
Generative and Developmental 
Systems

Kenneth O. Stanley
kstanley@eecs.ucf.edu

School of Electrical Engineering and Computer Science
University of Central Florida

July 13, 2008

http://eplex.cs.ucf.edu
Copyright is held by the author/owner(s). 
GECCO’08, July 12–16, 2008, Atlanta, Georgia, USA. 
ACM 978-1-60558-131-6/08/07. 

Inspiration vs. Simulation

• Often confused in GDS
– Simulation: Model biology to learn about biology
– Inspiration: Abstract biology to create new algorithms

• This tutorial’s perspective: Looking for inspiration
– What from biology is essential to achieve what we 

want?
– What can be ignored?
– What should we add that is biologically implausible yet 

works better for our purposes?

Goal: Evolve Systems of Biological 
Complexity

• 100 trillion connections in the human brain
• 30,000 genes in the human genome
• How is this possible?

Development

(embryo image from nobelprize.org) 2849



Solving this Problem Could Solve 
Many Others Historical Precedent

• Turing (1952) was interested in 
morphogenesis
– Experimented with reaction-diffusion 

equations in pattern generation
• Lindenmayer (1968) investigated plant 

growth
– Developed L-systems, a grammatical rewrite 

system that abstracts how plants develop

Lindenmayer, A. (1968). Mathematical models for cellular interaction in development: Parts I and II. Journal of Theoretical 
Biology, 18, 280–299, 300–315.
Turing, A. (1952). The chemical basis of morphogenesis. Philosophical Transactions of the Royal Society B, 237, 37–72.

A Field with Many Names
• Generative and Developmental Systems (GECCO track)
• Artificial Embryogeny
• Artificial Ontogeny
• Computational Embryogeny
• Computational Embryology
• Developmental Encoding
• Indirect Encoding
• Generative Encoding
• Generative Mapping
• …

Development is Powerful Because 
of Reuse

• Genetic information is reused during embryo 
development

• Many structures share information
• Allows enormous complexity to be encoded 

compactly

(James Madison University http://orgs.jmu.edu/strength/KIN_425/kin_425_muscles_calves.htm)2850



The Unfolding of Structure 
Allows Reuse

Rediscovery Unnecessary with 
Reuse

• Repeated substructures should only need to be 
represented once

• Then repeated elaborations do not require 
rediscovery

• Rediscovery is expensive and improbable
• (Development is powerful for search even 

though it is a property of the mapping)

Therefore, GDS

Symmetry Repetition Repetition
with variation

• Indirect encoding: Genes do not map directly to 
units of structure in phenotype

• Phenotype develops from embryo into mature form
• Genetic material can be reused
• Many existing developmental encoding systems

Some Major Issues in AE

• Phenotypic duplication can be brittle

• Variation on an established convention is 
powerful

• Reuse with variation is common in nature2851



Developmental Encodings

• Grammatical (Generative)
– Utilize properties of grammars and computer 

languages
– Subroutines and hierarchy

• Cell chemistry (Development)
– Simulate low-level chemical and biological 

properties
– Diffusion, reaction, growth, signaling, etc.

Grammatical Example 1

• L-systems: Good for fractal-like structures, 
plants, highly regular structures

Lindenmayer, A. (1968). Mathematical models for cellular interaction in development: Parts I and II. Journal of Theoretical 
Biology, 18, 280–299, 300–315.
Lindenmayer, A. (1974). Adding continuous components to L-systems. In G. Rozenberg & A. Salomaa (Eds.), L systems: 
Lecture notes in computer science 15 (pp. 53–68). Heidelberg, Germany: Springer-Verlag.

L-System Evolution Successes

• Greg Hornby’s Ph.D. dissertation topic 
(http://ic.arc.nasa.gov/people/hornby)

• Clear advantage over direct encodings

Growth of a Table

Hornby, G.. S. and Pollack, J. B. The Advantages of Generative Grammatical Encodings for Physical Design. Congress on 

Evolutionary Computation. 2001.
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Grammatical Example 2

• Cellular Encoding (CE; Gruau 1993, 1996)

F. Gruau. Neural network synthesis using cellular encoding and the 
genetic algorithm. PhD thesis, Laboratoire de L'informatique du 
Paralllisme, Ecole Normale Supriere de Lyon, Lyon, France, 1994. 

Cell Chemistry Encodings

Cell Chemistry Example: 
Bongard’s Artificial Ontogeny 

Bongard, J. C. and R. Pfeifer 
(2003) Evolving Complete Agents 
Using Artificial Ontogeny, in Hara, 
F. and R. Pfeifer, (eds.), Morpho-
functional Machines: The New 
Species (Designing Embodied 
Intelligence) Springer-Verlag, pp. 
237-258. 

Bongard, J. C. and R. Pfeifer (2001a) Repeated Structure and Dissociation of Genotypic and Phenotypic 
Complexity in Artificial Ontogeny, in Spector, L. et al (eds.), Proceedings of The Genetic and Evolutionary 
Computation Conference, GECCO-2001. San Francisco, CA: Morgan Kaufmann publishers, pp. 829-836. 

Cell Chemistry Example 2

• Federici 2004: Neural networks inside cells

Daniel Roggen and Diego Federici, Multi-cellular development: is there scalability and robustness to gain? In: Proceedings of 
PPSN VIII 2004 The 8th International Conference on Parallel Problem Solving from Nature, Xin Yao and al. ed., pp 391-400, 
(2004). 
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Differences in GDS 
Implementations

• Encoding: Grammatical vs. Cell-chemistry vs. 
Other (coming later)

• Cell Fate: Final role determined in several ways
• Targeting: Special or relative target specification
• Canalization: Robustness to small disturbances
• Complexification: From fixed-length genomes to 

expanding genomes

Cell Fate

• Many different ways to determine ultimate role of cell
• Cell positioning mechanism can also differ from 

nature

Targeting

• How do cells become connected such as in a 
neural network?

• Genes may specify a specific target identity
• Or target may be specified through relative 

position

?

Heterochrony

• The order of concurrent events can vary in nature
• When different processes intersect can determine 

how they coordinate

Raff, R. A. (1996). The shape of life: Genes, development, and the evolution of animal form.
Chicago: The University of Chicago Press.2854



Canalization

• Crucial pathways become entrenched in 
development
– Stochasticity
– Resource Allocation
– Overproduction

Nijhout, H. F., & Emlen, D. J. (1998). Competition among body parts in the development and evolution of insect morphology. 
Proceedings of the National Academy of Sciences of the USA, 95, 3685–3689.
Waddington, C. H. (1942). Canalization of Development and the Inheritance of Acquired Characters. Nature, 150, 563.

Complexification through Gene 
Duplication

• Gene Duplication can add new genes in any indirect 
encoding  

• Major gene duplication event as vertebrates appeared  
• New HOX genes elaborated overall developmental 

pattern  
• Initially redundant regulatory roles are partitioned

General Alignment Problem

• Variable length genomes are difficult to align

Historical Markings (NEAT) Solve 
the Alignment Problem

NEAT: NeuroEvolution of Augmenting Topologies
K. O. Stanley and R. Miikkulainen. Evolving neural networks through augmenting topologies. Evolutionary Computation, 10:99–
127, 2002.
K. O. Stanley and R. Miikkulainen. Competitive coevolution through evolutionary complexification. Journal of Artificial Intelligence 
Research, 21:63–100, 2004.
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Exploring the Space of GDS (2003)

K. O. Stanley and R. Miikkulainen. A taxonomy for artificial embryogeny. Artificial Life, 9(2):93–130, 2003.

High-Level Abstraction: 
Compositional Pattern Producing 

Networks (CPPNs)
• An artificial indirect encoding designed to 

abstract how embryos are encoded 
through DNA (Stanley 2007)

Symmetry Repetition Repetition
with variationKenneth O. Stanley. Compositional Pattern Producing Networks: A Novel Abstraction 

of Development In: Genetic Programming and Evolvable Machines Special Issue on
Developmental Systems 8(2): 131-162.  New York, NY: Springer, 2007

Gradients Define the Body Plan Gradients Can Be Composed

• Is there a general abstraction of 
composing gradients that we can evolve?

2856



CPPNs

• A connected-graph abstraction of the 
order of and relationship between 
developmental events

Compositional Pattern Producing 
Networks (CPPNs)

Evolutionary Elaboration

CPPNs:Repetition with Variation

• Seen throughout nature
• A simple combination of periodic and absolute 

coordinate frames
• A novel view: not a traditional subroutine

Is Unfolding Over Time and Local 
Interaction Essential to Development?

• What is lost if they are abstracted away?
• What is the role of local interaction?

– “Where am I?”
– If I know where I am, do I need it?

• What about adaptation/change over life?
– CPPNs can be iterated over time
– CPPNs can take environmental inputs

2857



Hypercube-based NeuroEvolution of 
Augmenting Topologies (HyperNEAT)

• Evolving neural networks with CPPNs
• Insight: A connectivity pattern in 2-D is isomorphic to a spatial 

pattern in 4-D
• Result: Large-scale connectivity patterns

Jason J. Gauci and Kenneth O. Stanley. Generating Large-Scale Neural Networks Through Discovering Geometric Regularities. In: 
Proceedings of the Genetic and Evolutionary Computation Conference (GECCO 2007). New York, NY: ACM, 2007  
Jason J. Gauci and Kenneth O. Stanley. A Case Study on the Critical Role of Geometric Regularity in Machine Learning. 
Proceedings of the Twenty-Third AAAI Conference on Artificial Intelligence (AAAI-2008). Menlo Park, CA: AAAI Press, 2008.
David B. D'Ambrosio and Kenneth O. Stanley. A Novel Generative Encoding for Exploiting Neural Network Sensor and Output 
Geometry. In: Proceedings of the Genetic and Evolutionary Computation Conference (GECCO 2007). New York, NY: ACM, 2007 
At this GECCO:: David B. D'Ambrosio and Kenneth O. Stanley. Generative Encoding for Multiagent Learning. In: Proceedings of 
the Genetic and Evolutionary Computation Conference (GECCO 2008). New York, NY: ACM, 2007
To appear: Kenneth O. Stanley, David B. D'Ambrosio, and Jason Gauci. A Hypercube-based Encoding for Evolving Large Scale 
Neural Networks. Artificial Life, 2008.

HyperNEAT

• Infinite-resolution 
connectivity patterns

• Massive working 
multimillion connection 
networks

Another Biological Abstraction:
Implicit Encoding

• Idea: Let the interaction of genes in a GRN 
define connections in a network
– Mattiussi and Floreano’s Analog Genetic Encoding 

(AGE)
– Reisinger and Miikkulainen’s (2007) Implicit Encoding 

• No explicit growth: The interaction is among 
genes
– Similar products leads to stronger connections

• Advantages: Compact encoding, one-to-many 
interaction, allows gene duplication

Mattiussi, C., and Floreano, D. 2004. Evolution of Analog Networks using Local String Alignment on Highly Reorganizable Genomes. 
In: Proceedings of the 2004 NASA/DoD Conference on Evolvable Hardware (EH’ 2004).
Joseph Reisinger and Risto Miikkulainen. Acquiring Evolvability through Adaptive Representations. 
In: Proceedings of the Genetic and Evolutionary Computation Conference (GECCO 2007). New York, NY: ACM, 2007 

Some GDS Theoretical Issues
• Expressive power of different encodings
• Chomsky hierarchy: Generative grammars of different 

expressive power
– Is a CPPN comparable?

• Key consideration: Does the development process halt?
– Yes (when phenotype complete): Then the issue is universal 

function approximation
– No (continues indefinitely over lifetime): Then the issue is Turing 

completeness
• A CPPN can be a universal function approximator

– An iterated CPPN may be more
• What is more important: Theoretical equivalence or bias in 

practice?
– What can happen is not necessarily what will happen
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How Can We Learn How Well GDS 
Works?

• Benchmarks
– Evolution of pure symmetry
– Evolving a specific shape
– Evolving a specific connectivity pattern
– Flags
– Problems with repetition and/or variation

• Interactive evolution
– Allow human to explore the space of a dev. encoding (like 

Dawkin’s Biomorphs, 1986)
– Learn principles by seeing how things change, become 

canalized, etc..
– Example: See http://picbreeder.org for CPPN exploration

• Major application?

Dawkins, R.: The Blind Watchmaker. Longman, Essex, U.K. (1986)

Progress through Benchmarks

• Visualization is most revealing
– Observe growth and final product

– Shapes and pictures are easy to analyze

Julian Miller’s French Flags http://www.elec.york.ac.uk/intsys/users/jfm7/french-flag/sld018.htm

Miller J. F. Evolving a self-repairing, self-regulating, French flag organism. Proceedings of Genetic and 
Evolutionary Computation Conference (GECCO 2004), Springer LNCS 3102 (2004) 129-139.

Where is GDS Useful?
• Problems with regularities

– Board games
– Visual processing/image recognition
– Pictures 
– Music
– Puzzles
– Architectures/morphologies 
– Brains 
– Bodies

• Problems requiring high complexity
– High-level cognition
– Strategic thinking
– Tactical thinking

• Regeneration and self-repair
Miller J. F. Evolving a self-repairing, self-regulating, French flag organism. Proceedings of Genetic and 
Evolutionary Computation Conference (GECCO 2004), Springer LNCS 3102 (2004) 129-139.

Regeneration and Self-Repair
• A major interest in much GDS research
• Is self-repair a side-effect of development?

• In some encodings self-repair is not needed
– In CPPNs every cell knows its role instantaneously from 

its position
– However, some applications may not provide positional 

information

Miller J. F. Evolving a self-repairing, self-
regulating, French flag organism. 
Proceedings of Genetic and Evolutionary 
Computation Conference (GECCO 2004), 
Springer LNCS 3102 (2004) 129-139.
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Where is GDS not Useful?

• Problems without regularity
• Simple high-precision domains

– Very small picture reproduction
• Simple control tasks

– Go to the food
– Balance the pole (5-connection solution)

GDS Testing Paradox

• GDS is a mismatch for simple problems
• Hard problems are too hard to just get 

started
• Where do we begin?

– Somewhere in the middle 
– Example: Board games with ANNs

Long Term Issues

• What are the ultimate encodings?
• What are the ultimate applications?
• What application requires a strucutre of 

100 million parts and actually utilizes the 
structure?

More information

• My Homepage: 
http://www.cs.ucf.edu/~kstanley

• NEAT Users Group: 
http://groups.yahoo.com/group/neat

• Evolutionary Complexity Research Group:
• http://eplex.cs.ucf.edu
• Email: kstanley@eecs.ucf.edu
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