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I Overview

» The Machine Learning Perspective
- maximum likelihood/maximum posterior
- The role of priors

* Inductive Inference
- universal priors

* Implications for GP

I « What is Symbolic Regression?
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Symbolic Regression (naive view)

» Given a set of input data x and a set of
desired outputs t, find a function fsuch that:

=rf(x, ,x)
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Symbolic Regression

* Find function structure (+ coefficients) using

Genetic Programming
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I Process

- Some representation

* Tree, linear, graph, ...
- Some fitness function

« Error based: MAE, MSE, or something else
- The regular stuff

* Do something with constants

I * Normal GP choices:

I What do you get?

* Explicit symbolic results
- Interpretation (gray box?)
- Acceptance by engineers
- Ease of implementation for resulting expressions
* Freedom to implement non-continuous cost
functions
» Multi-Objective search

I « Automatic variable selection
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Applications

Physics / Engineering

- empirical equations/differential equations
Econometrics

- empirical relations

Finance

- trading rules

Industry

- process control/identification

The END

Without a proper framework to discuss
issues in Symbolic Regression, this is about
what can be said.

However, let's turn to ML + Statistics and see
if there's more



Basic Statistical Theory on
Regression

Formal description of relationship between
probability, error measures, likelihood, posterior
distributions and prior distributions

Likelihood (definition)

The Likelihood of our gp-function fis the probability that we will have
observed targets £, given our estimation of £.

pt f)

If there is no noise in the problem (i.e., measurements are perfect),
the likelihood of fis necessarily 1 iff ¢t = f(x), and zero otherwise.

In other words. If we know that tis noise-free,
the likeliness of observing the data given
our function is exactly the number of hits.

However, there's no discrimination between near hits and non-hits
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I Likelihood (computation)

What's the likelihood of observing these points, given this function?

Need some way of assigning probabilities: the 'noise model'

I Symbolic Regression (correct view)

» Given a set of input data x and a set of
I desired outputs t, find a function fsuch that:

t= (X,

X)) +e
n
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I The role of epsilon

| O

Denotes the noise in the measurements ¢t

p(t )= p( f+e| f)= ple| f)
Maximum likelihood function is the one with minimal residual error

Corollary: perfect fit of the 'sextic' polynomial is of very limited interest

I Likelihood and Noise

If we have reason to assume that the noise is normally
distributed (if one assumes variance is finite,

this is the maximum entropy choice),

our likelihood function will become:

Pt f)zl_[,%expl—(t,— F(x))%/207]

noise was 0.1
p(tifix)) = 4%
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I Log-Likelihood / Squared Error

I Maximizing Likelihood is equivalent with minimizing

negative log-likelihood. After taking the logarithm and
deleting constants, we end up with

argmex , p(t f)=argmin ., (t— f(x))?

Conclusion: assuming noise is distributed normally,
leads to squared error minimization

I Robust Error Measures

If you expect outliers, you might want to consider

Sometimes you do have an idea of the nature of the noise.
I one of these robust measures

absolute error [t-f(x)/ double exponential distribution

Lorentzian /log(1+(t-f(x))~2) Lorentzian (Cauchy) distribution

Pearson limit VII log(sqrt(1+(t-f(x)) ~2) --- Pearson limit distr.

All these measures translate into an assumption on the noise



I Maximum Likelihood is limited

In general we are not interested in the probability of observing
the data given the (correctness of the) function.

We want the probability (correctness) of the function
given the data itself (Because we want to find the best function)

Maximizing this probability is called maximizing the posterior.

I Bayes Rule

likelihood prior

posterior

N\
P LLiY-Ti

pt)
I

normalizer, generally unknown/uncomputable
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I Maximize Posterior

I maximizing posterior equals maximizing likelihood times prior
argrmex , p ft)=argrmex . p(4 ) pl f)

The method of maximum likelihood assumes that
the prioris uniform, i.e., all functions are equally likely

A uniform prior on an infinite space is ill-defined!

I A Prior for GP

random as the prior. For instance under grow initialization

T={x}and F = {+}
generate@

with probability 0.5
p(f)=2""
@ with probability 0.125

I Take the probability of generating the function at

with probability 0.5



A Prior for GP

¢ depends on terminal/function set

p(H=c!”

Maximum Posterior for GP

argrex . p( f1t)=argmex . p(t ) p( )

—(t— f(x))?

- 1 200 <l
argn”axf]—[iame c
: (t— (X))
= agmin ), —— ——+fllog(¢)

= amgmn.) (t— f(x) +y|f

y=log(cno?
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Exponential Prior on size
argmin ;> (t— f(x))*+y| f

y=log(ono?

7\

Coding bias induced by  |ntrinsic problem noise

primitive set (generally unkown, can also
be more complex; per case
uncertainty, weights)

Conclusions

* Noise assumption determines error function
- Likelihood

* In GP maximum posterior not equal to
maximum likelihood
- Infinite space, assuming uniform prior is wrong

* Introducing a prior creates penalty function
- Free parameter(s) value(s) inherently unknown



I Theory of Inductive Inference

MDL & Universal priors (brief)

I Occam's Razor

I » Objects should not be multiplied beyond

necessity

- What is necessity?

- If any improvement in error is a good thing,
Occam does not lead to penalty based

parsimony pressure:
» does lead to lexicographical parsimony pressure

Occam's razor as such does not provide
justification
for balancing size and error
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Minimum Description Length
(Rissanen)

* Minimize the total length in bits to transmit:
- The model
- The exceptions

tree_coding_length + exception_coding_length

/

tree size error

Problem: coding bias. True MDL is undecidable

What's tree coding length?

« Our simple prior on size translates to a
coding of x bits per node

» Formally, we're searching in the space of
programs of variable length

» Every program can be described as a prefix
(self-delimiting) sequence for a Universal
Turing Machine



I Solomonoff's Universal Prior

I The universal prior probability of any prefix p of a
computable sequence X is the sum of the
probabilities of all programs (for a universal
computer) that compute something starting with p

p( =27

L is the function that returns the length of the shortest program
that can compute 7. It is provably uncomputable.

I Inductive inference and GP

« Our simple prior on size is a particular
I assumption about the universal coding
function L
» when using the universal prior, the maximum
posterior function becomes

argmin > (t— f(x))*+y L( 1)

In GP, we always have two components!!
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Statement

Bloat is not an inherent problem in GP

Bloat is purely caused by ignoring program
complexity in the objective function definition.

Solomonoff's theory of inductive inference shows
that the prior is necessarily (a) complexity based,
and (b) exponentially weighted

Implications for Symbolic
Regression



I The true objective function for SR

I Error function Complexity function

N/

argmin, ) E(e)+L(f)

The error function contains the assumptions on the noise

The complexity function contains our 'size'-based assumptions

I A practical objective function

I argmin, ), E(e)+y C( f)

Where gamma captures all constants involved in the
tradeoff between size and goodness-of-fit

E is a simple error function

C is a practical function to get complexity information
(e.g., size)
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I Penalty based optimization

MDL-Fitness = 2 (t— F(x))*+y| 1]

Particular form of MDL (only looking at size). One free parameter:
Estimate using cross validation, then fix for entire set
low initially, stronger later (Zhang et. al. 1995)

Reports that penalty functions on size often work very well, yet
leads to quite a few 'failed” runs. (Soule & Foster)

I Multi Objective

I Evolve a front of individuals that uniquely balance size and performance

|




Pareto Dominance
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Pareto Dominance can be Overkill

Consider two expressions,
with error el and e2
of size sland s2

flip a coin, selecting e1,s1 witl
probability p, e2,52 otherwise

Expected error of combination P€,+(1—p) &

Expected size of active
expression

ps;+(1-p)s,

Linear interpolation between members of front
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Convex Multi-Objective Front

20 | .

Dominated by linear combination
18

—0

6.0084

Convex hull optimization

» Because the 'true' objective function is
additive, but with an unknown tradeoff the
convex hull of the Pareto set contains the
solution



I Conclusions

* For symbolic regression we perform
I maximum posterior search
- Priors cannot be ignored
* Maximum likelihood search is wrong, and
leads to issues with bloat
» Penalty based search on 'complexity'/‘error’
trade-off is difficult due to lack of knowledge
» Multi-objective search towards the convex
hull in more promising
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