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ABSTRACT
Individual-based modeling has gained popularity over the
last decade, mainly due to its proven ability to address a va-
riety of problems, including modeling complex systems from
bottom-up, providing relationships between component level
and system level parameters, and relating emergent system
level behaviors from simple component level interactions.
Availability of computational power to run simulation mod-
els with thousands to millions of agents is another driving
force in the wide-spread adoption of individual-based model-
ing. In this paper, we propose an individual-based modeling
approach to solve engineering design and optimization prob-
lems using artificial ecosystems (AES). The problem to be
solved is “mapped” to an appropriate AES consisting of an
environment and one or more evolving species. The AES
is then allowed to evolve. The optimal solution emerges
through the interactions of individuals amongst themselves
and their environment. The fitness function or selection
mechanism is internal to the ecosystem and is based on the
interactions between individuals, which makes the proposed
approach attractive for design and optimization in complex
systems, where formulation of a global fitness function is of-
ten complicated. The efficacy of the proposed approach is
demonstrated using the problem of parameter estimation for
binary texture synthesis.

Categories and Subject Descriptors
I.6.5 [Simulation and Modeling]: Model Development—
Modeling methodologies

General Terms
Algorithms, Design, Experimentation

Keywords
Individual-based modeling, optimization, markov random
fields, parameter estimation, artificial ecosystem
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1. INTRODUCTION
Individual-based modeling refers to the class of analysis

tools, in which the system being analyzed is modeled as
a collection of autonomous, goal driven, interacting enti-
ties called individuals or agents. The interactions of the
agents with each other and their environment, lead to sys-
tem level behaviors, called “emergent” phenomena, which
are not readily predictable even with the complete knowl-
edge of the behaviors of the agents. This kind of bottom-up
modeling approach was first proposed by Von Neumann [15]
as Cellular Automata (CA). In CA, each cell’s current state
depended on its own previous state and its neighbors’ states.
These simple rules and local interactions result in some fas-
cinatingly complex global patterns [28]. Several seminal
contributions to individual-based modeling approaches were
made as early as the late 70’s including Schelling [30], and
Granovetter [17], who analyzed problems in social science
from an individual-based perspective. Axelrod [20], pre-
sented an individual-based variation of the prisoner’s dilem-
ma to study the circumstances under which a selfish agent
would spontaneously cooperate and Reynolds [4], presented
an individual-based local interaction scheme to replicate gro-
uping behavior in animals. Over the last decade, there
has been an increasing interest in individual-based model-
ing especially in social sciences [9, 14, 21], and ecology [31,
32]. This increase is mainly due to the advantages that
individual-based modeling offers over traditional differential
or difference equation based modeling, including explicit in-
clusion of individual variation [8], ease of expressing relation-
ships between individuals, and the ability to demonstrate
emergent phenomena [21] that is individual-based models
(IBMs) allows the modeler to study the relationship between
adaptive behavior and emergent properties [32].

Ever increasing demand for better capabilities, perfor-
mance, and scalability is driving engineering systems to new
complexities. Interconnections and interdependencies amo-
ng these complex systems only add to the difficulties in de-
signing them. Although several approaches are in practice
for the design and analysis of complex systems [35] such as
iterative maps, statistical mechanics, neural networks, sys-
tem dynamics [13], and evolutionary techniques [5]. Cur-
rently used evolutionary techniques are loosely based on the
principles of evolution but ignore many aspects of evolution
which make it a powerful force capable of creating astonish-
ingly complex and adaptive systems. Preservation of good
solutions (elitism), maintenance of a pool of good solutions
(diversity preservation) are explicitly specified in these tech-
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niques. Reproduction (crossover) is also accomplished by se-
lecting the best available solutions. These mechanisms are
useful in particular situations where the fitness landscape
(solution space) of the problem is well defined and known a
priori but would not be useful in situations where little or no
information about the fitness landscape is available. In these
situations algorithms which do not need an explicit enforce-
ment of fitness and reproduction mechanisms are needed.

Individual-based modeling has been used to study a vari-
ety of problems across disciplines including population dy-
namics [7, 12], predator-prey dynamics and co-evolution [25],
migration [10], ecological resource planning [3], epidemiology
[22], human systems [6, 9], anthropology [29], artificial soci-
eties [14], and urban planning [24]. In this paper, we present
a framework for design and optimization using evolving in-
dividuals in artificial ecosystems. The problem of param-
eter estimation for texture synthesis is addressed using an
artificial predator-prey ecosystem as an illustration of the
proposed methodology.

2. INDIVIDUAL-BASED ARTIFICIAL
ECOSYSTEMS

Individual-based modeling of an ecosystem involves relat-
ing population-level dynamics to individual traits and be-
haviors. In this section we introduce the proposed method-
ology, and discuss the relationships of several population
level processes to their individual counterparts.

Ecology is defined as the study of systems (called ecosys-
tems) comprising of biological entities (biotic) functioning
together with non-living physical matter (abiotic) of the en-
vironment. Several mathematical treatments of popular nat-
ural ecosystems such as predator-prey, host-parasite, host-
pathogen, co-evolution, ecological niche, cooperation, food-
web models exist [1]. The proposed methodology uses closed
adaptations of these natural ecosystems, to solve engineering
design and optimization problems. The term closed ecosys-
tem refers to an ecosystem which is self-sustaining. Resource
exchange between the closed ecosystem and external envi-
ronment is assumed to be non-existent.

Population dynamics is one of the most important ecolog-
ical processes. In a closed ecosystem, each of the species’
population dynamics has to exhibit some form of equilib-
rium. Extinction of even one species, could result in the
collapse of the entire ecosystem. Several models for popu-
lation growth have been proposed to fit experimental data
[19]. However these models are described at population level
and not individual level. In individual-based modeling how-
ever, the population dynamics occur due to individual level
reproduction and mortality.

As an example, we describe an individual-based version
of the logistic growth model. The logistic model is one of
the most widely used population growth model. The logis-
tic equation in its discrete form describing the population
dynamics as a function of population density is given by

N(t+1) = Nt · e

n
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where Nt and N(t+1) are population sizes at time t and (t+1)
respectively, K is the carrying capacity, and r0 is the popu-
lation growth rate. Carrying capacity is the maximum pop-
ulation an environment’s available resources can sustain.

Using a first order approximation, Eqn. (1) can be simpli-
fied as
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where ∆Nt is the change in population at time t which is
the net sum of total births and deaths given by

∆Nt = b̂ · Nt · (1 − Pd)
m − NtPd (3)

where b̂ is the average number of offsprings per capita, Pd

is the death rate and m is the maturity age beyond which
an individual can reproduce. Using Eqns. (2) and (3), per
capita births can be obtained as
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For the individual-based model which can produce pop-
ulation dynamics similar to the logistic equation, the pa-
rameter Nt (current population size) needs to be estimated
by individual using information from their immediate vicin-
ity. At every time step (t), each individual (i) can sense the
number of individuals (including self) (ni

t) with in an inter-
action area (Iarea). We define observed density (oi

t) as the
ratio ni

t/Iarea. The average population density experienced
by the individual, i, at time step t is therefore given by

di
t = di

t−1 + λ
“

oi
t − di

t−1

”

(5)

where di
t is population density experienced by individual i

at time t, oi
t is the observed density at time step t, and λ is

the update rate. The experienced population density of an
individual at birth di

0 is inherited from parent p(i), so that

di
0 = dp(i) (6)

We assume that the each individual has the knowledge
of the desired equilibrium population density. This number
is called genetic density Gd and is related to the carrying
capacity K. Since, the local population density is sensed by
each individual, the population dynamics similar to Eqn. (1)
is achieved if the number of offsprings of an individual i, is
given by
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where bi
t is the number of offsprings, α is the rate parameter

and Pb is the birth rate such that

Pb =
Pd

(1 − Pd)
m (8)

Figure 1 shows the population dynamics for different sizes
of initial population. As seen from the figure, in all the cases,
the population converges towards the desired population.
Figure 2 shows the trend of the average population with the
increase in desired population size (Gd×World Area). An
initial population of 3000 individuals on a square lattice of
size 128×128 is used to generate the results. The advantage
of modeling reproduction and mortality at individual-level
is that they can be made more realistic by including simple
rules like age-dependent mortality, seasonal variation in re-
production, fertility depending on the position in the group
[34], among others.
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Figure 1: Population dynamics for various initial
populations (N(0)). Result generated using Pd=0.2,
λ=0.2, m=5, α=2 and Gd=0.122 (for a desired pop-
ulation of 2000).

Figure 2: Trend of average population with de-
sired population using the individual-based popula-
tion model. Result generated using Pd=0.2, λ=0.2,
m=5 and α=2.

Another important biological process is mobility. Mobil-
ity is demonstrated by living creatures for variety of reasons
including seasonal migration, foraging for food, escape from
predators, search for reproduction site, and search for mate.
Several species form patterns while moving in groups. Ex-
amples of such patterns include flocking in birds, herding
in cattle, schooling in fish, and trailing in ants. Several
agent-based models [4, 32, 16] have demonstrated, that lo-
cal interactions between individuals can result in such pat-
tern forming. For the present work, only the case of random
movement is considered.

Simple variations of the above biological processes are
used in AES methodology to construct life-cycles of indi-
viduals and in turn the entire ecosystems capable of solving
the desired problem. Given a design or optimization prob-
lem (referred to as problem from here on), a natural ecol-
ogy model to which the problem can be mapped is selected.
When mapping the problem to the ecosystem, the design
parameter set, that needs to be optimized, is mapped as
adaptable characteristics of one of the biological species. If

more than one parameter set needs to be optimized, as in the
case of multi-objective optimization problems, more than
one species may have adaptable characteristics. Other spec-
ified parameters or information available about the prob-
lem are mapped to the environment. Finally, any modifi-
cations to the ecosystem that may increase computational
efficiency without the loss of generality are applied. Having
mapped the problem, the artificial ecology is simply allowed
to evolve. We take inspiration from nature in assuming that
any species that survive over time in the ecology would have
adapted optimally to the environment and therefore, would
have high levels of fitness.

3. ILLUSTRATIVE PROBLEM
To demonstrate the proposed modeling approach, we at-

tempt to solve the problem of binary texture synthesis using
an artificial predator-prey ecosystem. Given a random bi-
nary texture, we attempt to find the optimal Markov Ran-
dom Field (MRF) parameter set capable of regenerating the
input binary texture.

3.1 MRF Texture Models
Consider the image field S to be a N ×N grid. Let X(i, j)

be the intensity level at point (i, j) on S. To simplify nota-
tion, X(i, j) is written as xij . Let Λ be the colorspace from
which the intensity of each location on S is drawn. For a
binary texture Λ has only two elements, i.e., Λ = {−1, 1}.
Let η(i, j) be the first-order neighborhood [11] of the pixel
xij . We consider S to a toroidal grid, so that each pixel has
exactly four first-order neighbors. Unless an image/texture
is random noise, the pixel intensity at any location depends
on the intensities at other locations. If the conditional prob-
ability distribution function for a pixel depends only on the
intensities of its neighboring pixels. i.e.,

P (xij |X) = P (xij|X(η(i, j))) (9)

the image process is called a Markov Random Field. Markov
Random Fields have been used extensively for texture syn-
thesis [11, 18]. In the following, we use the popular anisotro-
pic Ising MRF which is characterized by the energy function

U(X) = − β1

X

i j

xijxi(j+1) − β2

X

i j

xijx(i+1)j (10)

where β1 and β2 are the parameters of the texture.
Given these parameters S is visited site-wise and the in-

tensity of the current site (i, j)is set to -1 with probabil-

ity ∝ exp
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P
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o

, and to 1 with

probability ∝ exp
n

β1

P
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xik + β2

P
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, where
P

←−−→
η(i,j)

xik denotes sum of intensities across horizontal neigh-

bors, and
P

lη(i,j) xkj denotes sum of intensities across ver-
tical neighbors. The resulting texture is an Ising MRF with
parameters β1 and β2.

Given a binary texture image, the proposed methodology
is used to estimate its MRF parameters, β1 and β2. These
parameters are then used to synthesize the output textures.
We require these output textures to be visually indistin-
guishable from the input texture.

3.2 Artificial Predator-Prey Ecosystem
A predator-prey ecosystem is considered for the illustra-

tive problem. The artificial ecosystem consists of three com-
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ponents predators, preys and the environment. The texture
whose parameters are to be estimated is mapped to the en-
vironment so that, the land cover is assumed to be the tex-
ture. The predator species is equipped with the ability to
differentiate prey from the background (visual acuity) and
kill them. The MRF parameters β1 and β2 are mapped as
evolvable characteristics of the prey. Based on these param-
eters, each prey is born with a textured coat, which camou-
flages it against the environment. A prey, whose parameters
are closer to those of the environment (original texture), get
better camouflage, i.e., better protection from the predators.
A prey that cannot be seen by the predator is said to have
adapted to the environment.

The initial prey population parameters are initialized to
random values. The preys pass these parameters (can be
thought of as “genes”) to offsprings with a small random
mutation at a fixed mutation rate. The predator’s seek and
kill mechanism can therefore be thought of as a fitness func-
tion, albeit, a local one that is internal to the ecosystem.

Several modifications to the natural ecosystem were made
to improve the computational efficiency. A large predator
population means that even at low killing rates the prey
might not have enough opportunity to adapt to the environ-
ment [27]. This would result in the extinction of prey pop-
ulation. Hence a small predator population with low killing
rates is used. Since the predator does not have any param-
eters that need to be evolved, reproduction and death pro-
cesses for predators do not contribute to the improvement of
the system in anyway. Prey are given random movement so
that probability of the prey staying in a given neighborhood
is equal to the probability of leaving the neighborhood. Due
to this random movement of the prey, predator mobility is
not necessary for ensuring complete monitoring of the prey
population. Therefore the predators are modeled to be im-
mobile, immortal, and impotent, and are placed at strategic
locations.

3.3 IBM Description
IBMs are essentially more complex in structure than an-

alytical population-level models [31, 2]. Unlike population-
level models, individual-based models take into account in-
dividual variability, and detailed behaviors of individual, in-
creasing the number of variable parameters and the com-
plexity of the model. This makes communication of results
of an IBM via the familiar language of mathematics, unre-
alistic. To overcome this problem a standard protocol was
proposed by Grimm et.al., [32] to facilitate communication
and replication of IBMs. The protocol was later revised [33]
and named the ODD (Overview, Design Concepts, Detail)
protocol. We adopt this protocol to describe the developed
IBM.

3.3.1 Purpose
The model was developed to investigate the viability of

artificial ecosystems to solve design and optimization prob-
lems. A modified predator-prey ecosystem is modeled us-
ing the bottom-up approach of individual-based modeling.
We expect that the ecosystem processes - prey population
dynamics and interactions between predators and prey will
result in the solution of the desired problem of texture syn-
thesis from a given binary texture image.

3.3.2 State variables and scales
The model consists of two species, predator and prey, and

their environment. For each prey, age (in time steps), loca-
tion in the environment and interactions with other prey are
tracked. Each prey is born with certain texture endowing
parameters β1 and β2 (genes) which determine the texture
on its coat. Predators have no state variables. The environ-
ment is a 512 × 512 image of the texture whose parameters
are to be estimated. The binary texture is made of 3 × 3
color cells with each cell representing a potential location
for the predators or prey. Each cell is capable of housing
more than one individual. The model operates in discrete
time steps. At each step, prey are selected in random order,
and their individual processes executed, after which preda-
tors are selected in a random order and their individual pro-
cesses are executed. The simulation state is updated after
each individual has completed their process, so that the next
individual sees the updated simulation state. Figure 3 shows
the simulation setup and examples of prey coats.

Figure 3: Simulation Model Setup. The red dots in-
dicate prey, the green dots indicates predators. Each
prey is endowed by genes (β1, β2) which project a
textured coat. Four such texture coats are depicted
in the image.

3.3.3 Process overview and scheduling
The model proceeds in discrete time steps. Within each

time step, each prey is randomly selected and its processes
are executed. Prey processes include interaction, movement,
reproduction, and mortality, and are executed in the same
order for each prey. The age of all prey alive at the be-
ginning of a time step is incremented by one. In update
interactions process, preys update their experienced popu-
lation density using Eqn. (5). In the movement process, each
prey moves to another location within a distance of mobility
from the current location. During reproduction, prey older
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than maturity age reproduce with a probability of birth rate
(Eqn. (8)). Every prey has the knowledge of the desired
equilibrium population density (Gd). Each prey which re-
produces at a given time step, produces number of offsprings
as given by Eqn. (7).

Death of the prey due to natural reasons is modeled as an
empirical rule describing it as a probability of death rate. In
the mortality process, each prey rolls a dice to see whether
it survives. If a prey dies, it is immediately removed from
the simulation state.

The only predators process is killing prey. The preda-
tor calculates certain statistics about the local environment
(land cover) and the coats of the prey within a distance of
predation radius. The calculated statistics are defined as

dc =

PLs

i=1

PLs

j=1 xij

L2
s

(11)

fx =

PLs

i=1

PLs−1
j=1 bool(xij != xi(j+1))

L2
s

(12)

fy =

PLs−1
i=1

PLs

j=1 bool(xij != x(i+1)j)

L2
s

(13)

where Ls is the length of side of the texture image in question
and is equal to twice the predation radius for local environ-
ment, and is equal to size of the prey coat. The quantity
xij is intensity value at location (i, j) and bool is an boolean
function which return 1 if the condition is satisfied, and 0
otherwise. Therefore, dc represents the average gray value
of the image, fx represents the average number of pixel value
changes from white to black and vice versa along the hor-
izontal direction, and fy represents the average number of
pixel value changes from white to black and vice versa along
the vertical direction.

Any prey whose coat texture is different than the texture
of the environment would have different statistics than the
environment. A predator is said to have spotted a prey
against the environment if

(|Edc − Pdc| > Tdc)||(|Efx − Pfx | > Tfx)

||(|Efy − Pfy | > Tfy) (14)

is satisfied, where E∗ and P∗ represent environment and prey
coat statistics respectively. Tdc, Tfx and Tfy are the thresh-
old for dc, fx and fy , respectively. Such a prey is said to
be unadapted to the environment and can be caught by the
predators. Although, for the present work these thresholds
are selected empirically, it is possible to adapt these as pa-
rameters using an evolving predator population. The preda-
tor then randomly selects, one or more of the unadapted
preys and kills it with a probability of predator success rate.

3.3.4 Design concepts
Emergence: Although the prey life cycle (movement, repro-
duction, and mortality) and predator behaviors (predation)
are described by empirical rules and probabilities, the pop-
ulation dynamics, and prey adaptation emerge from the be-
haviors and interactions of the individuals.

Sensing: Both the predator and prey can be said to have
visual perception. Prey use this type of sensing for interac-
tions with other prey. Predators use visual information for
predation. Also each prey is assumed to know its own age
and reproduction capabilities.

Interactions: Two types of interactions are explicitly mod-
eled. Interactions between two prey are used to keep track
of number of other prey in vicinity. Predation is the second
interaction modeled between a predator and a prey.

Stochasticity: Prey birth and death events, and predation
success are modeled via probabilities, which add stochastic-
ity to the model. To obtain more precise prediction values,
each simulation is repeated 10 times, from which respective
mean values are taken as representatives.

Observation: Prey population size, and number of adapted
and unadapted prey (see Eqn. (14)) are recorded at the end
of each time step. The adaptable parameters β1 and β2 of
the entire prey population is recorded at the start of the
simulation and at the end of the simulation.

3.3.5 Initialization
The environment is initialized to the given texture. Nprey

prey are randomly placed in the environment, and their tex-
ture parameters randomly initialized. The maturity age (m)
is obtained as

m = round



0.25 × 100

Pd

ff

(15)

The age and observed density of the initial prey population
are initialized as

pi
a ∼ U {0, 3 × m} (16)

di
0 ∼ possion {(Nprey/A) × Iarea} /Iarea (17)

where Pd is the prey natural death rate, U(x, y) is a uni-
form random number generator, generating values from x
to strictly (y − 1), di

0 is the observed density of ith prey
of the initial population, Nprey is the number of preys at
the start of the simulation, A is the world area, Iarea is the
interaction area of an individual.

A number (Npred) of predators are placed in strategic lo-
cations of the environment to maximize predator-prey in-
teractions. Table 1 provides an overview and values of the
parameters used in the model.

3.4 Results
Several agent-based modeling software are currently avail-

able [23]. For the following results, MASON [26], was used
as the agent-based modeling environment.

Figures 4 and 5 show the results of experimental runs
performed on texture shown in Figure 6(e). Figure 4 shows
the prey population dynamics observed during one of the
simulation runs and Figure 5 shows the values of prey pa-
rameters β1 and β2 at the start and end of a simulation run.
Also shown in Figure 5 are mean of the parameter values of
the final population for one run and the deviation of means
over 10 such runs. At each time step, the predators re-
port the number of total prey, adapted prey, and unadapted
prey in their predation radius. As can be seen from Figure
4, the difference between the total prey counted externally
and prey count reported by the predators is small. This vali-
dates the initial assumptions that a small immobile predator
population is adequate to monitor the prey population.

From Figure 5 it can be seen that although the initial
prey population parameters β1 and β2 were initialized with
a wide range of random values, the final population parame-
ter values clustered into a small parameter space, which can
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Table 1: Overview and values of the parameters for
the predator-prey model

Parameter Value

Environment Parameters

Habitat Width (cells) (W ) 128

Habitat Height (cells) (H) 128

Display width (cells) 512

Display height (cells) 512

Input texture parameters

(β1, β2)

(For Texture 6a) (-1, -1)

(For Texture 6c) (1, -1)

(For Texture 6e) (-1, 1)
Prey Parameters

Initial number of prey (Nprey) 1000

Initial prey location randomly placed

Interaction radius (cells) (Rprey) 10

Interaction area (cells). Number of
cells in Rprey

317

Birth rate (%) (Pb) (See Eqn. (8))

Death rate (%) (Pd) 20

Genetic density (Gd)
Nprey

(W × H)
Mobility (cells) (Pm) 1

Mutation rate (%) (Pµr) 10

Mutation (Pµ) ±0.1

Maturity age (time steps) m (See
Eqn. (15))

3

Coat width (cells) (Cw) 2 × Rprey

Coat height (cells) (Ch) 2 × Rprey

Offsprings produced (b)
{Gd × Iarea}

n

Pi

Page

o

Initial prey population age (pa) (See Eqn. (16))

Initial prey observed density (d0) (See Eqn. (17))

Initial prey coat parameters

β1 U(−3, 3)

β2 U(−3, 3)
Predator Parameters

Predator population (Npred) 4

Predator location (W
4

, H
4

)
(W

4
, 3H

4
)

( 3W
4

, H
4

)
( 3W

4
, 3H

4
)

Predation radius (cells) Rpred 30

Predation success rate (%) (Pp) 50

Predation attempts (Nkill) 1

Texture difference thresholds

(Tdc, Tfx, Tfy) (0.05, 0.1, 0.1)

be considered as the solution space of the problem. Interac-
tions between predators and prey are responsible for adapt-
ing the prey parameter values towards the solution space.
A major part of the prey population is categorized as un-
adapted by the predators (Figure 4). However, the cluster-

Figure 4: Prey population dynamics observed dur-
ing one simulation run for texture in figure 6(e)

ing of parameter values (Figure 5) suggests that the param-
eter values of the unadapted prey must differ from those of
the adapted prey by an insignificant amount. The reported
unadapted prey count, could be due to the high mutation
and low predation rates used in the simulation. Due to the
high mutation rate, there exists a significant probability that
an adapted prey with parameters values near the boundary
of the solution space could give birth to an unadapted prey.
So potentially a cycle could form in which the interactions
between predators and prey result in adapted prey and mu-
tation in adapted prey give rise to unadapted prey. The
study of this possible emergent phenomenon is however not
of interest to the current work and is left as a problem for
further investigation.

Figure 5: Prey adaptation: scatter plots of prey pa-
rameters for texture in Figure 6(e); black dots indi-
cate the parameter values of the initial population
and red dots indicate the parameter values of the
final population. The blue dot is the mean of the
current run and the radius of the blue circle is the
standard deviation of means over 10 runs.

Figure 6 shows the results of texture synthesis with the
parameters estimated using AES. The output textures in
Figure 6 are synthesized using the average parameter values
of the final prey population. In all the cases the statistics
of the input texture were well captured by the model and
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there is little if any visual difference between the original
and synthesized images.

(a) (b)

(c) (d)

(e) (f)

Figure 6: Texture synthesis results: a, c, and e are
original textures (input); b, d, and f are synthesized
textures (output).

4. CONCLUSIONS
In this paper, we proposed an individual-based design and

optimization methodology, inspired by natural ecosystems.
A detailed description of the approach was presented. Essen-
tial details of population level biological processes and their
individual level counterparts were discussed. A simple, yet
classical problem of binary texture synthesis was attempted
to demonstrate the efficacy of the proposed methodology.
The problem was mapped to an artificial predator-prey ecos-
ystem. An IBM of the ecosystem was developed and exper-
imental runs were performed. The results demonstrate the
paradigm’s ability to solve design and optimization prob-
lems. We believe this approach can address many complex
problems found in various industries such as the unit com-
mitment problem, design of flexible manufacturing systems,

process and resource planning and scheduling. We are cur-
rently exploring this approach for image segmentation and
terrain analysis in airborne images. Other potential areas of
research include identifying other natural ecosystems, which
can be used with the proposed approach and investigating
unanticipated emergent phenomena in the developed mod-
els.
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