
Nested Evolution of an Autonomous Agent Using
Descriptive Encoding

Jae-Yoon Jung
School of Computing
Queen’s University

Kingston, ON, Canada
jung@cs.queensu.ca

James A. Reggia
Department of Computer Science

University of Maryland
College Park, MD, USA
reggia@cs.umd.edu

ABSTRACT
In this paper, we investigate the use of nested evolution in which
each step of one evolutionary process involves running a second
evolutionary process. We apply this approach to build a neuroevo-
lution system for reinforcement learning (RL) problems. Genetic
programming based on a descriptive encoding is used to evolve
the neural architecture, while a nested evolution strategy is used
to evolve the needed connection weights. We test this hierarchi-
cal evolution on a non-Markovian RL problem involving an au-
tonomous foraging agent, finding that the evolved networks signif-
icantly outperform a rule-based agent serving as a control.

Categories and Subject Descriptors: I.2.6 [Artificial Intelligence]:
Learning - Connection and neural nets, concept learning
General Terms: Experimentation
Keywords: descriptive encoding, neuroevolution, reinforcement
learning, autonomous agent

1. INTRODUCTION
We explore the idea of using a hierarchical, or “nested”, evo-

lutionary process to design an effective neurocontroller for a situ-
ated agent in a reinforcement learning context. The general idea
of nested evolution is that an outer/primary evolutionary process
“calls” an inner/secondary evolutionary process to take care of a
specific problem, much as a program calls a subroutine. We adopt a
genetic programming (GP) method called descriptive encoding [2]
to represent an agent’s genome. During each generation of the pri-
mary GP process, an evolution strategy (ES) algorithm [1] is used
to evolve connection weights for the specific architectures under
consideration.

The specific goal of neuroevolution in this work is to evolve an
agent that forages for food and avoids predators in a simulated ar-
tificial environment, a task that has seen frequent usage in artifi-
cial life research [3]. As a control measure, a rule-based agent
that can remember previous environmental states, to compensate
for the limited sensory information that agents receive, is defined
and tested under varying environmental conditions.

2. METHOD
The initial population of the networks specified (genotypes) is

built based upon the description file given by users, and each gen-
eration of network architectures is produced by using GP. During

Copyright is held by the author/owner(s).
GECCO’08, July 12–16, 2008, Atlanta, Georgia, USA.
ACM 978-1-60558-130-9/08/07.

each generation of the GP process, for each evolved architecture an
ES algorithm is used to identify reasonably optimal sets of connec-
tion weights.

The simulation environment consists of a two-dimensional, real-
valued space. At the beginning of each simulation, a predefined
number of predators and food sites are randomly placed throughout
the environment, and a single agent is located in the center of the
environment. The agent should evolve to run from predators if the
predators find and chase the agent, and should forage for food sites
as the initial energy level given to the agent is not sufficient for
it to survive the simulation duration. The fitness of the agent is
determined by its final energy level when the simulation ends and
how long it survived. The agent can perceive predators and food
sites within its visibility range, but the range is limited to π radius
in its moving direction (i.e., the agent can’t see predators chasing it
from behind).

A rule-based agent was used as a control and it can be considered
as a near-optimal agent in a sense that 1) it performs the required
functionality of foraging and escaping; 2) chooses the optimal gait
type according to the current state and velocity, thus minimizing
energy consumption for the state; and 3) has a memory which has
the previous environmental information, compensating for limited
sensory input.

3. EXPERIMENTAL RESULTS
We demonstrated that it was possible to use this approach ef-

fectively in a reinforcement learning setting. The evolved recur-
rent networks outperformed a rule-based, pre-designed agent un-
der various environmental conditions, indicating that evolution had
discovered a recurrent neural network architecture plus appropriate
weight values that compensate for a neural agent’s lack of “working
memory”.

4. ACKNOWLEDGEMENT
This work was supported by NSF award IIS-0325098.

5. REFERENCES
[1] H. G. Beyer. The Theory of Evolution Strategies. Springer,

Berlin, 2001.
[2] J. Y. Jung and J. A. Reggia. Evolutionary design of neural

network architectures using a descriptive encoding language.
IEEE Transactions on Evolutionary Computation,
10(6):676–688, Dec. 2006.

[3] J. A. Reggia, R. Schulz, G. Wilkinson, and J. Uriagereka.
Conditions enabling the evolution of inter-agent signaling in
an artificial world. Artificial Life, 7(1):3–32, 2001.

285


