
1

ben-gurion university, israel
www.moshesipper.com

Evolutionary Computation & Games

Copyright is held by the author/owner(s).
GECCO’08, July 12–16, 2008, Atlanta, Georgia, USA.
ACM 978-1-60558-131-6/08/07 .

2

Outline
• Genetic algorithms
• Genetic programming
• Human-competitive results
• Games
• Robocode
• Backgammon
• Chess (endgames)
• General discussion

3

Genetic Algorithms (GA)

• A class of probabilistic optimization algorithms

• Inspired by biological process of Evolution by

Natural Selection

• Uses analogs of natural selection and genetic

operators (cf. guy-with-beard)

Charles Darwin

4

Genetic Algorithms (cont’d)

• Origins in 1950s

• Consolidated by John Holland, 1975

• Particularly well suited for hard problems, where

little is known about the underlying search space

• Widely used in business, science, and engineering

2741

5

Classes of Search Techniques
search techniques

calculus-based
techniqes

guided random search enumerative
techniqes

BFSDFS dynamic
programming

tabu search hill
climbing

simulated
anealing

evolutionary
algorithms

genetic
programming

genetic
algorithms

Fibonacci sort

Machine Nature: The Coming Machine Nature: The Coming
Age of BioAge of Bio--Inspired ComputingInspired Computing
McGrawMcGraw--Hill, New York, 2002Hill, New York, 2002

genetic algorithms are a form genetic algorithms are a form
of of bio-inspired computing

speaking of whichspeaking of which……

7

a genetic algorithm maintains a
population of candidate

solutions for the problem at
hand, and evolves this

population by iteratively
applying a set of stochastic
operators, driven by fitness

8

Stochastic Operators

• Fitness value is computed for each individual

• Selection probabilistically selects fittest
individuals

• Recombination decomposes two distinct solutions
and then randomly mixes their parts to form
novel solutions

• Mutation randomly perturbs a candidate solution

2742

9

Simple Genetic Algorithm

produce initial population of individuals

evaluate fitness of all individuals

while termination-condition not met do

select fitter individuals for reproduction

recombine individuals (crossover)

mutate individuals

evaluate fitness of modified individuals

end while

10

11

The Metaphor

evolution of population(s) to suit
their environment

iteratively applying a set of
stochastic operators on a set of
feasible solutions

natural selection, recombination,
and mutation

stochastic operators

population of organisms (species)set of feasible solutions

NatureGenetic Algorithm

individual’s degree of adaptation to
environment

solution quality (fitness function)

individuals living in environmentfeasible solutions

environmentoptimization problem

12

artificial evolution is highly

simplified relative to biology

BUT

repeatedly produces surprisingly

complex, interesting, and useful

solutions

2743

13

Genetic Programming (GP)
• Nichael Cramer, “A

Representation for the
Adaptive Generation of
Simple Sequential Programs,”
1985

• Transformed into an
effervescent field in large
part due to John Koza

14

Genetic Programming
• GP = GA, with individuals in population

represented as computer programs

• Usually LISP programs (S-Expressions)

• Genome composed of functions and terminals
• GPer determines function set and terminal set

(+ 1 2 (IF (> TIME 10) 3 4))

15

Genetic Programming
• Why LISP? Easier (but not easy) to design

genetic operators

16

Applying GP

1. Terminal set

2. Function set

3. Fitness measure

4. Control parameters (pcross, pmut, prep, …)

5. Termination criterion, result designation

To apply GP, specify:

2744

17

Example: Symbolic Regression

2.440.80
3.001.00

1.960.60
1.560.40
1.240.20
1.000.00
0.84-0.20
0.76-0.40
0.76-0.60
0.84-0.80
1.00-1.00

Dependent
variable Y

Independent
variable X

(Koza)

18

Setup

Individual emerges with absolute error < 0.1Termination:5

Population size M = 4Parameters:4

abs (program output - given data)Fitness:3

F = {+, -, *, %}Function set:2

T = {X, Random-Constants}Terminal set:1

Find computer program with one input (X) whose

output equals given data
Objective:

19

Initial Population

4 randomly created individuals of generation 0

20

Symbolic Regression x2 + x + 1

fitness of the 4 individuals in generation 0

x + 1 x2 + 1 2 x

0.67 1.00 1.70 2.67

2745

21

Symbolic Regression x2 + x + 1
generation 1

Copy of (a)
Mutant of
(c)

picking “2”
as mutation
point

First offspring
of crossover of
(a) and (b)
picking “+” of
parent (a) and
left-most “x”
of parent (b)
as crossover
points

Second
offspring of
crossover of
(a) and (b)
picking “+” of
parent (a) and
left-most “x”
of parent (b)
as crossover
points

22

Genetic Programming
• Automatically Defined Functions (ADFs)

• Automatically Defined Iterations (ADIs)

• Automatically Defined Recursion (ADR)

• Memory (stacks, queues, lists)

• Architecture-altering operations

• . . .

23

Human-Competitive Results

24

Human-Competitive Results
• One aspect of progress in evolutionary computation is

increasing generation of “human-competitive” results

(www.human-competitive.org):

– Patent (invention)

– New scientific result

– Solution to long-standing problem

– Wins / Holds its own in regulated competition with human

contestant (= live player or human-written program)

2746

25

Human-Competitive Results
• Over 40 to date
• Examples:

– Evolved antenna for use by NASA (Lohn, 2004)
– Automatic quantum computer programming (Spector,

2004)
– Several analog electronic circuits (Koza et al., mid 90s

till today): amplifiers, computational circuits, …

• MAJOR motivation: As of 2004, yearly contest
• WITH CASH PRIZES!

26

Games

27

Games
• Part and parcel of AI since its inception in ’50s.
• 1957: amateur chess (Bernstein)
• 1961: checkers (Samuel)
• 1961-3: learning system for Tic-Tac-Toe

(Michie)
• Over the years, many, many games tackled by

AIers

28

Why Study Games?
First, human fascination with game playing is long-

standing and pervasive. Anthropologists have
catalogued popular games in almost every culture...

Games intrigue us because they address important
cognitive functions... The second reason to continue
game playing research is that some difficult games
remain to be won, games that people play very well
but computers do not. These games clarify what
our current approach lacks. They set challenges
for us to meet, and they promise ample rewards.

(Epstein, 1999)

2747

29

Why Study Games?
... interactive computer games are the killer

application for human-level AI. They are the
application that will soon need human-level AI,

and they can provide the environments for
research on the right kinds of problems that lead
to the type of the incremental and integrative
research needed to achieve human-level AI.

(Laird and van Lent, 2000)

30

Robocode

31

Robocode
• Written by Mathew Nelson, 2000

• Adopted by IBM (robocode.alphaworks.ibm.com)

• Easy-to-use robotics battle simulator

• Teaching-tool-turned-game-craze

• Different battle types:

one-on-one, melee, special

• Different “weight” categories: code size, no. lines

32

Robocode Player
Java program, Event driven

2748

33

Simulator Interface

34

Why Robocode?
• Java programming: popular, accessible

• International league with weekly tournaments
(robocode.yajags.com)

(also robowiki.net/cgi-bin/robowiki?RoboRumble — but no Haiku)

• All players to date human written
• Very little done in the way of machine learning

• Eisenstein 2003: preliminary attempts to evolve
player via GP, not very successful

35

Goal
• Compete in the “real” world, i.e., international

league where the (really) real boys play

• Highly sophisticated competitors

• “Real-life” environment

36

Applying GP
• Tree genome implementing sub-programs
• Main
• Handling of specific events

– onScannedRobot
– onHitWall
– onHitRobot

• Main functions
– Move
– TurnTank
– TurnGun
– TurnRadar
– Fire

2749

37

Robocode Player's Code Layout

while (true)
 TurnGunRight(INFINITY); //main code loop
...
OnScannedRobot() {
 MoveTank(<GP#1>);
 TurnTankRight(<GP#2>);
 TurnGunRight(<GP#3>);
{

38

GP Scheme
• Functions & Terminals:

– Mathematical functions: add, sin, abs, …
– Numerical constants: constant, random
– Battle measures: energy, enemyBearing, …

• Genotype (=tree) to phenotype (=tank) mapping:
– Tree LISP
– LISP Java
– Embedding of code snippets in player template
– Compilation into bytecodes

39

Genome Summary

IfPositive(x,exp_1,exp_2)WallDistance()

IfGreater(x,y,exp_1,exp_2)EnemyEnergy()

ArcCos(x)EnemyHeading()
ArcSin(x)EnemyVelocity()
Cos(x)EnemyDistance()
Sin(x)EnemyBearing()

Fire(x)Neg(x)MaxY()
Fire commandAbs(x)MaxX()

Div(x,y)Y()
Zero()Mul(x,y)X()
Random()Sub(x,y)Heading()
ERCAdd(x,y)Energy()

Numerical constantsArithmetic and logic
functions

Game-status
indicators

40

Sample Program

if greater

+

enemy bearing wall bearing

neg50wall distance

random

2750

41

if greater

+

enemy bearing wall bearing

neg50wall distance

random

(if_greater wall_distance
50 (+ enemy_bearing
(random)) (neg

wall_bearing)))

wallDistance() > 50 ?
e.enemyBearing +

Math.random()*2.0-
1.0 : (0-wallBearing())

public class GPBot
extends Robot {
…
public void
onScannedRobot() {

turnGunRight(…);
}

}

Genotype to Phenotype

42

Evolution: Fitness
• External opponents vs. Coevolution (former

proved better)

• Nondeterministic: Num’ rounds in battle has
significant effect

• Relative scoring (SP: player, SA: adversary):

F = + Sp

+ SP + SA

43

Evolution: The Rest

• Tournament selection

• Standard crossover, mutation

• Elitism (not much success, probably due to nondeterministic nature of game)

• Experiment with population size, generation count

• Generation zero “grow” method

• Bloat control

• Used Sean Luke’s ECJ package

44

HaikuBots
• Code limited to four lines of any length

• Good for GP, which produces much junk code

• Best robot pitted in international league
(robocode.yajags.com)

2751

45

Sample GP-Robocode
package geep.haiku;import robocode.*;/** * Ver 1.0 * * All code sections on onScannedRobot were evolutionary evolved. No manual
optimization was made. * * [[geep 21/9/2004]] */public class GPBotC extends AdvancedRobot{ public void run() {

while (true) { turnGunRightRadians(Double.POSITIVE_INFINITY);
} } public void onScannedRobot(ScannedRobotEvent e) {
setAhead((getEnergy() > Math.abs(Math.abs(getEnergy())) ? getEnergy() : (getHeadingRadians() > getY() ? getEnergy() :

Math.sin(getEnergy())) + Math.abs(e.getHeadingRadians())) + ((setFireBullet(Math.abs(Math.abs(e.getEnergy())))==null ? 0.0 : 1.0) > 0 ?
e.getEnergy() : Math.abs(Math.abs(getBattleFieldWidth())) + Math.abs(Math.sin(getEnergy()))) + Math.abs(((0-(((getHeadingRadians() >
getY() ? getY() : e.getBearingRadians()) > 0 ? e.getEnergy() : getEnergy()))) + Math.sin(getEnergy()) > 0 ? (getEnergy() > getY() ?
e.getBearingRadians() : e.getBearingRadians()) : (getEnergy() > 0 ? e.getEnergy() : getEnergy()))) + getBattleFieldWidth());

setTurnRightRadians(robocode.util.Utils.normalRelativeAngle((0-(Math.abs(Math.sin(Math.abs(getBattleFieldWidth()) +
getBattleFieldWidth() + Math.sin((Math.sin(getEnergy()) > 0 ? e.getEnergy() : getY()))) - (setFireBullet(Math.abs(((getY() > 0 ? e.getEnergy() :
getEnergy()) > getY() ? getEnergy() : e.getBearingRadians())) + Math.abs((setFireBullet(((getBattleFieldWidth() > 0 ? e.getEnergy() :
e.getEnergy()) > 0 ? e.getEnergy() : getEnergy()))==null ? 0.0 : 1.0)))==null ? 0.0 : 1.0))))));

setTurnGunRightRadians(robocode.util.Utils.normalRelativeAngle(getHeadingRadians()-
getGunHeadingRadians()+(getHeadingRadians() > getY() ? Math.abs(Math.sin(Math.sin((getHeadingRadians() > getY() ? getEnergy() :
Math.abs(getHeadingRadians()))) + Math.abs((((getHeadingRadians() > getY() ? getEnergy() : e.getBearingRadians()) > 0 ? e.getEnergy() :
Math.abs(getBattleFieldWidth())) > (e.getBearingRadians() > 0 ? e.getEnergy() : getY()) ? getEnergy() : (getEnergy() > 0 ? e.getEnergy() :
getEnergy())))) - (setFireBullet(Math.sin((setFireBullet((Math.abs(e.getEnergy()) > 0 ? e.getEnergy() : getEnergy()))==null ? 0.0 : 1.0)) +
Math.abs((Math.abs(getHeadingRadians()) > (getHeadingRadians() > getY() ? getEnergy() : (getHeadingRadians() > getY() ? getEnergy() :
e.getBearingRadians())) ? getEnergy() : e.getBearingRadians())))==null ? 0.0 : 1.0)) : e.getBearingRadians()))); }}/* > Tree 0) add (add
(add (ifGreater energy (abs (abs energy)) energy (add (ifGreater heading y energy (sin energy)) (abs enemy_heading))) (ifPositive (fire (abs (abs
enemy_energy))) enemy_energy (add (abs (abs max_x)) (abs (sin energy))))) (abs (ifPositive (add (neg (ifPositive (ifGreater heading y y
enemy_bearing) enemy_energy energy)) (sin energy)) (ifGreater energy y enemy_bearing enemy_bearing) (ifPositive energy enemy_energy
energy)))) max_x) > Tree 1) neg (abs (sub (sin (add (abs max_x) (add max_x (sin (ifPositive (sin energy) enemy_energy y))))) (fire (add (abs
(ifGreater (ifPositive y enemy_energy energy) y energy enemy_bearing)) (abs (fire (ifPositive (ifPositive max_x enemy_energy enemy_energy)
enemy_energy energy)))))))) > Tree 2) ifGreater heading y (abs (sub (sin (add (sin (ifGreater heading y energy (abs heading))) (abs
(ifGreater (ifPositive (ifGreater heading y energy enemy_bearing) enemy_energy (abs max_x)) (ifPositive enemy_bearing enemy_energy y)
energy (ifPositive energy enemy_energy energy))))) (fire (add (sin (fire (ifPositive (abs enemy_energy) enemy_energy energy))) (abs (ifGreater
(abs heading) (ifGreater heading y energy (ifGreater heading y energy enemy_bearing)) energy enemy_bearing)))))) enemy_bearing/*(

46

GP-Robocode

All Other
 27

Playe
rs: H

uman W
ritte

n!

All Other
 27

Playe
rs: H

uman W
ritte

n!

June 25, 2005 (http://robocode.yajags.com/20050625/haiku-1v1.html)

47

48

Backgammon

2752

49

Evolving Backgammon Players with GP
Goal: Evolve a good flat evaluator

start with current
board and dice

generate all possible
next boards

each board evaluated by
GP individual

2.3 0.3 -12 14.6 0.1 8.4

board with highest
score is selected

14.6

50

Something About Backgammon
• Game has two main stages:

– Contact stage: The two players can hit each other

– Race stage: No contact between the players

51

Program Architecture
• Each individual includes two trees:

– Contact Tree: includes various general and specific
board-query functions

– Race Tree: Much simpler, includes only functions that
examine the checkers’ positions

52

A Note About Types
• Use Strongly Typed Genetic Programming (STGP)

• Extension of GP that adds types (Montana, 1995)

• Each node has a return type and argument types

• Node n1 can have child node n2 iff n1 argument type is

compatible with n2 return type

• Types: atomic = symbol, set of atomic types

• Need to define type constraints for backgammon:

– atomic : Float (F), Boolean (B)

– set: Query (Q), contains Float & Boolean

2753

53

Terminal Set for Contact Tree
• Three types of terminals:

1. Constants

2. Functions providing information about specific board
positions

3. Functions providing information about the board as a
whole

54

Constants
• An ephemeral random constant (ERC) produces a

constant real number in the range [0,5]:

F = Float-ERC

55

Specific Queries

• Internal board
positions are
numbered 1-24

• Bar marked 0

• Off-board position
marked 25

56

Specific Queries (cont’d)
• When initialized, a random integer n in range

[0,25] is selected (ERC)

• Returns property at position n
• Specific properties include:

Player-Exposed(n)
Player-Blocked(n)
Player-Tower(n)
Enemy-Exposed(n)
Enemy-Blocked(n) Q = Specific-Property(n)

2754

57

General Board Queries
• Provide general information about the board

configuration
• General properties include:

Player-Pip
Enemy-Pip
Total-Hit-Prob
Player-Escape
Enemy-Escape

Q = General-Property

58

Terminal Set for Race Tree
• Much simpler and contains

the functions:

F = Float-ERC

Q = Player-Position(n)

59

Function Set

• Contains arithmetic and logic operators

• Common to both race and contact trees

60

Function Set (cont’d)
• Arithmetic functions:

• Conditional functions:

• Compare functions:

• Logic function:

F=Add(F,F) F=Sub(F,F) F=Mul(F,F)

F=If(B,F,F)

B (F,F) B (F,F)

B=And(B,B) B=Or(B,B) B=Not(B)

2755

61

Genome Summary

F=Enemy-Escape

F=Player-Escape

B=Not(B)F=Total-Hit-Prob

B=Or(B,B)F=Enemy-Pip

B=And(B,B)F=Player-Pip

B=Smaller(F,F)Q=Enemy-Blocked(n)

B=Greater(F,F)Q=Enemy-Exposed(n)

F=If(B,F,F)Q=Player-Tower(n)

F=Mul(F,F)Q=Player-Blocked(n)
F=Sub(F,F)Q=Player-Position(n)Q=Player-Exposed(n)
F=Add(F,F)F=Float-ERCF=Float-ERC

Function Set:
Both Trees

Terminal Set:
Race Tree

Terminal Set:
Contact Tree

62

First Approach: External Opponent

• The external opponent Pubeval (Tesauro, 1993),
is used as a “teacher”

• Individual’s fitness determined by playing against
teacher

63

Fitness Measure
• Uses external opponent to evaluate individuals

• Each individual plays a 100-game tournament vs.

Pubeval

• Fitness of individual (i=individual, p=pubeval):

F = Si
Si + Sp

64

Fitness Measure

Individuals

Pubeval

2756

65

Control Parameters
• Major parameters:

– Population size (M): 128

– Number of generations (G): 500

• Minor parameters:
– Probability of selecting genetic operator (reproduction,

crossover, mutation)

– Selection operator

– Methods of growing trees

66

Termination Criterion & Result Designation

• Termination: 500 generations

• Result Designation:
– Every 5 generations, the 4 best individuals play a

1000-game tournament vs. Pubeval

– Individual with best score over entire run is declared
best-of-run

67

Results (External Opponent)

68

Benchmark

• Results look great, but keep in mind that fitness

is over 100 games played

• So, we applied a 1000-game tournament vs.

Pubeval every 5 generations

2757

69

Benchmark (External Opponent)

70

Coevolution
• Results obtained using external opponent

approach are good — but we wanted

Better. Stronger. Faster.

• Suspected to be over-fitted

• Apply coevolution: Individuals play against each other

• Use Single-Elimination Tournament (Angeline et al. 1993)

71

Single-Elimination Tournament
• Divide a population of n individuals to n/2 pairs

and evaluate each pair

• The looser at each competition is assigned a
fitness of 1/n, and the winner proceeds to the
next round

• This process repeats itself until one individual
remains with fitness 1

72

Single-Elimination Tournament

8

1

4

1

2

1

1

Individuals

2758

73

Benchmark (Coevolution)

74

Sample GP-Gammon
Tree 0:
(+ (- (+ (+ (- (E-At 24) (- (+ (* (+ (If (P-Block 5) (P-Open 24) L-Pip) (+ (- (E-At 18) L-Pip) (+ EnemyEsc (+ E-Pip (P-Open 1))))) (P-Block 2)) (If
(Not (P-Block 8)) (+ L-Pip EnemyEsc) (+ (- (E-At 18) L-Pip) (+ EnemyEsc (P-Block 3))))) (- (+ L-Pip (* 0.053718492 (E-At 11))) (If (Not (P-
Block 8)) (+ (P-Block 1) TotalHit) (+ (+ E-Pip (P-Open 1)) (+ EnemyEsc (- (+ (* (+ L-Pip EnemyEsc) PlayerEsc) (+ EnemyEsc EnemyEsc)) (- (+
E-Pip (P-Open 1)) (If (Not (P-Block 8)) (+ E-Pip (P-Open 1)) (- P-Pip (P-Open 1))))))))))) (- (- 0.3715206 (* L-Pip (* EnemyEsc (P-Block 10))))
(* (- 2.9071698 L-Pip) (+ L-Pip (+ L-Pip (+ L-Pip EnemyEsc)))))) (- (- 0.3718665 (+ (P-Block 1) TotalHit)) (* (- 2.9086428 L-Pip) (+ L-Pip (+
L-Pip (If (< (If (P-Tower 5) PlayerEsc L-Pip) (If (Not (P-Block 8)) (If (Not (P-Block 8)) (+ (P-Block 1) (+ PlayerEsc TotalHit)) (+ EnemyEsc (+
EnemyEsc (P-Block 3)))) (+ (- (E-At 18) L-Pip) (- 2.9086428 L-Pip)))) (+ (If (P-Block 5) (* 1.1556402 (P-Block 2)) L-Pip) (* 1.1556402 (P-
Block 2))) (If (> (+ (* (+ L-Pip EnemyEsc) (If (P-Tower 5) PlayerEsc (If (P-Block 5) (P-Open 24) L-Pip))) (+ EnemyEsc EnemyEsc)) PlayerEsc)
(P-Open 1) (* 0.053718492 (E-At 11))))))))) (- (+ (+ EnemyEsc (P-Block 3)) (If (P-Block 5) (P-Open 24) L-Pip)) (- (If (Not (And (P-Open 25)
(And (P-Open 10) (E-At 12)))) L-Pip EnemyEsc) (If (Not (P-Block 8)) (+ (P-Block 1) (* (- 2.9086428 (* 0.053718492 (E-At 11))) (+ (+ L-Pip (*
0.053718492 (E-At 11))) (+ L-Pip (If (> PlayerEsc PlayerEsc) (- (+ E-Pip (P-Open 1)) (If (Not (P-Block 8)) (+ E-Pip (P-Open 1)) (* 0.053718492
(E-At 11)))) (If (> PlayerEsc PlayerEsc) (+ L-Pip (+ L-Pip (If (< (* 1.1556402 (P-Block 2)) (- P-Pip (P-Open 1))) (+ (If (P-Block 5) (P-Open 24)
L-Pip) (* 1.1556402 (P-Block 2))) (If (> PlayerEsc PlayerEsc) (P-Open 1) (* 0.053718492 (E-At 11)))))) L-Pip)))))) (- (E-At 18) L-Pip))))) (- (*
0.044896092 (+ (- (+ L-Pip (+ EnemyEsc EnemyEsc)) (+ EnemyEsc (P-Block 3))) (+ L-Pip (If (Not (P-Block 8)) (+ L-Pip PlayerEsc) (If (>
PlayerEsc PlayerEsc) (- (E-At 18) L-Pip) L-Pip))))) (* EnemyEsc (+ L-Pip (+ (* (- P-Pip (P-Open 1)) (+ L-Pip EnemyEsc)) (If (< L-Pip (+ (If (<
(- 2.9086428 L-Pip) PlayerEsc) (+ (* 1.1556402 (P-Block 2)) (* 1.1556402 (P-Block 2))) (If (> PlayerEsc PlayerEsc) (+ L-Pip (+ EnemyEsc (P-
Block 3))) (* 0.053718492 (E-At 11)))) P-Pip)) (+ (If (P-Block 5) (P-Open 24) L-Pip) (* 1.1556402 (P-Block 2))) (If (> PlayerEsc (+ L-Pip
EnemyEsc)) (+ (* 0.053718492 (E-At 11))
Tree 1:
(- 1.0983202 (+ 3.5341604 (- (P-Position 11) (* (* (P-Position 25) (* (- 0.9336438 (P-Position 15)) (+ (* 2.0106103 (P-Position 2)) 0.180087))) (-
(* (P-Position 9) (- (+ 3.4345493 (If (< (P-Position 6) 2.1664124) (P-Position 18) (If (P-Position 21) (P-Position 17) (* (- 0.55943674 (If (P-
Position 11) (* 2.0106103 (P-Position 2)) (P-Position 22))) (If (> (P-Position 18) (P-Position 16)) (If (P-Position 20) (P-Position 21) (P-Position
10)) (* (P-Position 25) (P-Position 25))))))) (- (- 0.27137187 (P-Position 25)) (+ (If (P-Position 15) (P-Position 5) 1.1707199) 3.844627)))) (- (-
(P-Position 25) (* (P-Position 25) 2.4853675)) (If (And (Or (P-Position 10) (P-Position 15)) (Or (< (P-Position 3) (P-Position 25)) (Not (Not (P-
Position 1))))) (- 1.0983202 (- (+ (* (P-Position 25) 0.81480706) (P-Position 17)) (P-Position 7))) (- (* 1.3386335 (* (P-Position 25) (P-Position
25))) (- (P-Position 25) (* (P-Position 25) 2.4853675)))))))))))

75

Comparison of Backgammon Players

53.3GP-Gammon-10
53.4GP-Gammon-9
54.2GP-Gammon-8
54.2GP-Gammon-7
54.5GP-Gammon-6
54.6GP-Gammon-5
55.7GP-Gammon-4

% Wins vs. PubevalPlayer

56.4GP-Gammon-3
56.6GP-Gammon-2
56.8GP-Gammon-1

GP-Gammon-i: Our evolved players

76

Comparison of Backgammon Players

52.7[Darwen, 2001]

40.00HC-Gammon [Pollack et al, 1997]

45.2ACT-R-Gammon [Sanner et al, 2003]

51.2GMARLB-Gammon [Qi & Sun, 2003]

45.1GP-Gammon-20
45.2GP-Gammon-19

47.8GP-Gammon-18
48.1GP-Gammon-17
49.0GP-Gammon-16
49.9GP-Gammon-15
49.9GP-Gammon-14

% Wins vs. PubevalPlayer

51.2GP-Gammon-13

51.4GP-Gammon-12

52.9GP-Gammon-11

2759

77

Added Horsepower …
• … And went from 56% to 62%
• What about humans?
• Indirectly:

– GP-Gammon: 62% vs. Pubeval
– HC-Gammon: 40% vs. Pubeval
– HC-Gammon against the (human) world:

58% wins (counting abandoned as wins)
38% wins (otherwise)

(demo.cs.brandeis.edu/hcg/stats1.html)

• By transitivity…

78

Comparing External Opponent
with Coevolution

• Sole difference: Fitness measure

• We expected that individuals evolved by
referring to external opponent would perform
better against the same opponent, post-
evolutionarily

79

Compare Approaches: Average

Coevolution

80

Compare Approaches: Max

Coevolution

2760

81

Coevolution is Better
(for backgammon)

• When playing only against one strategy
individuals are likely to adapt to the external
opponent’s strategy

• In order to overpower the external opponent,
the individuals need motivation to discover new,
unknown strategies

• Hence, coevolution,

• or, as in GP-Robocode, use multiple externals

82

So, Coevolution or External Opponent?

• Subtle

• Depends on game and game setup

• One thing certain: Need diversity during
evolution

83

Observation
• Studying the GP-Gammon individuals, we

concluded that strategy is mostly due to general
query functions

• Specific query function helps “balance” strategy
at critical moments

84

2761

85

Chess

(Endgames)

86

The Game of Chess

• First developed in India and Persia

• A complex game of strategy and ingenuity

• Enormous search space: Estimated at 1043 in
40-move game (Shannon, 1950)

87

AI & Chess
• 1958: First chess AI program, novice level
• Over ~50 years, hardware gets really better
• Software…
• Well… Also
• 1997: Garry Kasparov, former world champion,

defeated by IBM’s Deep Blue
• So…

? ? ?

88

AI & Chess
• NO!

• Deep Blue used extreme brute force, traversing
several millions board positions

• Very little generalization

• Virtually no resemblance to human chess thinking

• Deemed theoretically uninteresting

2762

89

Chess Basics
• 8x8 board

• Each player starts with 16 pieces of 6 different
types, and may only move 1 piece per turn

• A piece can only move into an empty square or
into one containing an opponent’s piece (capture)

• Win by capturing the opponent’s king

90

Chess Moves
• Pawn: May only move forward (or capture diagonally)
• Bishop: Diagonals
• Knight: L-shaped moves
• Rook: Ranks & files
• Queen: Bishop & Rook combined
• King: One square in any direction, may not move into

attacked square

1 3 3/3.5 5 9 values:

91

Example

• White has over

30 possible moves

• If black’s turn,

can capture pawn

at c3 and check

(also fork)

92

Check and Checkmate

• Checking: Attacking
opponent’s king

• Opponent must
respond

• Mating: When the
opponent runs out of
move options, thus
losing game

2763

93

Artificial Players

• AI uses powerful search

• Millions of boards (search-tree nodes) per
second

• Little time per board, less knowledge

• Smart search algorithms

94

Human Players
• Humans use (problem-solving) cognition
• Highly knowledge-based, extensive chess

“theory”
• Massive use of pattern recognition
• Also use search but

– Less deep
– Only develop “good” positions

• More efficient, less nodes per “same” result
• Of course, said cognition used not only in chess…

95

(Human) Grand Masters
• Can play (well) against several opponents

simultaneously
• GMs vs. novices: same level of performance when

memorizing random board, differ when
memorizing real game positions

• GM eye movements show they only scan “correct”
parts of board

• Strong amateurs use same meta-search as GMs:
Equally deep, same nodes, same speed; differ in
knowledge of domain (De Groot)

96

Endgame: Example

• White’s turn: Mate
in 5, with Qe6+

• Black’s turn: Draw
with: Rc1+, then
Qg5 – fork &
exchange

2764

97

Endgames

• Few pieces remain (typically: king, 0-3 officers
and sometimes pawns)

• Fewer options, but more possible moves per piece

• Trees still extremely large

98

GP Building Blocks
• Main purpose: Reduce search by employing

“smart” features of the board

• Allow more complex features to be built
automatically by supplying basic ones (terminals)
and building methods (functions)

99

Example Feature: Fork

• My piece:
– Attacking 2 or more pieces

– Protected or not attacked

• Opponent’s pieces:
– unprotected

– or, protected but of greater
value

• Right: black must
exchange Q for R

10

Fork: Traditional AI Search

• Black: 3 legal moves
• Find that one of white’s

next moves (of 23)
captures black queen

• Check all following moves
for more piece exchanges

• Sometimes, still check
other moves (non
capturing)

• At end of search, compare
remaining pieces

2765

10

Fork in GP

• isMyFork function: checks all

previously defined conditions

• Also, smaller building blocks:

– Is opponent piece Attacked?

– Is attacking piece protected?

– Is opponent in check?

– Value of attacked piece

10IsMyKingProtectingPiece
IsOppKingProtectingPiece
OppPiecesNotSameLine
MyPiecesSameLine
OppKingDistRook
MyKingProxRook
NumNotMovesOppKing
NumMovesMyKing

IsMyPieceNotPinnedIsOppNotFork
IsOppPiecePinnedIsMyFork
IsMyKingNotBehindPieceIsOppQueenAttacked
IsOppKingBehindPieceIsMyQueenNotAttacked
IsMyKingNotStuckValueOppPiecesAttacking

Not(B)IsOppKingStuckValueMyPiecesAttacking
Smaller(B,B)MyPieceCannotBeCapturedNumOppPiecesAttacked
And3(B,B,B)OppPieceCanBeCapturedNumMyPiecesNotAttacked
And2(B,B)IsMateInOneOppKingProximityToEdges
Or3(B,B,B)IsMateMyKingDistEdges
Or2(B,B)IsMaterialIncreaseIsOppKingInCheck
If3(B,F,F)EvaluateMaterialNotMyKingInCheck

Function SetComplex TerminalsSimple Terminals
Genome Summary

10

Basic Program Architecture
• Generate all possible moves (depth=1)

• Evaluate each board with GP individual

• Select board with best score (or choose randomly
between equals)

• Perform best move

• Repeat process with GP opponent until game ends (or
until only kings left)

• 3 trees per individual: advantage, even, disadvantage,
used according to current board status

10

Fitness
• Success against peers
• Random-2-ways method: Each individual vs.

fixed number of randomly selected peers (5)
• Scoring (based on chess tournaments):

– Victory: 1
– Material advantage (without mate): 0.75
– Draw: 0.5
– Loss: 0

2766

10

Two (Top) Opponents

1. Program we wrote based on consultation with
experts, highest being International Master
Boris Gutkin, ELO 2400

2. CRAFTY, second in the 2004 International
Computer Chess Championship

Evolved programs tested against two top-rated players:

10

Endgame Experiments
• KRKR: Each player has 1 king and 1 rook
• KRRKR: King with 2 rooks vs. king and rook
• KRRKRR
• KQKQ: Kings and Queens
• KQRKQR: Combined

10

Results: Master

10

Results: CRAFTY

2767

10

Sample GP-Endchess
Tree 0:
(If3 (Or2 (Not (Or2 (And2 OppPieceAttUnprotected NotMyKingInCheck) (Or2 NotMyPieceAttUnprotected 100*Increase)))
(And2 (Or3 (And2 OppKingStuck NotMyPieceAttUnprotected) (And2 OppPieceAttUnprotected OppKingStuck) (And3 -
1000*MateInOne OppKingInCheckPieceBehind NotMyKingStuck)) (Or2 (Not NotMyKingStuck) OppKingInCheck)))
NumMyPiecesUNATT (If3 (< (If3 (Or2 NotMyPieceAttUnprotected NotMyKingInCheck) (If3 NotMyPieceAttUnprotected
#NotMovesOppKing OppKingInCheckPieceBehind) (If3 OppKingStuck OppKingInCheckPieceBehind -1000*MateInOne))
(If3 (And2 100*Increase 1000*Mate?) (If3 (< NumMyPiecesUNATT (If3 NotMyPieceAttUnprotected -1000*MateInOne
OppKingProxEdges)) (If3 (< MyKingDistEdges #NotMovesOppKing) (If3 -1000*MateInOne -1000*MateInOne
NotMyPieceATT) (If3 100*Increase #MovesMyKing OppKingInCheckPieceBehind)) NumOppPiecesATT) (If3
NotMyKingStuck -100.0 OppKingProxEdges))) (If3 OppKingInCheck (If3 (Or2 NotMyPieceAttUnprotected
NotMyKingInCheck) (If3 (< MyKingDistEdges #NotMovesOppKing) (If3 -1000*MateInOne -1000*MateInOne
NotMyPieceATT) (If3 100*Increase #MovesMyKing OppKingInCheckPieceBehind)) NumOppPiecesATT) (If3 (And3 -
1000*MateInOne NotMyPieceAttUnprotected 100*Increase) (If3 (< NumMyPiecesUNATT (If3 NotMyPieceAttUnprotected
-1000*MateInOne OppKingProxEdges)) (If3 (< MyKingDistEdges #NotMovesOppKing) (If3 -1000*MateInOne -
1000*MateInOne NotMyPieceATT) (If3 100*Increase #MovesMyKing OppKingInCheckPieceBehind))
NumOppPiecesATT) -1000*MateInOne)) (If3 (< (If3 100*Increase MyKingDistEdges 100*Increase) (If3 OppKingStuck
OppKingInCheckPieceBehind -1000*MateInOne)) -100.0 (If3 (And2 NotMyPieceAttUnprotected -1000*MateInOne) (If3 (<
NumMyPiecesUNATT (If3 NotMyPieceAttUnprotected -1000*MateInOne OppKingProxEdges)) (If3 (< MyKingDistEdges
#NotMovesOppKing) (If3 -1000*MateInOne -1000*MateInOne NotMyPieceATT) (If3 100*Increase #MovesMyKing
OppKingInCheckPieceBehind)) NumOppPiecesATT) (If3 OppPieceAttUnprotected NumMyPiecesUNATT MyFork)))))
Tree 1:
(If3 NotMyPieceAttUnprotected #NotMovesOppKing 1000*Mate?)
Tree 2:
(If3 1000*Mate? NumMyPiecesUNATT -1000*MateInOne)

11

Multiple Endgames
• Aim for general-purpose strategies

• All endgames used during evolution

• Results:

7242CRAFTY

6826Master
%Draws%Advs%Wins

Evolution of an Efficient
Search Algorithm for the

Mate-In-N Problem in Chess
Ami Hauptman and Moshe Sipper

Ben-Gurion University, Israel

2007 “HUMIES” AWARDS FOR HUMAN-COMPETITIVE RESULTS

Monday, July 9, 2007

11

…

• Game Strategy =
Search + Knowledge

• Search:
Number of nodes developedNumber of nodes developed

• Knowledge:
Evaluation of nodesEvaluation of nodes

• Tradeoff between the two

Game-Playing AI
game tree

2768

11

• Powerful contemporary engines
–– CraftyCrafty, Fritz, Deep Junior, …

– Lots of search

– Less knowledge

• Intelligent? Hmmm…
– Very little generalization

– Gobbles computational power

– Deemed theoretically uninteresting [Chomsky, 93]

Chess: Machine Players

11

Chess: Human Players
• Use problem solving cognition
• Deeply knowledgeknowledge--basedbased play
• Massive use of pattern recognitionpattern recognition;

parallelism
• Also use search but

–– SubstantiallySubstantially less nodes (typically dozens)
–– SelectiveSelective (only “good”)
–– More efficientMore efficient: less nodes for “same” result

• Good source of inspiration for algorithms

11

Our Goal
• Concentrating on endgames we previously:

– evolved node-evaluation function (knowledge) with GP
– Results: draw or win against CRAFTY, a world-class

chess engine
– Part of work that won a 2005 humies medal

• This work: Evolve the search algorithm itselfEvolve the search algorithm itself

• Evolve both search and knowledgeboth search and knowledge, letting

evolutionevolution balance the two

11

Incentive for Current Work
• Previously evolved players:

– Sometimes miss (easy) shallow mates
– Scaling problem: adding pieces to board decreased

scores
• Evolved players should rely more on search

– Full pure-knowledge player still unattainable
– Search makes the strongest engines

• Problem:
– Simply adding search: too slow (each node thoroughly

examined)
SOLUTION:
– Balancing search & knowledge through evolutionevolution

2769

11

Problem Domain
• Mate-in-N: Is there a forced win sequence in

maximum 2*(N-1) plies ?
• Crucial to chess engines, searched far more

thoroughly
• CRAFTY: For difficult N=5 cases searches over

106 nodes

11

Major Result

Evolved search algorithm:

Number of nodes developed reduced by 47%

with respect to worldwith respect to world--class engine (not simple class engine (not simple))

11

Result is Human-Competitive
(H) result holds its own or wins a regulated

competition involving human-written computer
programs

(B) better than result accepted as a new scientific
result at the time

(D) result is publishable in its own right
(F) better than result considered an achievement

at the time
(G) result solves a problem of indisputable

difficulty in its field

12

Why is Result Best?
• Difficult for most human chess players:

– Must train intensively not to miss (and lose game)

• Our evolved strategies improve upon one of top
chess engines in existence (Crafty), representing
many human years of programming

• We’re beating this top-notch engine in its own
“territory”: massive search

• Problem is crucial to chess engines, therefore
much computational power is expended (e.g., in
such positions, Deep Blue examines twice the
normal number of nodes)

2770

12

Why is Result Best? (cont’d)

• Evolving a dynamic algorithm (i.e., a process)
usually harder than evolving a static structure

• We took evolution to the next level: balancing
search and knowledge

• Surpasses previous EC solutions

1.1.Hard problem in hard domain for man & machine (chess)Hard problem in hard domain for man & machine (chess)
2.2.Evolved algorithm better Evolved algorithm better thanthan (most) humans(most) humans
3.3.Evolved algorithmEvolved algorithm better than humanbetter than human--written top enginewritten top engine
4.4.Evolution taken to next levelEvolution taken to next level

In a nutshell:In a nutshell:

12

12

To Briefly Summarize…
• Genetic Programming has proven to be an

excellent tool for automatically creating game
strategies

• Robocode: 2nd place in international league, with
other 26 programs written by humans

• Backgammon: highest win rate vs. Pubeval, most
likely will hold its own against humans

• Chess: draw/win vs. top-rated, human-based
programs

12

General Discussion
General Thade

2771

12

Automatic Programming
Koza et al. (1999) delineated 16 attributes a system for automatically

creating computer programs might beneficially possess:
1. Starts with problem requirements
2. Produces tractable and viable solution to problem
3. Produces an executable computer program
4. Automatic determination of program size
5. Code reuse
6. Parameterized reuse
7. Internal storage
8. Iterations, loops, and recursions
9. The ability to organize chunks of code into hierarchies
10.Automatic determination of program architecture
11.Ability to implement a wide range of constructs known to programmers
12.Operates in a well-defined manner
13.Problem-independent, i.e., possesses some degree of generalization

capabilities
14.Applicable to a wide variety of problems from different domains
15.Able to scale well to larger instances of a given problem
16.Competitive with human-produced results

12

Attribute 17

Cooperative with Humans

12

Cooperative with Humans
• GP readily accommodates human expertise

• Common AI view: Yada from Nada

• Like Athena, Greek goddess of wisdom, favorite
child of Zeus, who had sprung fully grown out of
her father's head

• Cooperative view: Man and machine work hand-
in-keyboard

12

VS.

2772

12

Cooperative with Humans
• More than many (most?) other adaptive-search

technicians, the GPer is better positioned to
imbue the machine with his own intelligence

Genetic Programming + (human) Intelligence

Human-Competitiveness

GP + I HC

13

A/I or A-I ?
• Importance of high “artificial-to-intelligence

ratio” (Koza et al. , 2003): Maximize A/I.

• Better: A - I M (meaningful epsilon)

• Pore in as much I as possible, with goal of

maximizing (machine’s) added Value: A

13

The Ultimate Goal…

Building a Strategizing MachineWarning:
The Surgeon General
Has Determined That
The Following Slide

May Be Totally
Nonsensical

13

A Final Thought…

Machines Might Be

Human-Competitive

2773

13

BUT…

13

Are Humans

Machine-Competitive?

13

NO!

13

Human Cellular Automata
[parallel computer made of simple, 2-state processors]

2774

13

• Slow
• Error-prone
• Processors tend to complain

Human Cellular Automata

13

Speaking of (brilliant) students…
• yaniv azaria
• ami hauptman
• yehonatan shichel
• eran ziserman

13

In conclusion…
The manifestation of the universe as a complex
idea unto itself as opposed to being in or outside
the true Being of itself is inherently a conceptual
nothingness or Nothingness in relation to any
abstract form of existing or to exist or having
existed in perpetuity and not subject to laws of
physicality or motion or ideas relating to non-
matter or the lack of objective Being or subjective
otherness.

Woody Allen, Mr. Big

14

2775

14

www.moshesipper.com/papers
• Y. Azaria and M. Sipper

GP-GAMMON: USING GENETIC PROGRAMMING TO EVOLVE BACKGAMMON PLAYERS

Proceedings EuroGP2005, pp. 132-142
• A. Hauptman and M. Sipper

GP-ENDCHESS: USING GENETIC PROGRAMMING TO EVOLVE CHESS ENDGAME PLAYERS

Proceedings EuroGP2005, pp. 120-131
• Y. Shichel, E. Ziserman, and M. Sipper

GP-ROBOCODE: USING GENETIC PROGRAMMING TO EVOLVE ROBOCODE PLAYERS

Proceedings EuroGP2005, pp. 143-154
• Y. Azaria and M. Sipper

GP-GAMMON: GENETICALLY PROGRAMMING BACKGAMMON PLAYERS

Genetic Programming and Evolvable Machines, vol. 6, no. 3, pp. 283-300, 2005
• M. Sipper, Y. Azaria, A. Hauptman, & Y. Shichel

DESIGNING AN EVOLUTIONARY STRATEGIZING MACHINE FOR GAME PLAYING AND BEYOND

IEEE SMC-C, vol. 37, no. 4, pp. 583-593, July 2007
• A. Hauptman and M. Sipper

EVOLUTION OF AN EFFICIENT SEARCH ALGORITHM FOR THE MATE-IN-N PROBLEM IN CHESS

Proceedings EuroGP2007, pp. 78-89

2776

