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ABSTRACT

Legged robots are useful in tasks such as search and rescue because
they can effectively navigate on rugged terrain. However, it is diffi-
cult to design controllers for them that would be stable and robust.
Learning the control behavior is difficult because optimal behavior is
not known, and the search space is too large for reinforcement learn-
ing and for straightforward evolution. As a solution, this paper pro-
poses a modular approach for evolving neural network controllers
for such robots. The search space is effectively reduced by exploit-
ing symmetry in the robot morphology, and encoding it into network
modules. Experiments involving physically realistic simulations of
a quadruped robot produce the same symmetric gaits, such as pronk,
pace, bound and trot, that are seen in quadruped animals. More-
over, the robot can transition dynamically to more effective gaits
when faced with obstacles. The modular approach also scales well
when the number of legs or their degrees of freedom are increased.
Evolved non-modular controllers, in contrast, produce gaits resem-
bling crippled animals that are much less effective and do not scale
up as a result. Hand-designed controllers are also less effective, es-
pecially on an obstacle terrain. These results suggest that the modu-
lar approach is effective for designing robust locomotion controllers
for multilegged robots.

Categories and Subject Descriptors
1.2.6—Connectionism and Neural Nets; 1.2.9—-Propelling Mechanisms

General Terms

Design, experimentation, performance

Keywords

Modular neuroevolution, coupled cell systems, multilegged robots,
controllers, locomotion

1. INTRODUCTION

Legged robots have better mobility than wheeled robots on rugged
terrain. They can step over obstacles and use footholds to navigate
on broken ground. They can even be designed to walk on vertical
walls or climb trees. A robot with multiple legs may also be able
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Figure 1: Phase relations between legs in the pronk, pace, bound
and trot gaits of quadrupeds. The arrows show the forward di-
rection, and the numbers as well as the colors indicate phase
of leg movement. In the pronk gait, all four legs move syn-
chronously, while in the other gaits pairs of legs are synchronous
and a half-period out of phase with the other pair.

to tolerate failure of one or more legs and still complete its mission.
For these reasons, legged robots are ideal for tasks such as search
and rescue, and remote exploration.

Controllers for legged robots are usually designed manually, to
ensure that the legs are properly coordinated and the robot is stable.
This process typically requires analyzing the sensor-motor systems
and body-limb dynamics of the robot [5, 14, 16, 24], which is gener-
ally difficult and brittle because it is hard to anticipate all possible
terrains. Therefore, it is desirable to automate the controller design
using learning techniques. One particularly promising such tech-
nique is neuroevolution, which has been shown to perform well in
various control domains such as pole balancing [11], rocket con-
trol [10], robot control [8], and agent control in games [29]. How-
ever, the control outputs in such applications have been relatively
simple, and it turns out hard to scale them up to multilegged loco-
motion, where there are many outputs.

However, legged robots typically have a symmetric morphology
that can be utilized in controller design and learning. Symmetry re-
duces the search space for the learning system, and results in more
regular and robust controllers. Taking such symmetry into consider-
ation, researchers have evolved modular networks of leaky integrator
neurons for control of legged robots [2,7,12,30].

In this paper, a potentially more powerful modular neuroevolu-
tion approach is developed based on a systematic, group-theoretical
analysis of symmetry. This analysis was pioneered by Collins and
Stewart [6] to explain gait symmetries in animals. In the proposed
approach, it is utilized as a constraint to make controller evolution
effective. Experiments in a physically realistic simulation validate
the approach, resulting in modular controller networks that generate
various quadruped gaits seen in nature, such as pronk, pace, bound
and trot (Figure 1). Moreover, these controllers can change to a
more suitable gait in response to changes in the terrain such as unex-
pected obstacles. The approach also generalises well to more com-
plex robots with more legs and legs with higher degrees of freedom.

Modular evolution performs well because it can leverage the smaller
search space and the symmetry in the problem: The resulting gaits



are more efficient and more symmetric than those of non-modular
controllers. The modular controllers also outperform a hand-designed,
open-loop controller generating a trot gait, especially on a terrain
with obstacles. Altogether, these results demonstrate that the modu-
lar neuroevolution approach is effective in designing controllers for
legged robots.

The paper is organized as follows. Section 2 reviews prior re-
search on developing controllers for legged robots and on modular
neuroevolution. It also reviews coupled cell systems that are used
to model the modular controllers presented in this paper. A quadru-
ped robot model and its different controller designs are discussed
in Section 3. Experimental results demonstrating the advantages
of the modular controllers compared to the non-modular and hand-
designed controllers are presented in Section 4. Discussions of ex-
perimental observations and possible directions for future work are
presented in Section 5.

Visualization videos of the walking behaviors discussed in this
paper can be seen at the website http://nn.cs.utexas.edu/
keyword?modularne.

2. BACKGROUND

Researchers have used a variety of techniques in the past to model
and build controllers for legged robots. The first subsection briefly
reviews some of those techniques, including manual and evolution-
ary approaches. Coupled cell systems having symmetry, which form
the theoretical basis for the modular controller networks in this pa-
per, are reviewed in more detail in the second subsection.

2.1 Related Work

Efforts to build legged machines began more than a century ago.
Early designs required humans to control the machines, but in the
1970s computer control became a viable alternative to human con-
trol [24]. In the 1980s Marc Raibert and his coworkers built legged
hopping and running machines [25]. They started with a single-
legged algorithm that alternates between a support phase and a flight
phase. This algorithm was then generalized to control biped running
by alternating support and flight between the two legs. The same ap-
proach was then extended to quadruped gaits in which pairs of legs
move in unison (in pace, bound and trot), by applying the biped al-
gorithm to the paired legs. Thus, the symmetry of robot morphology
was encapsulated as algorithmic modules even in such early work.

Rodney Brooks, another pioneer in robotics, also used modularity
in his incrementally constructed controllers for a six-legged robot
[4]. These controllers were completely decentralized networks of
augmented finite state machines (AFSMs), some of which were re-
peated in the network to replicate the functionality for each leg. Each
step of the incremental construction produces viable controllers for
increasingly complex behaviors such as standing up, walking and
following moving objects. His work also showed that robust walk-
ing behaviors can be produced by distributed sensorimotor control
units with limited central coordination. The modular controllers in
this paper implement the same idea: Each module produces con-
trol signals for a leg through proprioceptive sensing of joint angles
without central coordination.

The distributed nature of legged locomotion has also been ob-
served in insects. This observation inspired the distributed neural
network hexapod controller hand-designed by Randall Beer and his
research group [1]. The network uses leaky integrator neurons each
with a different functionality such as sensing and producing rhyth-
mic signals. The controllers produced stable gaits that are resistant
to damage, such as the loss of a sensor or some connections. In
another approach, they used a genetic algorithm to find parameter
values for the controller network [2]. As in the modular approach
presented in this paper, the evolutionary search space was shrunk by
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organizing the controller into subnetworks, resulting in a reduced set
of parameters for evolution.

Other approaches to controller design for legged robots typically
have a similar flavor, i.e. implementing controllers as continuous-
time recurrent neural networks (CTRNNSs) organized into distributed
modules. For example, Billard and Ijspeert hand-designed CTRNN
networks for controlling Aibo robot dogs [3]. Their networks, con-
sisting of oscillator modules for each joint, were able to walk, trot
and gallop. More recently, Tellez et al. evolved CTRNNSs in the
same task [30]. Because of the difficulty of evolving walking behav-
iors, network modules were evolved in stages, using more complex
fitness evaluations in each successive stage. Each stage represented
a different abstraction of the task, resulting in a distributed and hier-
archical architecture for the controller.

Another approach to evolving modular controllers is based on in-
direct encoding, a method that encodes the controller as a develop-
mental or generative program. During development of the controller,
the same parts of the program may be read multiple times, once for
each module instantiation. When modularity is represented intrinsi-
cally in the genotype by such means, evolution can discover modu-
larity automatically. Gruau demonstrated this capability by evolving
CTRNN controllers for hexapod locomotion using his cellular en-
coding (CE) method [12, 13]. Subsequently, a version of CE called
simple geometry-oriented cellular encoding (SGOCE) was used by
Filliat et al. to evolve CTRNN controllers incrementally for a hexa-
pod, although their scheme requires that the precursor cells for mod-
ule subnetworks are specified explicitly [7]. Such indirect encoding
techniques may improve the capabilities of the modular approach
presented in this paper as well, as will be discussed in Section 5.

Recent progress in building sophisticated physical robots was sum-
marized by Holmes et al. [14]. They also discussed the role of math-
ematical models of body-limb and environment dynamics, central
pattern generators, and proprioceptive and environmental sensing
in the design of a very agile six-legged robot called RHex. The
sprawled posture and compliant legs of RHex, inspired by charac-
teristics found in insects, allows the robot to be stable and operate
dynamically even on rocky and uneven terrain [16]. The stability
is achieved through open-loop control utilizing only proprioceptive
feedback. Similarly, the Sprawl hexapedal robot uses open-loop
control for stable running [5]. Along the same lines, the evolved
modular controllers in this paper perform well utilizing only propri-
oceptive sensing of joint angles.

In nature, the control systems of animals evolved together with
their body morphology, resulting in tightly integrated efficient agents.
Inspired by this observation, some researchers have evolved both
the controller and the robot morphology concurrently. Examples of
such body-brain evolution include the virtual block creatures of Karl
Sims [28], and the generative representations used by Hornby and
Pollack [15]. Although not necessarily legged creatures, the agents
produced by such methods may also be symmetric and regular, and
may be able to walk in synchronized manner.

Most of the above approaches are motivated by the biological cen-
tral pattern generators (CPGs), i.e. groups of neurons that produce
oscillatory signals for locomotion [27]. CPGs are typically imple-
mented as CTRNNS, using leaky integrator neurons. The modular
controller networks described in this paper also function as CPGs,
but they are based on simpler, sigmoidal neurons. Patterned oscilla-
tions are still possible in these networks because they are in essence
symmetrical, coupled cell systems. Theoretically, such systems are
CPGs, and in practice, they generate various gaits for quadrupeds
and hexapods [6]. The approach in this paper implements such sys-
tems as modular neural networks and uses evolution to find the ap-
propriate system parameters. The theoretical behavior of these cou-
pled cell systems is reviewed in detail next.



2.2 Coupled Cell Systems

A coupled cell system consists of a set of dynamical systems,
called cells, and a specification of how the cells are coupled, i.e.
how the state of each cell affects the states of the other cells [9].
Some or all of the cells and couplings may be identical, resulting in
symmetries that correspond to permutations of the cells under which
the behavior of the system is invariant. Such symmetrical, coupled
cell systems can exhibit synchronous and phase-related periodic pat-
terns in their state. Collins and Stewart [6] showed that this patterned
behavior can be used to model CPGs and to explain symmetries in
animal gaits.

Following their method, the modular controllers in this paper are
abstracted as coupled cell systems having symmetries. The pat-
terned oscillatory behavior that follows from these symmetries is
independent of the model, i.e. the details of the internal dynamics
of the cells do not matter. Therefore, analyzing the symmetries of a
coupled cell system can give insights into the high-level qualitative
behavior of the system.

The particular coupled cell system utilized in this paper is due to
Pinto and Golubitsky [23]. While they used it to understand biped
locomotion, the system is extended in this review to quadrupeds in
order to use it to develop modular controllers for multilegged robots.
This system consists of four identical cells, described by the follow-
ing system of ordinary differential equations (ODEs):

5(1 = F(X1,X2,X3,X4)
X 7FX2,X1,X47X3

( )
F(X3,X4,X1,X2) (1)
( )

Xo =
X3 =
x4 = F(x4,%3,X2,X1),

where x; € RF are the k state variables of cell 4, and F' : (R¥)* —
RF encapsulates the internal dynamics of each cell and its coupling
with other cells. Thus, this system of ODEs describes how the state
variables of each cell change in time as a function of the cell’s own
state and the state of the other cells.

This system corresponds to the graph shown in Figure 2, which
helps visualize its symmetries. The cells are numbered 1 through 4,
and the arrows show the coupling between them. Each arrow type
represents a different type of coupling, corresponding to a different
argument position in function F'. A symmetry of the graph is a per-
mutation of the cells that preserves the coupling between the cells.
For example, the permutation p = (1 2)(3 4), which swaps cells
1 and 2 as well as cells 3 and 4, is a symmetry of the graph in Fig-
ure 2. The permutation 7 = (1 3)(2 4) is another symmetry, and
the composition 7p obtained by performing the two permutations in
sequence is yet another symmetry.

Each symmetry of the graph induces a symmetry of the associated
system of ODEs, i.e. a transformation +y such that yx(t) is a solution
whenever x(t) is a solution. For example, suppose x(¢) is a solution
to (1). Applying the permutation p to (1) produces an equivalent
system of ODEs for which px(¢) is a solution. Thus, the system of
ODEs inherits the symmetry p from the corresponding graph.

Periodic solutions are interesting because they model gaits. Let
x(t) be a T-periodic solution to (1) and « be a symmetry. Then
~vx(t) is also a solution. Because solutions to the same initial condi-
tions are unique, if x(¢) and yx(t) are the same trajectory, then their
phases must be different, i.e. yx(t) = x(¢t + 0) where 0 € [0,T)
for all ¢. Since applying either p twice or T twice to a solution is
equivalent to applying the identity, 20 = 0 (mod T') for both sym-
metries. Therefore, the possible values of phase shift § is either 0 or
% for both symmetries.

Such phase shifts impose constraints on the components of the
solution x(t) (x1(t), x2(t), x3(t), x4(t)), resulting in specific
patterned behavior for the system. For example, the bound gait
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Figure 2: Graph corresponding to the coupled cell system in
equation (1). The cells are numbered 1 through 4, and the ar-
rows indicate that a coupling exists between them. The differ-
ent arrow types represent different couplings, corresponding to
different argument positions in the function F’, as shown in the
legend below. This graph helps visualize the symmetries of the
underlying coupled cell system, and shows how the cells may be
assigned to control the legs of a quadruped robot for producing
different gaits.

Table 1: Gaits corresponding to different combinations of phase
shifts 6, and 6. associated with two permutation symmetries p
and 7 of the coupled cell system in Figure 2. Thus, this sys-
tem can have solutions modeling a variety of common quadru-
ped gaits.

|| Pronk | Pace | Bound | Trot
O T
0

0,
0,

by ©
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pattern results from the following constraints. The symmetry p is
first applied to x(t) with a phase shift of 6, = 0, resulting in the
constraints x2(t) = x1(t) and x4(¢t) = x3(¢). Consequently, the
solution has the form x(t) = (x1(¢),x1(t),x3(t),x3(t)), imply-
ing that cells 1 and 2 are synchronous and cells 3 and 4 are syn-
chronous, but their synchrony is independent, i.e. it does not yet
produce an interesting gait. However, applying the symmetry 7
to this solution with a phase shift of 6, = L results in a further

2
constraint x3(t) x1(t + %). Now, the solution has the form

x(t) = (x1(t), x1(t), x1(t + L), x1(t + L)), implying that cells 1
and 2 are synchronous, while cells 3 and 4 are also synchronous with
the same periodic trajectory as cells 1 and 2, but half-period out of
phase. Assigning these cells to control the legs of a quadruped robot
produces a bound gait (as discussed in Section 3.4).

Other common gaits can be obtained similarly by selecting dif-
ferent combinations of values for 6, and 6, as shown in Table 1.
Although these gaits are possible solutions of the system, whether
any particular gait can be obtained in practice depends on the details
of the cell dynamics and the couplings.

For further analysis of the patterned oscillatory behavior of cou-
pled cell systems, see Golubitsky and Stewart [9]. In particular, they
showed that a system with prescribed symmetries exists whose pe-
riodic solutions are asymptotically stable, meaning that the patterns
are unchanged by small perturbations. However, other methods must
be used to find such a system with the appropriate internal cell dy-
namics and coupling functions. In this paper, modular neuroevolu-
tion is shown to serve as such a method (Section 3.4).

The theoretical results make the high-level behavior of modular
controller networks easy to understand. Consequently, in contrast to
other approaches (such as those reviewed in Section 2.1), these con-
trollers are easy to design and scale well to robots with more legs
and more complex legs. Moreover, neuroevolution is an effective
alternative to manual design of coupled cell system ODEs with de-
sired characteristics (such as [6]). Thus, modular neuroevolution is
a promising approach to developing multilegged robot controllers.



Figure 3: The quadruped robot model. The legs are attached
to the body by hinge joints with axes of rotation tilted sideways,
allowing the legs to make full circular rotation. Locomotion is
achieved by coordinating the circular movements of the legs.
This model is a simple but physically realistic platform that also
allows scaling up to more complex robots by adding more legs
or by increasing the legs’ degrees of freedom.

3. METHOD

The approach was evaluated experimentally by evolving effective
walking behavior for a simulated quadruped robot in a terrain with
and without obstacles. Three types of controllers were tested: (1)
hand-designed controllers that serve as a baseline for performance
comparisons, (2) non-modular network controllers in which the pa-
rameters of the entire network are evolved at once, and (3) mod-
ular network controllers in which parameters of only one module
are evolved and the full network is formed by combining modules.
These methods are each described in detail below.

3.1 Robot Model

The robot model resembles a table with a rectangular body sup-
ported by legs at the four corners (Figure 3). The legs are cylindrical
with capped ends, and attached to the body by a hinge joint having
full 360° degrees freedom of rotation. The axis of rotation of the
joint is tilted to the side, causing the rotating leg to trace a cone.
The leg makes contact with the ground when it is at one edge of the
cone. Forward or backward locomotion is achieved by coordinat-
ing the circular movements of the leg. The controller activates the
simulated servo motor attached to each joint by specifying either the
desired joint angle or the angular velocity.

This model can be generalized and made more complex by adding
more legs to the table or by using joints, such as a universal joint,
that have more degrees of freedom. Such more complex robots will
be used to test the scale-up properties of the approach in Section 4.

3.2 Hand-designed Controller

The hand-designed controller specifies the desired angular posi-
tions of the legs as functions of time, coordinated so as to obtain a
trot gait (Figure 1d). Plotted over time, the leg angles for the quadru-
ped robot model described above produce sawtooth waveforms that
all have the same period (Figure 4). The waveforms of the diago-
nal leg pairs are synchronous, and a half-period out of phase with
the other pair. This gait is an effective base gait that occurs a lot in
nature, and the evolved gaits can be compared with it.

3.3 Non-modular Controller

The non-modular controller network for the quadruped robot is
shown in Figure 5a. Although a variety of architectures are possi-
ble, this simple two-layered architecture was chosen to facilitate a
fair comparison to the modular approach. The inputs are the angular
positions of the leg joints, and the outputs are the desired angular

268

240

180 - . , ) . , I , F ; P

120 -

) o
S o O3
\

Leg Joint Angle (deg)

-120 |/

! ' H i

RF and LR

I R B

LFand RR ——

o
®
S

-

-240

2 4

Time (s)

6 8 10

Figure 4: Leg angles specified by the hand-designed controller.
Plotted over time, these leg angles produce sawtooth waveforms,
i.e. the legs rotate with constant angular velocity. The diagonal
pairs of legs move in unison, but each pair moves a half-period
out of phase with the other pair, producing a trot gait.

(a) Non-modular controller network

X 1 xZ xﬁ X 4
(b) First module of the modular controller network

Figure 5: Genotypes of the non-modular and modular controller
networks for the quadruped robot model. Inputs consist of the
leg angles and outputs of the desired angular velocities. Both
the non-modular and modular networks have the same archi-
tecture; however, the genotype of the non-modular network con-
tains the entire network while that of the modular network con-
tains only the first module. The full modular network is con-
structed by replicating the first module with different permuta-
tions of the inputs.

velocities of the legs. Each input unit is connected to all hidden
units, but each output unit is connected only to two hidden units,
which send their activation exclusively to that output unit. The hid-
den and output units have sigmoidal activation functions with a bias
and slope as parameters; the input units do not perform any compu-
tation. Since the genotype of the non-modular controller represents
the entire network, all parameters of the network will have to be
optimized through evolution.

A more general robot model having additional joint angles re-
quires a network with additional inputs and outputs representing
those angles. The number of hidden nodes will also need to be in-
creased to achieve better performance on more complex robots, thus
increasing the search space.



3.4 Modular Controller

The non-modular network can be decomposed structurally into
four subnetworks (modules), each containing one of the output units,
the two hidden units from which it receives activation, and all the
input units. The first such subnetwork is used as the genotype of
the modular controller (Figure 5b), making the evolutionary search
space one-fourth of that for non-modular evolution. The full modu-
lar network is obtained by instantiating the other subnetworks with
copies of the first subnetwork, with appropriate permutations of the
inputs.

Such construction, combined with the fact that the network com-
putes the time derivative of the joint angles as a function of each
other, allows the modular network to be modeled as a coupled cell
system. The modules correspond to cells, and the input connections
of modules correspond to couplings. Since the modules are identi-
cal, the cells are also identical. The permutations of module inputs
determine how cells are coupled to each other. These permutations
can be chosen such that the system of ODEs corresponding to the
resulting coupled cell system has the same form as equation (1). In
this formalism, x; represents the joint angles for leg ¢, and F’ repre-
sents the functional equivalent of each neural network module.

Analysis of the symmetries of equation (1) and its corresponding
graph (Figure 2) in Section 2.2 showed that this coupled cell sys-
tem can have periodic solutions that signify synchronous and phase-
related oscillatory behavior of the cells. When these cells (i.e. mod-
ule outputs) are assigned to control robot legs, symmetric and regu-
lar gaits are obtained. With such a setup, neuroevolution can exploit
symmetry in the robot morphology, and discover an appropriate F'
that produces effective gaits.

This coupled cell system models the behavior of the controller
only; it does not take into account the dynamical effects of the robot
and the environment in which the robot operates. Such effects may
be thought of as perturbations to the state variables of the system,
and the evolved controllers must be robust against them. Evolution
can also discover a controller that uses such perturbations as feed-
back for switching to more suitable gaits on difficult terrains, as seen
in experiments described in the next section.

4. RESULTS

Experiments comparing the controllers obtained by the three dif-
ferent approaches are now described. Evaluations are performed on
flat ground and on terrain with obstacles, and on robots with differ-
ent number of legs and different number of degrees of freedom for
each joint. The experiments are run in a realistic physical simulation
of locomotion, as will be described next.

4.1 Experimental Setup

The experiments were implemented utilizing a number of open
source tools. The neuroevolution code was implemented as a li-
brary layer on top of the Open BEAGLE evolutionary computing
framework [22], taking advantage of its generic programming inter-
face. The experiments also utilized the customizable methods for
logging and statistics collection in Open BEAGLE, as well as its
XML-based configuration mechanism for managing parameters and
specifying operators. The physics simulation was programmed us-
ing OPAL [21], an abstraction library on top of the Open Dynam-
ics Engine (ODE) [19]. The Object-Oriented Graphics Rendering
Engine (OGRE) [20] library was used for 3D visualization of the
simulation.

The initial population of networks is created with connection weights

chosen randomly from the range [—2, 2), neuron biases set to 0, and
neuron sigmoid slopes set to 1. Three types of mutations are used,
one for each of the above parameter types: (1) weight mutations,
(2) bias mutations, and (3) slope mutations. All three types are im-

plemented as Gaussian perturbations (with o = 0.2) acting with a
specified probability (0.5) on each of the parameters belonging to
that type. In each generation, an offspring is created by first select-
ing a parent in a two-way tournament, and then applying exactly one
of the three mutation types, chosen with equal probability. In addi-
tion, the network with the best fitness is copied without change to the
next generation. A population size of 200 is used in all experiments.

Each network is evaluated in a physically realistic simulation in
which the network controls the locomotion of a robot. When the
robot is initially placed in the simulation environment, its longitu-
dinal and lateral axes are aligned with the coordinate directions of
the ground plane. The simulation is then carried out for one minute
of simulated time with step size 0.01s, after which the fitness of the
controller network is calculated as the maximum distance travelled
by the robot along either of the two coordinate dimensions (i.e., the
Chebyshev distance [18]). This fitness measure ensures that the eval-
uation of controller networks is fair even on the terrain with bumps
in the form of concentric squares (Section 4.3). Although appropri-
ate as a quantitative measure of performance, this measure does not
capture how good the controllers are qualitatively. Therefore, the re-
sulting gaits were also visualized and evaluated manually at the end
of evolution to confirm that the champion controller networks had
good locomotive properties.

For all experiments, evolution was run for 500 generations and
repeated 10 times, each time with a different random number seed.
The average and standard deviation of champion network fitness for
all experiments are shown in Figure 6. The best fitness of the hand-
designed controller is also plotted in Figure 6 for comparison. This
controller was obtained by manually implementing domain knowl-
edge as well as by experimenting with gait periods similar to those
produced by the modular controllers. The following subsections dis-
cuss the results of each experiment in detail.

4.2 Flat Terrain

In the first experiment, networks were evolved to control the quad-
ruped robot on flat terrain. The modular networks performed signifi-
cantly better than the non-modular networks through all generations,
as illustrated in Figure 6a. This result implies that the robots with
modular controllers are able to travel farther than those with non-
modular controllers. Figure 6a also shows that the modular con-
trollers have higher fitness than the hand-designed controller. This
result means that through evolution it was possible to discover more
efficient or better tuned gait than could be designed by hand.

When the locomotion of champion networks were visualized, an-
other important benefit of modular evolution was revealed. The
modular networks produce regular and symmetric gaits, such as pronk,
pace, bound and trot, similar to those found in animals (Section 1).
In contrast, the non-modular networks typically produce asymmet-
ric gaits in which one or two legs have limited mobility, resembling
the gaits of crippled animals.

These results, establish a baseline for comparisons involving more
difficult terrain and more complex robots, which are described be-
low.

4.3 Obstacle Terrain

In the next experiment, obstacles in the form of bumps (or walls,
or fences) were placed on the ground at regular intervals to make
the task of the controller more difficult (Figure 7). Five bumps
were used in each coordinate direction, together forming concentric
squares aligned with the coordinate directions of the ground plane.
The first bump was at 10 units from the center, and the remaining
bumps were at every 5 units outwards. The robot was initially placed
at the center. Note that although moving in a skewed direction can
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Figure 6: Performance of hand-designed, modular, and non-modular neuroevolution controllers on different terrains and robot
models. Bold lines are averages and the shaded regions on either side are standard deviations obtained over 10 trials of evolution.
Fitness of the hand-designed controller is also shown for reference. (a) Modular controllers perform significantly better than both
non-modular and hand-designed controllers in the baseline experiment. (b) Performance gap between modular controllers and hand-
designed controllers increases significantly when obstacles are added to the environment. (c) Similarly, the performance gap increases
significantly when number of legs is increased to six. (d) Similarly, performance gap increases significantly when an angular degree
of freedom is added to each leg joint. These results demonstrate the advantage of modular evolution over non-modular evolution and

hand-design in discovering controllers for multilegged robots.

cover more distance without encountering the bumps, it does not
increase the Chebyshev distance measure that is used as fitness.

As in the experiment with the flat terrain, the modular controllers
have a clear advantage over non-modular and hand-designed con-
trollers (Figure 6b). The hand-designed controller has a particularly
hard time: It is unable to get past the first or second bump, depending
on how the legs initially hit the bumps. This result further demon-
strates how evolution can discover more effective behavior than can
be achieved through hand-design.

The bumps perturb the dynamics of the controller more than flat
ground does. As a result, evolution often discovers controllers that
change to a more favorable gait when bumps are encountered. An
example of this phenomenon is shown in Figure 8, where the robot
changes from bound to trot when it hits the first bump, allowing it
to get over it more easily. The evolved modular controllers are thus
more robust and flexible than the hand-designed controller.

4.4 Number of Legs

Although the genotype of the modular controller encodes only one
module, it receives input from all legs. Therefore, when more legs
are added to the robot model, only a few more parameters need to
be added to the modular genotype. In contrast, the non-modular
genotype needs significantly more parameters because it encodes
all modules separately. Consequently, evolutionary search is harder
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for the non-modular method than for the modular method when the
number of legs is increased.

This hypothesis was tested by evolving controllers for a hexapod
robot having equally spaced rows of legs along its longitudinal axis.
A hand-designed controller was also built by generalizing the trot
gait of the quadruped into a tripod gait, in which the front and rear
legs of one side are in phase with the middle leg of the other side.
The coupled cell system associated with the hexapod modular con-
troller generalizes the quadruped system of Figure 2, and is obtained
by adding a third row of cells and connecting them with the other
cells using bidirectional links. The resulting cell system has two
types of symmetries: (1) swapping of the left and right columns of
cells, and (2) cycling of the rows of cells either up or down.

Fitness of the modular and non-modular controllers in this exper-
iment are plotted in Figure 6¢. The modular controllers now outper-
form the non-modular and hand-designed controllers with a wider
performance gap than in the quadruped case in Figure 6a. The non-
modular controllers perform at the same level as the hand-designed
controllers, possibly because they only have to get a few legs mov-
ing in a coordinated fashion to make reasonable progress. On the
other hand, the modular controllers produce gaits with symmetric
leg movements, typically producing a longitudinal wave pattern with
same-row legs in phase or a half-period out of phase, which is much
more effective and similar to the hexapod gaits in nature. Thus,



Figure 7: Robot navigating a terrain with obstacles. The ob-
stacles consist of five equally spaced bumps forming concentric
squares around the robot. Moving on this terrain by stepping
over the bumps is a difficult task: The modular controller per-
forms this task effectively, whereas the non-modular and hand-
designed controllers struggle. Visualization videos of such be-
haviors can be seen at the website http://nn.cs.utexas.edu/
keyword?modularne.
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Figure 8: Gait changes produced by an evolved modular con-
troller on a terrain with obstacles. As in Figure 4, the plot shows
angular positions of the four legs of the robot over time. Ini-
tially, the front pair of legs (LF and RF) move out of phase from
the rear pair (LR and RR), i.e. the robot has a bound gait (Fig-
ure 1c¢). The robot encounters the bumps at about 10 seconds.
As it tries to move forward, its legs hit the bumps repeatedly,
perturbing the dynamics of the controller. These perturbations
cause the controller to transition to a trot gait in which the di-
agonal pairs of legs move out of phase (Figure 1d). This change
of gait allows the robot to step over the bumps. Thus, modu-
lar controllers have the flexibility and robustness necessary for
navigating difficult terrain.

modular evolution scales up better than non-modular evolution when
more legs are added to the robot.

4.5 Joint Degrees of Freedom

The robot can also be made more complex and difficult to control
by increasing the number of angles that has to be controlled in each
leg. That is, while the legs trace a cone in the previous robot models,
a more challenging model would require controlling the forward-
backward (longitudinal) and sideways (lateral) rotations of the legs
separately. Since the controller inputs consist of the joint angles,
the number of input connection weights increases correspondingly.
This increase is limited to the single genotype module for modu-
lar networks, while it gets multiplied by the number of joints for
non-modular networks. Again, because of the large number of extra
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parameters non-modular evolution has to search, finding a good con-
troller will be harder for non-modular than for modular evolution.

The final experiment tested this hypothesis by replacing each hinge
joint of the quadruped robot with a universal (hip) joint. This change
in the robot model doubles the number of degrees of freedom of
each joint and, consequently, the number of controller inputs. The
forward-backward rotation is limited to 30° in both directions and
the sideways rotation from vertical to 45° outwards. The hand-
designed controller is generalized to this setup by adding signals
for the lateral angle of each leg such that it is a quarter-period out of
phase with its longitudinal angle, producing a trot gait.

The above hypothesis is confirmed by Figure 6d. The perfor-
mance gap between modular and non-modular evolution has widened
significantly: Modular evolution now performs nearly four times
better than non-modular evolution, and slightly better than the hand-
designed controller. Visualizing the gaits reveals that non-modular
controllers typically produce gaits resembling severely crippled ani-
mals, with nearly all their legs appearing disabled and poorly coordi-
nated. These robots often have sideways moving gaits and may have
certain joint angles locked in a fixed position. The modular con-
trollers, on the other hand, typically produce regular trot gaits that
achieve high fitness. These results demonstrate that modular evolu-
tion scales up well when the robot legs are made more complex, in
contrast to the poor performance of non-modular evolution.

5. DISCUSSION AND FUTURE WORK

In all the experiments described above, modular evolution pro-
duced controllers that were better than non-modular evolution in
two respects: (1) better fitness by travelling farther, and (2) better
gaits that are symmetric and resemble those found in nature. Fur-
thermore, this performance gap widens significantly in both respects
when the number of legs or their angular degrees of freedom is in-
creased. The modular controllers also demonstrated the capability to
change gaits in response to changes in the environment. The mod-
ular controllers perform better than hand-designed open-loop con-
trollers as well, particularly on an obstacle terrain where the modu-
lar controllers navigate bumps much more effectively. These results
suggest that modular evolution is successful in taking advantage of
the symmetry and regularity in the robot morphology to discover
efficient controllers.

The symmetry of the robot was manually specified in this paper,
using the theory of coupled cell systems. This approach can be ex-
tended in three ways to produce more general controllers. First, a
single module was replicated for each leg because the legs were
identical; in a more complex robot model, more than one type of
module may be needed, for example to represent different front and
rear legs. The resulting coupled cell system will have more than
one type of cell and a different symmetry. Second, the cells were
coupled and the cells assigned to legs manually. Systems with other
symmetries could be explored by changing these couplings and as-
signments. Third, the four-cell system of Figure 2 was designed by
hand, based on domain knowledge. Larger systems with more cells
can be built to obtain more sophisticated behavior.

In future work, these design choices can be optimized by mak-
ing them parameters for evolution to discover automatically. Such
automation frees the human from the design loop, and creates the po-
tential for discovering better solutions that may not appear straight-
forward to a designer. One potential approach is similar to hier-
archical SANE [17], where one population of neurons and another
population of network blueprints (that specify how the neurons are
combined to form networks) are evolved simultaneously. In a similar
manner, a module population could evolve specialized partial solu-
tions such as controlling a single leg, while a blueprint population
would evolve combinations of modules representing full solutions,



specifying the couplings between modules and the assignment of
modules to legs.

Another approach is to utilize indirect encoding such as cellu-
lar encoding (CE) [13] or genetic regulatory networks (GRNs) [26]
that allow encoding modular neural networks as developmental pro-
grams. Such encodings can represent networks with repetitive struc-
tures (i.e. modules) using recursion, and can therefore potentially
discover the modules and evolve their structure and parameters au-
tomatically.

In the future, the modular neuroevolution approach developed in
this paper will be applied to more complex terrains and robot mor-
phologies. Higher-level behaviors such as path-following and forag-
ing will also be investigated. Such behaviors require sensing the en-
vironment to provide additional inputs to the controller. In the cou-
pled cell network model, these inputs may be treated as parameters
of the system, and adjusting these parameters can result in different
robot behaviors.

Complex high-level behaviors may require controllers to have a
hierarchical structure. Lower levels of such a controller implement

patterned behavior such as gaits, while higher levels implement decision-

making suitable for the task. For tasks that require memory, recur-
rency in the controller networks is expected to be useful, and it also
makes it possible to evolve more interesting and complex behavior.
Because the controllers for such systems are extremely complex, the
automation approach outlined above may prove essential. Finally, if
these approaches are successful in evolving controllers for a detailed
model of a physical robot, they can eventually be tested on real phys-
ical robots. Thus, the modular neuroevolution approach outlined in
this paper constitutes a promising starting point for developing ef-
ficient, robust, and flexible controllers for multilegged robots in the
real world.

6. CONCLUSION

An approach for evolving modular neural networks to control
legged locomotion was presented in this paper. As demonstrated in
the experiments, modular networks have two main advantages com-
pared to non-modular networks with the same structure: (1) they
have smaller genomes, which makes it easier for evolution to find
solutions with good fitness, and (2) symmetries in the problem can
be expressed in the modular structure, allowing evolution to discover
effective symmetric gaits. Furthermore, modular controllers were
shown to evolve the ability to change gaits in response to changes in
the environment, and to scale well to more complex robot morpholo-
gies. The controller fitness was evaluated in a physically realistic
simulation of dynamics, which suggests that the approach should be
useful for building physical multilegged robots in the future.
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