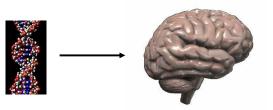
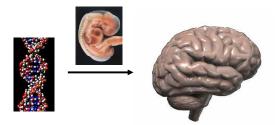
Generative and Developmental Systems

Kenneth O. Stanley kstanley@eecs.ucf.edu School of Electrical Engineering and Computer Science University of Central Florida July 13, 2008


Copyright is held by the author/owner(s). GECCO'08, July 12–16, 2008, Atlanta, Georgia, USA. ACM 978-1-60558-131-6/08/07.

http://eplex.cs.ucf.edu

Inspiration vs. Simulation


- Often confused in GDS
 - Simulation: Model biology to learn about biology
 - Inspiration: Abstract biology to create new algorithms
- This tutorial's perspective: Looking for inspiration
 - What from biology is *essential* to achieve what we want?
 - What can be ignored?
 - What should we add that is biologically implausible yet works better for our purposes?

Goal: Evolve Systems of Biological Complexity

- 100 trillion connections in the human brain
- 30,000 genes in the human genome
- How is this possible?

Development

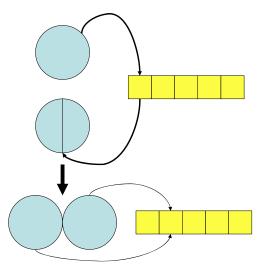
Solving this Problem Could Solve Many Others

Historical Precedent

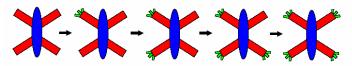
- Turing (1952) was interested in morphogenesis
 - Experimented with reaction-diffusion equations in pattern generation
- Lindenmayer (1968) investigated plant growth
 - Developed L-systems, a grammatical rewrite system that abstracts how plants develop


Lindenmayer, A. (1968). <u>Mathematical models for cellular interaction in development: Parts I and II</u>. Journal of Theoretical Biology, 18, 280–299, 300–315. Turing, A. (1952). <u>The chemical basis of morphogenesis</u>. *Philosophical Transactions of the Royal Society B*, 237, 37–72.

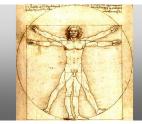
A Field with Many Names

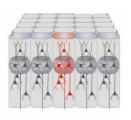

- Generative and Developmental Systems (GECCO track)
- Artificial Embryogeny
- Artificial Ontogeny
- Computational Embryogeny
- Computational Embryology
- Developmental Encoding
- Indirect Encoding
- Generative Encoding
- Generative Mapping
- ...

Development is Powerful Because of Reuse


- Genetic information is reused during embryo development
- Many structures share information
- Allows enormous complexity to be encoded compactly

The Unfolding of Structure **Allows Reuse**

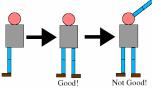

Rediscovery Unnecessary with Reuse

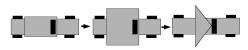


- Repeated substructures should only need to be represented once
- Then repeated elaborations do not require rediscovery
- Rediscovery is expensive and improbable
- (Development is powerful for *search* even though it is a property of the *mapping*)

Therefore, GDS

- Indirect encoding: Genes do not map directly to units of structure in phenotype
- Phenotype develops from embryo into mature form
- · Genetic material can be reused
- Many existing developmental encoding systems





Some Major Issues in AE

Phenotypic duplication can be brittle

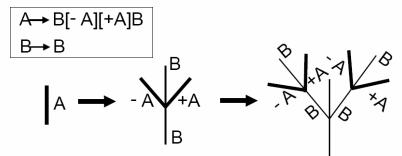
 Variation on an established convention is powerful

Reuse with variation is common in nature

Symmetry

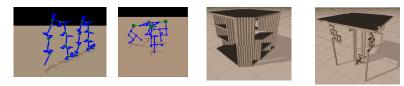
Repetition

Repetition with variation


2851

Developmental Encodings

- Grammatical (Generative)
 - Utilize properties of grammars and computer languages
 - Subroutines and hierarchy
- Cell chemistry (Development)
 - Simulate low-level chemical and biological properties
 - Diffusion, reaction, growth, signaling, etc.

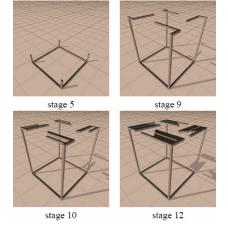

Grammatical Example 1

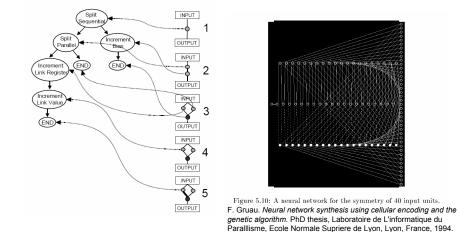
• L-systems: Good for fractal-like structures, plants, highly regular structures

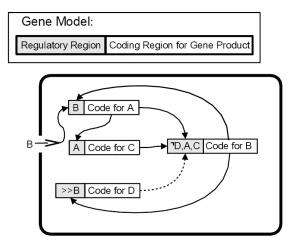
Lindenmayer, A. (1968). <u>Mathematical models for cellular interaction in development: Parts I and II</u>. *Journal of Theoretical Biology*, *18*, 280–299, 300–315. Lindenmayer, A. (1974). <u>Adding continuous components to L-systems</u>. In G. Rozenberg & A. Salomaa (Eds.), *L systems: Lecture notes in computer science 15* (pp. 53–68). Heidelberg, Germany: Springer-Verlag.

L-System Evolution Successes

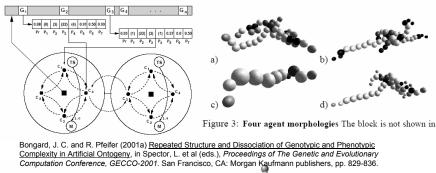
- Greg Hornby's Ph.D. dissertation topic (<u>http://ic.arc.nasa.gov/people/hornby</u>)
- Clear advantage over direct encodings

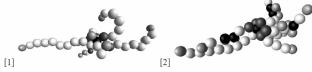



Growth of a Table


Hornby, G.. S. and Pollack, J. B. The Advantages of Generative Grammatical Encodings for Physical Design. *Congress on Evolutionary Computation*. 2001.

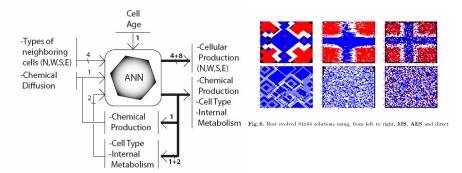
Grammatical Example 2


• Cellular Encoding (CE; Gruau 1993, 1996)



Cell Chemistry Encodings

Cell Chemistry Example: Bongard's Artificial Ontogeny

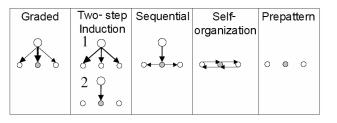


Bongard, J. C. and R. Pfeifer (2003) <u>Evolving Complete Agents</u> Using Artificial Ontogeny, in Hara, F. and R. Pfeifer, (eds.), Morphofunctional Machines: The New Species (Designing Embodied Intelligence) Springer-Verlag, pp.

Figure 9: Two agents evolved for block pushing The fittest agents extracted from two independent 237-258

Cell Chemistry Example 2

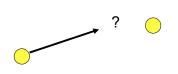
· Federici 2004: Neural networks inside cells

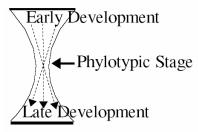


Daniel Roggen and Diego Federici, <u>Multi-cellular development: is there scalability and robustness to gain?</u> In: *Proceedings of PPSN VIII 2004 The 8th International Conference on Parallel Problem Solving from Nature*, Xin Yao and al. ed., pp 391-400, (2004).

Differences in GDS Implementations

- Encoding: Grammatical vs. Cell-chemistry vs. Other (coming later)
- · Cell Fate: Final role determined in several ways
- Targeting: Special or relative target specification
- Canalization: Robustness to small disturbances
- Complexification: From fixed-length genomes to expanding genomes


Cell Fate

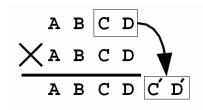

- Many different ways to determine ultimate role of cell
- Cell positioning mechanism can also differ from nature

Targeting

- How do cells become connected such as in a neural network?
- Genes may specify a specific target identity
- Or target may be specified through relative position

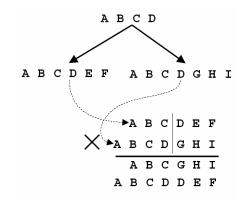
Heterochrony

- The order of concurrent events can vary in nature
- When different processes intersect can determine
 how they coordinate


Canalization

- Crucial pathways become entrenched in development
 - Stochasticity
 - Resource Allocation
 - Overproduction

Nijhout, H. F., & Emlen, D. J. (1998). <u>Competition among body parts in the development and evolution of insect morphology</u> Proceedings of the National Academy of Sciences of the USA, 95, 3685–3689. Waddington, C. H. (1942). <u>Canalization of Development and the Inheritance of Acquired Characters</u>. Nature, 150, 563.


Complexification through Gene Duplication

- Gene Duplication can add new genes in any indirect encoding
- Major gene duplication event as vertebrates appeared
- New HOX genes elaborated overall developmental pattern
- Initially redundant regulatory roles are *partitioned*

General Alignment Problem

• Variable length genomes are difficult to align

Historical Markings (NEAT) Solve the Alignment Problem **A B C D** 4 5 6 2 3 7 8 9 1 1 2 3 4 ABCDEF ABC DGHI 2 3 5 BCD ΕF GHI С в D

NEAT: NeuroEvolution of Augmenting Topologies

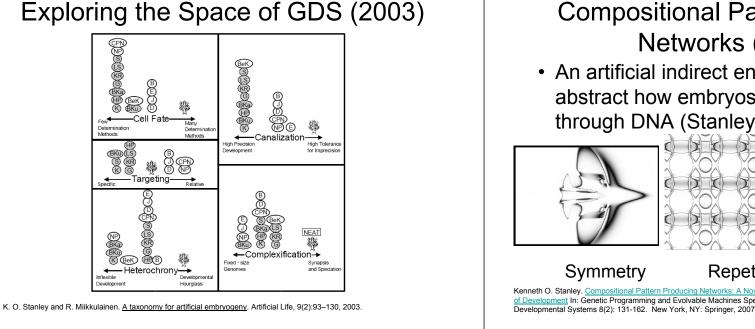
K. O. Stanley and R. Miikkulainen. Evolving neural networks through augmenting topologies. Evolutionary Computation, 10:99-127, 2002.

3 4

56

DEF

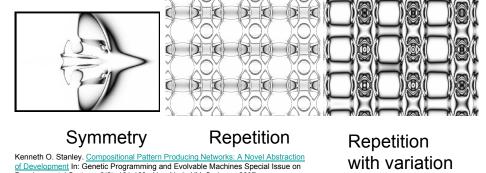
8

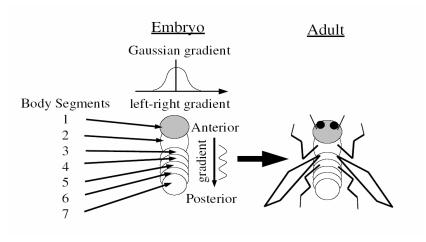

GHI

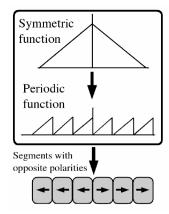
9

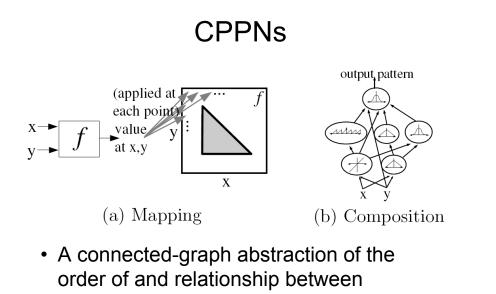

7

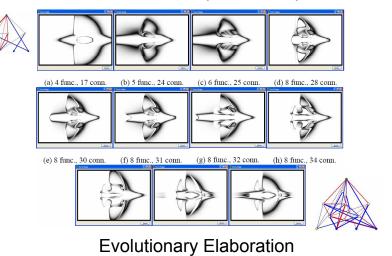
2855 K. O. Stanley and R. Miikkulainen. <u>Competitive coevolution through evolutionary complexification</u>. Journal of Artificial Intelligence Research 21:63–100 2004

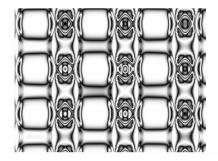

ABC

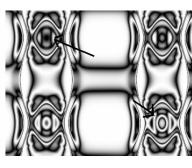

Exploring the Space of GDS (2003)


· An artificial indirect encoding designed to abstract how embryos are encoded through DNA (Stanley 2007)


Gradients Define the Body Plan

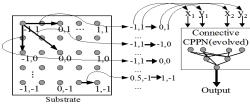

Gradients Can Be Composed


 Is there a general abstraction of composing gradients that we can evolve?


Compositional Pattern Producing Networks (CPPNs)

CPPNs:Repetition with Variation

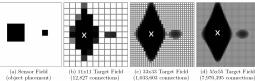
developmental events

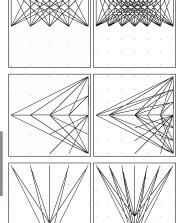

- Seen throughout nature
- A simple combination of periodic and absolute coordinate frames
- A novel view: not a traditional subroutine

Is Unfolding Over Time and Local Interaction Essential to Development?

- What is lost if they are abstracted away?
- What is the role of local interaction?
 "Where am I?"
 - If I know where I am, do I need it?
- What about adaptation/change over life?
 - CPPNs can be iterated over time
 - CPPNs can take environmental inputs

Hypercube-based NeuroEvolution of Augmenting Topologies (HyperNEAT)


- Evolving neural networks with CPPNs
- Insight: A connectivity pattern in 2-D is isomorphic to a spatial pattern in 4-D
- Result: Large-scale connectivity patterns



Jason J. Gauci and Kenneth O. Stanley. <u>Generating Large-Scale Neural Networks Through Discovering Geometric Regularities</u>. In: *Proceedings of the Genetic and Evolutionary Computation Conference (GECCO 2007)*. New York, NY: ACM, 2007 Jason J. Gauci and Kenneth O. Stanley. <u>A Case Study on the Critical Role of Geometric Regularity in Machine Learning</u>. Proceedings of the Twenty-Third AAAI Conference on Artificial Intelligence (AAAI-2008). Menlo Park, CA: AAAI Press, 2008. David B. D'Ambrosio and Kenneth O. Stanley. <u>A Novel Generative Encoding for Exploiting Neural Network Sensor and Output</u> <u>Geometry</u>. In: Proceedings of the Genetic and Evolutionary Computation Conference (GECCO 2007). New York, NY: ACM, 2007 At this GECCO:: David B. D'Ambrosio and Kenneth O. Stanley. <u>Generative Encoding for Multiagent Learning</u>. In: Proceedings of the Genetic and Evolutionary Computation Conference (GECCO 2008). New York, NY: ACM, 2007 To appear: Kenneth O. Stanley, David B. D'Ambrosio, and Jason Gauci. <u>A Hypercube-based Encoding for Evolving Large Scale</u> <u>Neural Networks</u>. *Artificial Life*, 2008.

HyperNEAT

- Infinite-resolution
 connectivity patterns
- Massive working multimillion connection networks

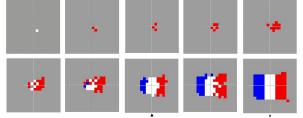
Another Biological Abstraction: Implicit Encoding

- Idea: Let the *interaction* of genes in a GRN define connections in a network
 - Mattiussi and Floreano's Analog Genetic Encoding (AGE)
 - Reisinger and Miikkulainen's (2007) Implicit Encoding
- No explicit growth: The interaction is among genes
 - Similar products leads to stronger connections
- Advantages: Compact encoding, one-to-many interaction, allows gene duplication

Mattiussi, C., and Floreano, D. 2004. <u>Evolution of Analog Networks using Local String Alignment on Highly Reorganizable Genomes</u>. In: Proceedings of the 2004 NASA/DoD Conference on Evolvable Hardware (EH' 2004). Joseph Reisinger and Risto Milkkulainen. <u>Acquiring Evolvability through Adaptive Representations</u>. In: Proceedings of the Genetic and Evolutionary Computation Conference (GECCO 2007). New York, NY: ACM, 2007

Some GDS Theoretical Issues

- Expressive power of different encodings
- Chomsky hierarchy: Generative grammars of different expressive power
 - Is a CPPN comparable?
- Key consideration: Does the development process halt?
 - Yes (when phenotype complete): Then the issue is universal function approximation
 - No (continues indefinitely over lifetime): Then the issue is Turing completeness
- A CPPN can be a universal function approximator – An *iterated CPPN* may be more
- What is more important: Theoretical equivalence or *bias* in practice?
 - What can happen is not necessarily what will happen


How Can We Learn How Well GDS Works?

- Benchmarks
 - Evolution of pure symmetry
 - Evolving a specific shape
 - Evolving a specific connectivity pattern
 - Flags
 - Problems with repetition and/or variation
- Interactive evolution
 - Allow human to explore the space of a dev. encoding (like Dawkin's Biomorphs, 1986)
 - Learn principles by seeing how things change, become canalized, etc..
 - Example: See http://picbreeder.org for CPPN exploration
- Major application?

Dawkins, R.: The Blind Watchmaker. Longman, Essex, U.K. (1986)

Progress through Benchmarks

- Visualization is most revealing
 - Observe growth and final product

Julian Miller's French Flags http://www.elec.york.ac.uk/intsys/users/jfm7/french-flag/sld018.htm

Miller J. F. <u>Evolving a self-repairing, self-regulating, French flag organism</u>. Proceedings of Genetic and Evolutionary Computation Conference (GECCO 2004), Springer LNCS 3102 (2004) 129-139.

- Shapes and pictures are easy to analyze

Where is GDS Useful?

- · Problems with regularities
 - Board games
 - Visual processing/image recognition
 - Pictures
 - Music
 - Puzzles
 - Architectures/morphologies
 - Brains
 - Bodies
- Problems requiring high complexity
 - High-level cognition
 - Strategic thinking
 - Tactical thinking
- Regeneration and self-repair

Miller J. F. <u>Evolving a self-repairing, self-regulating, French flag organism</u>. Proceedings of Genetic and Evolutionary Computation Conference (GECCO 2004), Springer LNCS 3102 (2004) 129-139.

Regeneration and Self-Repair

- A major interest in much GDS research
- Is self-repair a side-effect of development?

Miller J. F. <u>Evolving a self-repairing, self-regulating, French flag organism.</u> Proceedings of Genetic and Evolutionary Computation Conference (GECCO 2004), Springer LNCS 3102 (2004) 129-139.

Fig. 8. Autonomous recovery of French flag from randomly rearranged cells (French flag at iteration 8 - see Fig. 4). There is no further change after iteration 24

- · In some encodings self-repair is not needed
 - In CPPNs every cell knows its role instantaneously from its position
 - However, some applications may not provide positional information

Where is GDS not Useful?

- Problems without regularity
- Simple high-precision domains
 Very small picture reproduction
- Simple control tasks
 - Go to the food
 - Balance the pole (5-connection solution)

GDS Testing Paradox

- GDS is a mismatch for simple problems
- Hard problems are too hard to just get started
- Where do we begin?
 - Somewhere in the middle
 - Example: Board games with ANNs

Long Term Issues

- What are the ultimate encodings?
- What are the ultimate applications?
- What application requires a strucutre of 100 million parts and actually utilizes the structure?

More information

- My Homepage: <u>http://www.cs.ucf.edu/~kstanley</u>
- NEAT Users Group: <u>http://groups.yahoo.com/group/neat</u>
- Evolutionary Complexity Research Group:
- <u>http://eplex.cs.ucf.edu</u>
- Email: <u>kstanley@eecs.ucf.edu</u>

References from Slides

Bongard, J. C. and R. Pfeifer (2003) <u>Evolving Complete Agents Using Artificial Ontogeny</u>. In: Hara, F. and R. Pfeifer, (eds.), Morpho-functional Machines: The New Species (Designing Embodied Intelligence) Springer-Verlag, pp. 237-258.

D'Ambrosio, D. B. and Stanley, K. O. <u>A Novel Generative Encoding for Exploiting Neural Network Sensor</u> and <u>Output Geometry</u>. In: *Proceedings of the Genetic and Evolutionary Computation Conference* (GECCO 2007). New York, NY: ACM, 2007

D'Ambrosio, D. B. and Stanley, K. O. <u>Generative Encoding for Multiagent Learning</u>. In: *Proceedings of the Genetic and Evolutionary Computation Conference (GECCO 2008)*. New York, NY: ACM, 2007

Dawkins, R.: The Blind Watchmaker. Longman, Essex, U.K. (1986)

Gauci, J. and Stanley, K. O. <u>Generating Large-Scale Neural Networks Through Discovering Geometric</u> <u>Regularities</u>. In: *Proceedings of the Genetic and Evolutionary Computation Conference* (GECCO 2007). New York, NY: ACM, 2007

Gauci, J. and Stanley, K. O. <u>A Case Study on the Critical Role of Geometric Regularity in Machine</u> Learning. In: *Proceedings of the Twenty-Third AAAI Conference on Artificial Intelligence (AAAI-2008).* Menlo Park, CA: AAAI Press, 2008.

Gruau, F. Neural network synthesis using cellular encoding and the genetic algorithm. PhD thesis, Laboratoire de L'informatique du Paralllisme, Ecole Normale Supriere de Lyon, Lyon, France, 1994.

References from Slides

Hornby, G., S. and Pollack, J. B. <u>The Advantages of Generative Grammatical Encodings for Physical Design</u>. In: *Congress on Evolutionary Computation*. 2001.

Lindenmayer, A. (1968). <u>Mathematical models for cellular interaction in development: Parts I and II</u>. Journal of Theoretical Biology, 18, 280–299, 300–315.

Lindenmayer, A. (1974). Adding continuous components to L-systems. In G. Rozenberg & A. Salomaa (Eds.), L systems: Lecture notes in computer science 15 (pp. 53–68). Heidelberg, Germany: Springer-Verlag.

Mattiussi, C., and Floreano, D. 2004. <u>Evolution of Analog Networks using Local String Alignment on Highly</u> <u>Reorganizable Genomes</u>. In: *Proceedings of the 2004 NASA/DoD Conference on Evolvable Hardware* (EH' 2004).

Miller J. F. <u>Evolving a self-repairing, self-regulating, French flag organism</u>. In: *Proceedings of Genetic and Evolutionary Computation Conference (GECCO 2004)*, Springer LNCS 3102 (2004) 129-139.

Nijhout, H. F., & Emlen, D. J. (1998). <u>Competition among body parts in the development and evolution of insect morphology</u>. *Proceedings of the National Academy of Sciences of the USA, 95*, 3685–3689.

Raff, R. A. (1996). *The shape of life: Genes, development, and the evolution of animal form.* Chicago: The University of Chicago Press.

Reisinger, J. and Miikkulainen, R. <u>Acquiring Evolvability through Adaptive Representations</u>. In: *Proceedings* of the Genetic and Evolutionary Computation Conference (GECCO 2007). New York, NY: ACM, 2007

References from Slides

Roggen, D. and Federici, D. <u>Multi-cellular development: is there scalability and robustness to gain?</u> In: *Proceedings of PPSN VIII 2004 The 8th International Conference on Parallel Problem Solving from Nature*, Xin Yao and al. ed., pp 391-400, (2004).

Stanley, K. O. and Miikkulainen, R. <u>Evolving neural networks through augmenting topologies</u>. Evolutionary Computation, 10:99–127, 2002.

Stanley, K. O. and Miikkulainen, R. <u>Competitive coevolution through evolutionary complexification</u>. Journal of Artificial Intelligence Research, 21:63–100, 2004.

Stanley, K. O. and Miikkulainen, R. <u>A taxonomy for artificial embryogeny</u>. Artificial Life, 9(2):93–130, 2003.

Stanley, K. O. <u>Compositional Pattern Producing Networks: A Novel Abstraction of Development</u>. In: Genetic Programming and Evolvable Machines Special Issue on Developmental Systems 8(2): 131-162. New York, NY: Springer, 2007

Turing, A. (1952). <u>The chemical basis of morphogenesis</u>. *Philosophical Transactions of the Royal Society B*, 237, 37–72.

Waddington, C. H. (1942). <u>Canalization of Development and the Inheritance of Acquired Characters</u>. *Nature*, 150, 563.

Additional References

Alberch, P. (1987). Evolution of a developmental process: Irreversibility and redundancy in amphibian metamorphosis. In R. A. Raff & E. C. Raff (Eds.), *Development as an evolutionary process* (pp. 23–40). New York: Alan R. Liss.

Ambros, V. (2002). A hierarchy of regulatory genes controls a larva-to-adult developmental switch in C. elegans. *Cell*, *57*, 40–57.

Amores, A., Force, A., Yan, Y.-L., Joly, L., Amemiya, C., Fritz, A., Ho, R. K., Langeland, J., Prince, V., Wang, Y.-L., Westerfield, M., Ekker, M., & Postlethwait, J. H. (1998). Zebrafish HOX clusters and vertebrate genome evolution. *Science*, *282*, 1711–1784.

Angeline, P. J. (1995). Morphogenic evolutionary computations: Introduction, issues and examples. In J. R. McDonnell, R. G. Reynolds, & D. B. Fogel (Eds.), *Evolutionary Programming IV: The Fourth Annual Conference on Evolutionary Programming* (p. 387–401). Cambridge, MA: MIT Press.

Astor, J. S., & Adami, C. (2000). A developmental model for the evolution of artificial neural networks. *Artificial Life*, 6(3), 189–218.

Belew, R. K., & Kammeyer, T. E. (1993). Evolving aesthetic sorting networks using developmental grammars. In S. Forrest (Ed.), *Proceedings of the Fifth International Conference on Genetic Algorithms*. San Francisco, CA: Morgan Kaufmann.

Additional References

Bentley, P. J., & Kumar, S. (1999). The ways to grow designs: A comparison of embryogenies for an evolutionary design problem. In *Proceedings of the Genetic and Evolutionary Computation Conference (GECCO-1999)* (pp. 35–43). San Francisco, CA: Morgan Kaufmann.

Boers, E. J., & Kuiper, H. (1992). *Biological metaphors and the design of modular artificial neural networks*. Master's thesis, Departments of Computer Science and Experimental and Theoretical Psychology, Leiden University, The Netherlands.

Bongard, J. C. (2002). Evolving modular genetic regulatory networks. In *Proceedings of the 2002 Congress on Evolutionary Computation*. Piscataway, NJ: IEEE Press.

Bongard, J. C., & Paul, C. (2000). Investigating morphological symmetry and locomotive efficiency using virtual embodied evolution. In *Proceedings of the Sixth International Conference on Simulation of Adaptive Behavior* (pp. 420–429). Cambridge, MA: MIT Press.

Bongard, J. C., & Pfeifer, R. (2001). Repeated structure and dissociation of genotypic and phenotypic complexity in artificial ontogeny. In L. Spector, E. D. Goodman, A. Wu, W. B. Langdon, H.-M. Voigt, M. Gen, S. Sen, M. Dorigo, S. Pezeshk, M. H. Garzon, & E. Burke (Eds.), *Proceedings of the Genetic and Evolutionary Computation Conference* (pp. 829–836). San Francisco, CA: Morgan Kaufmann.

Calabretta, R., Nolfi, S., Parisi, D., & Wagner, G. P. (2000). Duplication of modules facilitates the evolution of functional specialization. *Artificial Life*, 6(1), 69–84.

Cangelosi, A., Parisi, D., & Nolfi, S. (1993). *Cell division and migration in a genotype for neural networks* (Tech. Rep. PCIA-93). Rome: Institute of Psychology, C.N.R.

Additional References

Carroll, S. B. (1995). Homeotic genes and the evolution of arthropods and chordates. *Nature*, 376, 479–485.

Cohn, M. J., Patel, K., Krumlauf, R., Wilkinson, D. G., Clarke, J. D. W., & Tickle, C. (1997). HOX9 genes and vertebrate limb specification. *Nature*, 387, 97–101.

Curtis, D., Apfeld, J., & Lehmann, R. (1995). Nanos is an evolutionarily conserved organizer of anterior-posterior polarity. *Development*, 121, 1899–1910.

Dellaert, F. (1995). Toward a biologically defensible model of development. Master's thesis, Case Western Reserve University, Cleveland, OH.

Dellaert, F., & Beer, R. D. (1994). Co-evolving body and brain in autonomous agents using a developmental model (Tech. Rep. CES-94-16). Cleveland, OH: Dept. of Computer Engineering and Science, Case Western Reserve University.

Dellaert, F., & Beer, R. D. (1994). Toward an evolvable model of development for autonomous agent synthesis. In R. A. Brooks & P. Maes (Eds.), *Proceedings of the Fourth International Workshop on the Synthesis and Simulation of Living Systems (Artificial Life IV)*. Cambridoe. MA: MIT Press.

Dellaert, F., & Beer, R. D. (1996). A developmental model for the evolution of complete autonomous agents. In P. Maes, M. J. Mataric, J.-A. Meyer, J. Pollack, & S. W. Wilson (Eds.), *From animals to animats 4: Proceedings of the Fourth International Conference on Simulation of Adaptive Behavior.* Cambridge, MA: MIT Press.

Deloukas, P., Schuler, G. D., Gyapay, G., Beasley, E. M., Soderlund, C., Rodriguez-Tome, P., Hui, L., Matise, T. C., McKusick, K. B., Beckmann, J. S., Bentolila, S., Bihoreau, M., Birren, B. B., Browne, J., Butler, A., Castle, A. B., Chiannilkulchai, N., Clee, C., Day, P. J., Dehejia, A., Dibling, T., Drouot, N., Duprat, S., Fizames, C., & Bentley, D. R. (1998). A physical map of 30,000 human genes. *Science*, 282(5389), 744–746.

Additional References

Eggenberger, P. (1997). Evolving morphologies of simulated 3D organisms based on differential gene expression. In P. Husbands & I. Harvey (Eds.), *Proceedings of the Fourth European Conference on Artificial Life* (pp. 205–213). Cambridge, MA: MIT Press.

Ellinson, R. P. (1987). Change in developmental patterns: Embryos of amphibians with large eggs. In R. A. Raff & E. C. Raff (Eds.), *Development as an evolutionary process* (pp. 1–21). New York: Alan R. Liss.

Fleischer, K., & Barr, A. H. (1993). A simulation testbed for the study of multicellular development: The multiple mechanisms of morphogenesis. In C. G. Langton (Ed.), *Artificial life III* (pp. 389–416). Reading, MA: Addison-Wesley.

Force, A., Lynch, M., Pickett, F. B., Amores, A., Lin Yan, Y., & Postlethwait, J. (1999). Preservation of duplicate genes by complementary, degenerative mutations. *Genetics*, *151*, 1531–1545.

Gans, C., & Northcutt, R. G. (1983). Neural crest and the origin of vertebrates: A new head. Science, 220(4594), 268–274.

Gilbert, C. D., & Wiesel, T. N. (1992). Receptive field dynamics in adult primary visual cortex. *Nature*, 356, 150–152.

Gilbert, S. F. (Ed.) (2000). *Developmental biology* (6th ed.). Sunderland, MA: Sinauer Associates.

Gruau, F. (1993). Genetic synthesis of modular neural networks. In S. Forrest (Ed.), Proceedings of the Fifth International Conference on Genetic Algorithms (pp. 318–325). San Francisco, CA: Morgan Kaufmann.

Additional References

Gruau, F. (1994). Neural network synthesis using cellular encoding and the genetic algorithm. Doctoral dissertation, Ecole Normale Superieure de Lyon, France.

Gruau, F., Whitley, D., & Pyeatt, L. (1996). A comparison between cellular encoding and direct encoding for genetic neural networks. In J. R. Koza, D. E. Goldberg, D. B. Fogel, & R. L. Riolo (Eds.), *Genetic Programming 1996: Proceedings of the First Annual Conference* (pp. 81–89). Cambridge, MA: MIT Press.

Hart, W. E., Kammeyer, T. E., & Belew, R. K. (1994). *The role of development in genetic algorithms* (Tech. Rep. CS94-394). San Diego, CA: University of California.

Hornby, G. S., & Pollack, J. B. (2001). The advantages of generative grammatical encodings for physical design. In *Proceedings of the 2002 Congress on Evolutionary Computation*. Piscataway, NJ: IEEE Press.

Hornby, G. S., & Pollack, J. B. (2001). Body-brain co-evolution using L-systems as a generative encoding. In L. Spector, E. D. Goodman, A. Wu, W. B. Langdon, H.-M. Voigt, M. Gen, S. Sen, M. Dorigo, S. Pezeshk, M. H. Garzon, & E. Burke (Eds.), *Proceedings of the Genetic and Evolutionary Computation Conference*. San Francisco, CA: Morgan Kaufmann.

Hornby, G. S., & Pollack, J. B. (2002). Creating high-level components with a generative representation for body-brain evolution. *Artificial Life*, 8(3).

Hubel, D. H., & Wiesel, T. N. (1965). Receptive fields and functional architecture in two nonstriate visual areas (18 and 19) of the cat. *Journal of Neurophysiology*, 28, 229–289.

Jakobi, N. (1995). Harnessing morphogenesis. In *Proceedings of Information Processing in Cells and Tissues* (pp. 29–41). Liverpool, UK: University of Liverpool.

Additional References

Kaneko, K., & Furusawa, C. (1998). Emergence of multicellular oganisms with dynamic differentation and spatial pattern. *Artificial Life*, 4(1).

Kauffman, S. A. (1993). The origins of order. New York: Oxford University Press

Kitano, H. (1990). Designing neural networks using genetic algorithms with graph generation system. *Complex Systems*, *4*, 461–476.

Komosinski, M., & Rotaru-Varga, A. (2001). Comparison of different genotype encodings for simulated 3D agents. Artificial Life, 7(4), 395–418.

Koza. J. R. (1992). Genetic programming: On the programming of computers by means of natural selection. Cambridge, MA: MIT Press.

Lall, S., & Patel, N. (2001). Conservation and divergence in molecular mechanisms of axis formation. *Annual Review of Genetics*, 35, 407–447.

Lawrence, P. (1992). The making of a fly. Oxford, UK: Blackwell Science Publishing.

Lindenmayer, A. (1968). Mathematical models for cellular interaction in development: Parts I and II. *Journal of Theoretical Biology*, *18*, 280–299, 300–315.

Lindenmayer, A. (1974). Adding continuous components to L-systems. In G. Rozenberg & A. Salomaa (Eds.), *L systems: Lecture notes in computer science 15* (pp. 53–68). Heidelberg, Germany: Springer-Verlag.

Lipson, H., & Pollack, J. B. (2000). Automatic design and manufacture of robotic lifeforms. *Nature*, 406, 974–978.

Additional References

Luke, S., & Spector, L. (1996). Evolving graphs and networks with edge encoding: Preliminary report. In J. R. Koza (Ed.), *Late-breaking papers of genetic programming 1996*. Stanford, CA: Stanford Bookstore.

Marin, E., Jeffries, G. S. X. E., Komiyama, T., Zhu, H., & Luo, L. (2002). Representation of the glomerular olfactory map in the Drosophila brain. *Cell*, 109(2), 243–255.

Martin, A. P. (1999). Increasing genomic complexity by gene duplication and the origin of vertebrates. *The American Naturalist*, 154(2), 111–128.

Mjolsness, E., Sharp, D. H., & Reinitz, J. (1991). A connectionist model of development. *Journal of Theoretical Biology*, 152, 429–453.

Nijhout, H. F., & Emlen, D. J. (1998). Competition among body parts in the development and evolution of insect morphology. *Proceedings of the National Academy of Sciences of the* USA, 95, 3685–3689.

Nolfi, S., & Parisi, D. (1991). Growing neural networks (Tech. Rep. PCIA-91-15). Rome: Institute of Psychology, C.N.R.

O'Reilly, U.-M. (2000). Emergent design: Artificial life for architecture design. In 7th International Conference on Artificial Life (ALIFE-00). Cambridge, MA: MIT Press.

Prusinkiewicz, P., & Lindenmayer, A. (1990). The algorithmic beauty of plants. Heidelberg, Germany: Springer-Verlag.

Radding, C. M. (1982). Homologous pairing and strand exchange in genetic recombination. Annual Review of Genetics, 16, 405–437.

Additional References

Raff, E. C., Popodi, E. M., Sly, B. J., Turner, F. R., Villinski, J. T., & Raff, R. A. (1999). A novel ontogenetic pathway in hybrid embryos between species with different modes of development. *Development*, *126*, 1937–1945.

Raff, R. A. (1996). The shape of life: Genes, development, and the evolution of animal form. Chicago: The University of Chicago Press.

Reinhart, B. J., Slack, F. J., Basson, M., Pasquinelli, A. E., Bettinger, J. C., Rougvie, A. E., Horvitz, H. R., & Ruvkun, G. (2000). The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. *Nature*, 403, 901–905.

Schnier, T. (1998). Evolved representations and their use in computational creativity. Doctoral dissertation, Department of Architectural and Design Science, University of Sydney, Australia.

Siddiqi, A. A., & Lucas, S. M. (1999). A comparison of matrix rewriting versus direct encoding for evolving neural networks. In *Proceedings of the 1998 IEEE International Conference on Evolutionary Computation (ICEC'98)* (pp. 392–397). Piscataway, NJ: IEEE Press.

Sigal, N., & Alberts, B. (1972). Genetic recombination: The nature of a crossed strand-exchange between two homologous DNA molecules. *Journal of Molecular Biology*, 71(3), 789–793.

Sigrist, C. B., & Sommer, R. J. (1999). Vulva formation in Pristionchus pacificusrelies relies on continuous gonadal induction. *Development Genes and Evolution*, 209, 451–459.

Sims, K. (1994). Evolving 3D morphology and behavior by competition. In R. A. Brooks & P. Maes (Eds.), *Proceedings of the Fourth International Workshop on the Synthesis and Simulation of Living Systems (Artificial Life IV)* (pp. 28–39). Cambridge, MA: MIT Press.

Additional References

Slijper, E. J. (1962). Whales. New York: Basic Books.

Turing, A. (1952). The chemical basis of morphogenesis. *Philosophical Transactions of the Royal Society B*, 237, 37–72.

Vaario, J. (1994). From evolutionary computation to computational evolution. *Informatica*, 18(4), 417–434.

Voss, S. R., & Shaffer, H. B. (1997). Adaptive evolution via a major gene effect: Paedomorphosis in the Mexican axolotl. *Proceedings of the National Academy of Sciences of the USA*, *94*, 14185–14189.

Waddington, C. H. (1942). Canalization of development and the inheritance of acquired characters. *Nature*, 150, 563.

Wilkins, A. (2002). The evolution of developmental pathways. Sunderland, MA: Sinauer Associates.

Williams, R., Bastiani, M., Lia, B., & Chulupa, L. (1986). Growth cones, dying axons, developmental fluctuations in the fiber population of the cat's optic nerve. *Journal of Computational Neurology*, 246, 32–69.

Williams, R., Cavada, C., & Reinoso-Saurez, F. (1993). Rapid evolution of the visual system: A cellular assay of the retina and dorsal lateral geniculate nucleus of the Spanish wildcat and the domestic cat. *Journal of Neuroscience*, *13*(1), 208–228.

Wolpert, L. (1987). Constancy and change in the development and evolution of pattern. In B. C. Goodwin, N. Holder, & C. C. Wylie (Eds.), *Development and Evolution* (pp. 47–57).

2863 Zigmond, M. J., Bloom, F. E., Landis, S. C., Roberts, J. L., & Squire, L. R. (Eds.) (1999) Fundamental neuroscience. London: Academic Press.