Genetic Algorithms and Grid Computing
for Artificial Embryogeny

Sylvain Cussat-Blanc, Hervé Luga, Yves Duthen

IRIT — CNRS - UMR5505
Université de Toulouse — France

{cussat,luga,duthen}@irit.fr

ABSTRACT

Genetic algorithms are very demanding in terms of comput-
ing time and, when the population size is large, they need
days to complete or even fail due to memory restrictions. It
is particularly the case for artificial life where each evalua-
tion can take more than one minute to develop an artificial
creature, plant or organism. Indeed, creatures are developed
in physical and chemical simulators that require important
computation resources. In order to create more and more
realistic creatures, we propose a grid parallelized version of
genetic algorithms. Two possibilities exist to increase them:
supercomputers or computational grids. Because of their
scalability, we choose computational grid in their works.

Categories and Subject Descriptors: 1.2.8 [Artificial
Intelligence]: Problem Solving, Control Methods, and search

General Terms: Algorithms, Experimentation

Keywords: Genetic algorithms, Grid computing, Artificial
embryogeny

1. INTRODUCTION

Genetic algorithms, by their structure, tend to be easy
to parallelize [3]. Three main methods exist to parallelize
genetic algorithms : Master/Worker GA, Island GA and
Hybrid GA. Whereas the first method gives exactly the same
result as a classical GA, their results are not guarantied for
the two last methods. However, experiments tend to prove
their results are yet similar to classical GA in quality but
needs more generation to converge [2].

The main goal of this work is to reduce the computa-
tion time of our artificial creature generation. We decide
to apply a Master/Worker algorithm to parallelize our ge-
netic algorithm. This algorithm is well adapted to artificial
life because creature genome is small and the fitness com-
puting cost is very important. Because of the small size
of the genome, the network restriction forced by a Mas-
ter/Worker architecture deployed on a computational grid
will not heavily increase the computation time. Moreover,
because the properties of a classical GA are preserved by
the Master/Worker algorithm, the number of generations
needed by the algorithm to converge and the final solution
quality are exactly the same with or without the paralleliza-
tion. In this paper, we present our method to parallelize ge-

Copyright is held by the author/owner(s).
GECCO’08, July 12-16, 2008, Atlanta, Georgia, USA.
ACM 978-1-60558-130-9/08/07.

281

Fabien Viale, Denis Caromel
INRIA Sophia Antipolis — France

{viale,caromel}@inria.fr

netic algorithm using the grid middleware ProActive. The
next session presents this middleware.

2. PROACTIVE’S MASTER/WORKER API

ProActive is a grid programming middleware which pro-
vides, among others, a grid infrastructure abstraction [1].
The ProActive framework contains as well a set of toolkits
which hide the inner ProActive concepts from the user and
provide high-level APIs to well-known class of parallel prob-
lems such as Master/Worker, Branch & Bound or skeletons.

ProActive provides as well a deployment framework used
to distribute an application anywhere without having to
modify the source code. The key idea of the deployment
framework lies within deployment descriptors. These de-
scriptors are used to describe how resources can be acquired
in a complex grid environment, for example by providing
the chain of commands used to start remote processes. The
ressource unit in ProActive is a local or remote JVM process.
These resources are abstractly described by any ProActive
application as java objects called nodes. These nodes are
then used by ProActive applications, together with commu-
nication, registry and lookup protocols such as RMI.

ProActive provide different paradigms that simplify the
use of the middleware. Here, we use the Master/Worker
paradigm. In master/worker applications, a single mas-
ter process controls the distribution of work to a set of
identically operating worker processes. The master/worker
paradigm has been used successfully for a wide class of par-
allel applications and is well suited as a programming model
for applications targeted to distributed, heterogeneous "Grid”
resources. The ProActive approach to Master/Worker ap-
plications is to provide a high-level API which:

e allows the user to simply and freely define tasks that
will be executed by the workers.

e internally provides an automatic dispatching of work
among the workers.

e provides a simple interface for result gathering

e handles fault-tolerance by redispatching tasks from dead
workers.

e is implemented using ProActive.

3. EXPERIMENTS AND RESULTS

To study the efficiency of the Master/Worker genetic al-
gorithm, we implement a parallel version of our genetic algo-
rithm library using ProActive and specially the Master/Worker



API. We deploy the application on the french computational
grid, Grid5000. This experimentation aim is to study the al-
gorithm behavior on our artificial embryogeny model. This
model allows the generation of artificial creatures able to
grow in a virtual environment. We imagined an artificial
embryogeny model able do create an organ starting from a
single cell. This developmental model can be found in [4].

The simulation architecture is interesting for the paral-
lelization because it has been coded using a multithread
method. Each cell is an independent thread that perform
its own action. This architecture introduces a second level
of parallelization in the growth model.

In this experimentation, we implement a substrate trans-
fer system®. All cell specifications are encoded in its genome.
The genome size is about 19 kbytes and the simulation du-
ration varies from a couple of seconds (when the organism is
unable to do anything) to 120 seconds (when the organism
develops itself in the environment and performs the asked
action). Due to this important variation, the load balanc-
ing given by ProActive will optimize the task repartition
amongst the workers. The genetic algorithm parameters for
this problem are:

e Population size : 750
e Selection : 7 participants tournament with elitism
e Crossover rate : 65% ; Mutation rate : 5%

Curves in Figure 1 represent the computation time for
each generation for one and 50 CPU. Note that the ordinate
axis is graduated using a logarithmic scale for the time.

Time (hh:mm:ss) Computation time per generation

24:00:00 4
JEDEDEPUPEREDEREDSS S s e
s 12:08
2:24:00 + of
0:14:24
0:01:26 + e B
.’/-"
R
0:00:09 1
1 3 5 7 9 11 13 16 17 19 21 23 25 27 29
Generations

—~1CPU —=50CPUs

Figure 1: Computation time needed for each simu-
lation generation (smoothed curve). The grid paral-
lelization reduces the computation explosion due to
the creature evolution.

First, the two curves increase generation after generation
because the computation time to compute the fitness glob-
ally increases. Indeed, in the first generations, a lot of crea-
tures are unable to survive. Then, they die immediately, the
simulation stops and the computation time for such a sim-
ulation is very short (about one second). But, generation
after generation, creatures evolve to use the environment’s
resources and to develop themselves. The computation time
to evaluate each creature then grows up to 120 seconds.

The second interesting thing is that the global computa-
tion time is highly decreased. The network solicitation is

1Videos of creatures generated with this model are available
on the website http://www.irit.fr/~Sylvain.Cussat-Blanc

282

acceptable and the computation time for each creature is
sufficient to obtain good results even at the first generation.
The difference between the two curves increases generation
after generation. This computation time reduction is due to
the load-balancing provided by ProActive. Workers always
have a fitness to compute even if the last one was very short
to compute (because the creature was unable to survive in
its environment for example).

4. DISCUSSION AND FUTURE WORKS

In this paper, we present a parallel version of genetic algo-
rithms based on grid computing. This version is especially
interesting for our specific artificial embryogeny problem.
Indeed, genomes have relatively small sizes and important
computation needs. To parallelize this problem, we use a
Master/Worker genetic algorithm. Results given by such an
algorithm are very promising. The most interesting result
is that the generation’s computation time explosion due to
creature evolution is reduced thanks to load-balancing. It
significantly reduces the global computation time. The use
of a computational grid implies some restrictions: it is al-
most impossible to repeat the same experimentation many
times. Indeed, grids commonly have a reservation system to
reserve a set of computers. Due to this management, it is
hard to have exactly the same set two times on the bounce.
Moreover, the network behaviour between two experiments
can be very different and can impact the global computation
time.

Another problem is the master memory explosion. Whereas
a genetic algorithm uses an important quantity of memory,
the use of ProActive middleware increases the problem. In-
deed, each genome is encapsulated in a task to be sent to
worker. This memory explosion can be reduced using an is-
land GA or an hybrid GA because of the population distri-
bution on the grid but the convergence time can be increased
[2]. It could be interesting to implement an island algorithm
using ProActive and to deploy it on the grid to compare it
with our Master/Worker GA. Because the population is dis-
tributed amongst different computers, the memory problem
would then be reduced.

In the future, we want to develop the model to increase
the number of cells. We also want to develop tissues, organs,
then primitive creatures and, on the long range, assemble
organs to develop a complete creature. To manage more
and more cells, ProActive Master/Worker API must also be
enhanced to manage more and more nodes.

Acknowledgment :Experiments presented in this paper
were carried out using the Grid’5000 experimental testbed
(www.grid5000.1r).

S. REFERENCES

[1] F. Baude, D. Caromel, L. Mestre, F. Huet, and J. Vayssiere.
Interactive and descriptor-based deployment of object-oriented
grid applications. In High Performance Distributed Computing,
2002.

R. Bianchini and C. Brown. Parallel genetic algorithms on
distributed-memory architectures. Technical Report (revised
version), University of Rochester, May 1993.

E. Cantu-Paz. A survey of parallel genetic algorithms. Technical
report 95004, Illinois Genetic Algorithms Laboratory, Urbana,
IL, 1997.

S. Cussat-Blanc, H. Luga, and Y. Duthen. Artificial
Embryogeny and Grid Computing. Technical Report
IRIT/RR-2008-10-FR, IRIT, 2008.

(2]



