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ABSTRACT
This paper demonstrates the effectiveness of genetic algo-
rithms in training stable behavior in a model of the spino-
neuromuscular system (SNMS). In particular, we test the
stability of trained instances of the model with respect to un-
familiar control signals and untrained forearm weights. The
results show that small changes to the input frequency and
forearm weight result in small changes in velocity, demon-
strating that the system can reasonably accommodate un-
familiar circumstances. This type of stability is a critical
feature for virtually any type of control system.
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1. INTRODUCTION AND EXPERIMENTS
Neural networks in the spinal cord provide the body with a

remarkably precise system for motor control. Muscles con-
sist of thousands of muscle fibers that respond to electro-
chemical signals from the spinal cord to move and stabi-
lize the body. Studies show that behavior of the primary
motor cortex (M1) is correlated with arm position[4], ac-
celeration[1], and target position[2]. Simulating these types
of systems opens the door to developing prosthetic devices
that interpret brain signals the same way the spinal cord
does and designing robots with abilities comparable to hu-
mans. Designing this type of system also potentially makes
it possible to test hypotheses regarding motor control, such
as how motor control commands are encoded in the brain.

Our goal is to evolve a stable system capable of multi-
ple tasks. We hypothesize that small changes to how the
SNMS model is used, such as using slightly different input
frequencies and forearm weights, will result in small changes
in behavior. This would prove that a GA does not train the
system to only respond to familiar inputs and tasks. Rather,
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Figure 1: The SNMS joint model with a single de-
gree of freedom.

that it produces a stable system that generalizes its behav-
ior for a variety of tasks. The spino-neuromuscular system
(SNMS) model used in these and previous[3] experiments
consists of two groups of muscle fibers corresponding to the
biceps and triceps (Figure 1). Each muscle fiber is controlled
by a relatively small neural network that processes informa-
tion from the muscle fibers and other feedback pathways.

The following experiments use a steady-state GA for train-
ing. The GA trains all parameters of the model and evalu-
ates the fitness of potential solutions with equation

F = −

∑

all t

(Θ(t) − target(t))2 (1)

where Θ(t) is the angle between the movable forearm and
the fixed upper arm segment at time t and target(t) is the
target angle at time t. In these experiments the total fitness
is the sum of each individual training case.

The first experiment involves training the model to move
upward and downward at a single speed of 45 deg

sec
with 3

different forearm weights. Each system is trained with fore-
arm weights of 0.5, 0.6, and 0.7 kg (Figure 2), and tested
on every weight in the closed interval [0.4,0.8] kg in 0.05 kg
increments (Figure 3). The results in Figure 3 show that
even with untrained weights the target trajectory is gener-
ally followed. Figure 3 also shows that the test case with
0.45 kg approaches the target’s peak angle faster than the
0.4 kg test case, although the 0.4 kg case does move faster
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Figure 2: Arm motions of average fit sample with
familiar forearm weights.
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Figure 3: Arm motions of average fit sample with
unfamiliar forearm weights.
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Figure 4: Test cases with constant forearm weight
using 32 Hz/18 Hz and 28 Hz/22 Hz for up/down
motion, respectively.

than the 0.5 kg case. This indicates a nonlinear relationship
between weight and velocity. The SNMS model includes
feedback and inhibitory pathways that can account for this
type of nonlinearity in biology.

The second experiment involves training the SNMS model
to raise and lower the arm at 45deg

sec
and test the trained

system on slightly modified input frequencies. The system
is trained to achieve upward and downward motion with
inputs of 30 Hz and 20 Hz, respectively. Similarly to Figure
3, Figure 4 shows that relatively small changes to trained
input frequencies and weights result in small deviations from
the target motion, which is successfully trained with 30 hz
and 20 hz, for upward and downward motion.

2. CONCLUSIONS
This paper demonstrates the stability of the SNMS system

model with respect to untrained inputs and arm weights.
The results show that controlling the system with unfamil-
iar input frequencies results in small to moderate variations
in speed while still achieving relatively smooth motion. Sim-
ilarly, testing the model with unfamiliar forearm weights re-
sults in stable and controlled motion at different speeds. In
each test cases the motion remains relatively smooth and
the arm returns to the stable resting point at the end of the
simulation. In prosthetic and robotics applications it is im-
portant that performing unfamiliar tasks, such as lifting un-
familiar weights, does not result in erratic behavior. These
results demonstrate the robustness of the SNMS model and
advances the possibility of successfully developing more com-
plex models and tasks for biologically-based control systems.
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