
No, shows only proof of concept
ii.  The best value achieved in a set of runs tells you something
about the population distribution
. No
iii.  Using the same random number generator seed for both
systems provides a fairer comparison
It doesn't - it’s the statistical properties of the system that we are
looking for
iv.  One system is obviously better than the other when looking
at the data or graph - no statistics necessary
If it is so obvious, then will be easy to show statistically
might as well do the stats
shows that you are objectively confident in your conclusion
v. "My average is better than yours" means "my technique is
betfer than yours"
. In the best case you would need to take variance into account
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& ~‘:~°iﬁ Top 12 Statistics Myths in CS

o

1. My mean result being better than yours means my technique
is superior to yours
. In the best case you need to perform a  test to assert this claim
2. Reporting the mean value of a statistic is good enough
. You need some representative range
Reporting the mean and standard deviation of a statistic is
good enough
. Need number of runs
4. Your data are normally distributed
. Not usually

(O8]

-
e .. ¢ . . .
@ 3 is Top 12 Statistics Myths in EC
=
9. Reporting the results of several comparisons where each is made at a
95% confidence level means that all conclusions are valid simultaneously
Nope; need Bonferroni correction for that too
10.  95% confidence intervals can be computed using the sample mean + 1.96
standard deviations of the mean
Nope; need the Student's ¢ score given your degrees of freedom
11.  An experimental setup where more than one parameter is varied can be
treated like one where exactly one parameter varies
Need ANOVA, MANOVA or regression
12. One can infer trends from observed data beyond the data you’ve
generated

Generally, this would be a consequence of some model, and you probably
haven’t supported said model with enough experimental data
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& ‘::i'b Top 12 Statistics Myths in EC

~

The mean performance of the best-of-run individuals of your
system is what matters
It’s usually the median you want
t 10 runs is enough to show significant differences
between groups
It can be, but the statistics required to show this are hairy
95% confidence levels are generally sufficient
Try 99.9%
Drawing 95% confidence intervals around each sample mean
on a graph implies that it’s a rare event if any of the true
means fall outside the Cls
Nope; need Bonferroni correction

&

.

o5

- References

+ Slides online:
http://www.scs.carleton.ca/~schriste/tamale/Using AppropriateStatistics.pdf

 Hyperstat Online Textbook:
- http://davidmlane.com/hyperstat/index.html
- Statistics textbook for psychology students
- Easy math, nice examples. ©
« Statistics Chapter of Numerical Recipes in C
- http://www.library.cornell.edu/nr/cbookcpdf.html
« Chapter 14, “Statistical Description of Data”
- Very detailed, more for advanced users




