Theory of Randomised Search Heuristics in Combinatorial Optimisation An Algorithmic Point of View

Carsten Witt

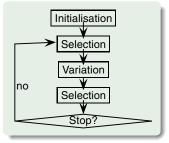
Fakultät für Informatik, LS 2 Technische Universität Dortmund Germany

Tutorial at GECCO 2008 13 July 2008

What Are Randomised Search Heuristics (RSHs)?

Most famous example: Evolutionary Algorithms (EAs)

- a bio-inspired heuristic
- paradigm: evolution in nature, "survival of the fittest"



□ ▶ 2/54

Carsten Witt Theory of RSHs in Combinatorial Optimisation

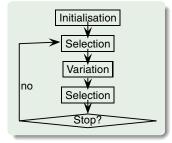
What Are Randomised Search Heuristics (RSHs)?

Most famous example: Evolutionary Algorithms (EAs)

Carsten Witt

Carsten Witt

- a bio-inspired heuristic
- paradigm: evolution in nature, "survival of the fittest"
- actually it's only an algorithm, a randomised search heuristic

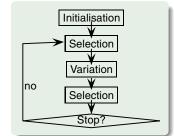


Theory of RSHs in Combinatorial Optimisation

What Are Randomised Search Heuristics (RSHs)?

Most famous example: Evolutionary Algorithms (EAs)

- a bio-inspired heuristic
- paradigm: evolution in nature, "survival of the fittest"
- actually it's only an algorithm, a randomised search heuristic



- Goal: optimisation
- Here: discrete search spaces, combinatorial optimisation, in particular pseudo-boolean functions

Optimise $f: \{0, 1\}^n \to \mathbb{R}$

< □ >

Why Do We Consider Randomised Search Heuristics?

- Not enough resources (time, money, knowledge) for a tailored algorithm
- Black Box Scenario →
 rules out problem-specific algorithms
- We like the simplicity, robustness, ... of Randomised Search Heuristics
- "And they are surprisingly successful"

Carsten Witt

Why Do We Consider Randomised Search Heuristics?

- Not enough resources (time, money, knowledge) for a tailored algorithm
- Black Box Scenario rules out problem-specific algorithms
- We like the simplicity, robustness, ... of Randomised Search Heuristics
- "And they are surprisingly successful ... "

My point of view

Do not only consider RSHs empirically. We need a solid theory to understand how (and when) they work.

Carsten Witt Theory of RSHs in Combinatorial Optimisation

What RSHs Do We Consider?

Theoretically considered RSHs

• (1+1) EA

- $(1+\lambda)$ EA (offspring population)
- $(\mu+1)$ EA (parent population)
- $(\mu+1)$ GA (parent population and crossover)
- GIGA (crossover)
- SEMO (multi-objective)
- Randomised Local Search (RLS)
- Metropolis Algorithm/Simulated Annealing (MA/SA)

Carsten Witt

- Ant Colony Optimisation (ACO)
- ...

First of all: define the simple ones

The Most Basic RSHs

(1+1) EA, RLS, MA and SA for maximisation problems

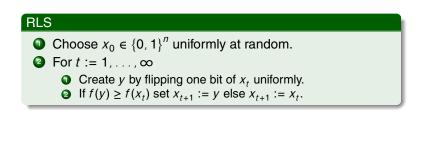
(1+1) EA

- Choose $x_0 \in \{0, 1\}^n$ uniformly at random.
- ② For t := 1, . . . , ∞
 - Create *y* by flipping each bit of x_t indep. with probab. 1/n.
 - ② If $f(y) ≥ f(x_t)$ set $x_{t+1} := y$ else $x_{t+1} := x_t$.

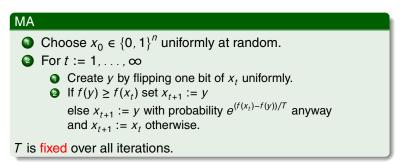
The Most Basic RSHs

The Most Basic RSHs

(1+1) EA, RLS, MA and SA for maximisation problems



(1+1) EA, RLS, MA and SA for maximisation problems



₹ □ ₹ 5/;

Theory of RSHs in Combinatorial Optimisation

Theory of RSHs in Combinatorial Optimisation

The Most Basic RSHs

What Kind of Theory Are We Interested In?

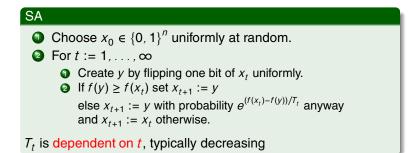
Carsten Witt

- Not interesting here: convergence (often trivial), local progress, models of EAs (e.g., infinite populations), ...
- Treat RSHs as randomised algorithm!
- Analyse their "runtime" on selected problems

(1+1) EA, RLS, MA and SA for maximisation problems

Carsten Witt

Carsten Witt



I □ ▶ 6/54

What Kind of Theory Are We Interested In?

- Not interesting here: convergence (often trivial), local progress, models of EAs (e.g., infinite populations), ...
- Treat RSHs as randomised algorithm!
- Analyse their "runtime" on selected problems

Definition

Let RSH *A* optimise *f*. Each *f*-evaluation is counted as a time step. The *runtime* $T_{A,f}$ of *A* is the random first point of time such that *A* has sampled an optimal search point.

• Often considered: expected runtime, distribution of T_{Af}

Carsten Witt

Asymptotical results w. r. t. n

< □ > 6

How Do We Obtain Results?

We use (rarely in their pure form):

- Coupon Collector's Theorem
- Principle of Deferred Decisions
- Concentration inequalities: Markov, Chebyshev, Chernoff, Hoeffding, ... bounds
- Markov chain theory: waiting times, first hitting times
- Rapidly Mixing Markov Chains
- Random Walks: Gambler's Ruin, drift analysis (Wald's equation), martingale theory, electrical networks
- Random graphs (esp. random trees)
- Identifying typical events and failure events
- Potential functions and amortised analysis
- ...

Adapt tools from the analysis of randomised algorithms; understanding the stochastic process is often the hardest task.

How Do We Obtain Results?

We use (rarely in their pure form):

- Coupon Collector's Theorem
- Principle of Deferred Decisions
- Concentration inequalities: Markov, Chebyshev, Chernoff, Hoeffding, ... bounds
- Markov chain theory: waiting times, first hitting times
- Rapidly Mixing Markov Chains
- Random Walks: Gambler's Ruin, drift analysis (Wald's equation), martingale theory, electrical networks
- Random graphs (esp. random trees)
- Identifying typical events and failure events
- Potential functions and amortised analysis
- ...

Carsten Witt Theory of RSHs in Combinatorial Optimisation

Early Results

Analysis of RSHs already in the 1980s:

- Sasaki/Hajek (1988): SA and Maximum Matchings
- Sorkin (1991): SA vs. MA
- Jerrum (1992): SA and Cliques
- Jerrum/Sorkin (1993, 1998): SA/MA for Graph Bisection
- ...

These were high-quality results, however, limited to SA/MA (nothing about EAs) and hard to generalise.

Theory of RSHs in Combinatorial Optimisation

I □ ▶ 8/54

Early Results

Analysis of RSHs already in the 1980s:

- Sasaki/Hajek (1988): SA and Maximum Matchings
- Sorkin (1991): SA vs. MA
- Jerrum (1992): SA and Cliques
- Jerrum/Sorkin (1993, 1998): SA/MA for Graph Bisection
- ...

These were high-quality results, however, limited to SA/MA (nothing about EAs) and hard to generalise.

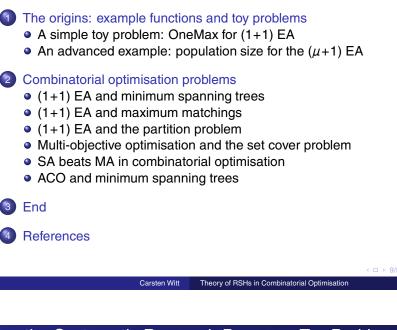
Since the early 1990s

Systematic approach for the analysis of RSHs, building up a completely new research area

Carsten Witt

∢ □ ▶ 8/54

This Tutorial



How the Systematic Research Began — Toy Problems

Simple example functions (test functions)

- OneMax $(x_1, \ldots, x_n) = x_1 + \cdots + x_n$
- LeadingOnes $(x_1, \ldots, x_n) = \sum_{i=1}^n \prod_{j=1}^i x_j$
- BinVal $(x_1, ..., x_n) = \sum_{i=1}^n 2^{n-i} x_i$
- polynomials of fixed degree

Goal: derive first runtime bounds and methods

How the Systematic Research Began — Toy Problems

Simple example functions (test functions)

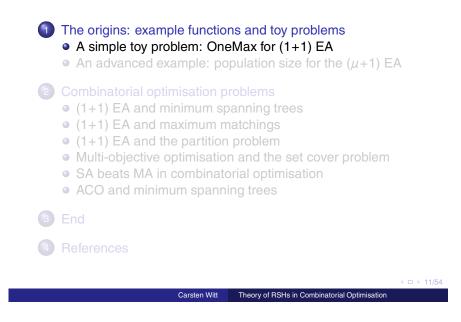
- OneMax $(x_1, \ldots, x_n) = x_1 + \cdots + x_n$
- LeadingOnes $(x_1, \ldots, x_n) = \sum_{i=1}^n \prod_{j=1}^i x_j$
- BinVal $(x_1, \ldots, x_n) = \sum_{i=1}^n 2^{n-i} x_i$
- polynomials of fixed degree
- Goal: derive first runtime bounds and methods

Artificially designed functions

- with sometimes really horrible definitions
- but for the first time these allow rigorous statements
- Goal: prove benefits and harm of RSH components,
 - e.g., crossover, mutation strength, population size ...

∢ □ ▶ 10/

This Tutorial



Example: OneMax

Theorem (e.g., Droste/Jansen/Wegener, 1998)

The expected runtime of the RLS, (1+1) EA, $(\mu+1)$ EA, $(1+\lambda)$ EA on ONEMAX is $\Omega(n \log n)$.

Proof by modifications of Coupon Collector's Theorem.

< □ ▶ 12/54

Carsten Witt Theory of RSHs in Combinatorial Optimisation

Example: OneMax

Theorem (e.g., Droste/Jansen/Wegener, 1998)

The expected runtime of the RLS, (1+1) EA, $(\mu+1)$ EA, $(1+\lambda)$ EA on ONEMAX is $\Omega(n \log n)$.

Proof by modifications of Coupon Collector's Theorem.

Theorem (e.g., Mühlenbein, 1992)

The expected runtime of RLS and the (1+1) EA on ONEMAX is $O(n \log n)$.

Holds also for population-based (μ +1) EA and for (1+ λ) EA with small populations.

Carsten Witt

Proof of the $O(n \log n)$ bound

• Fitness levels: $L_i := \{x \in \{0, 1\}^n \mid |x|_1 = i\}$

Proof of the $O(n \log n)$ bound

- Fitness levels: $L_i := \{x \in \{0, 1\}^n \mid |x|_1 = i\}$
- (1+1) EA never decreases its current fitness level.

Proof of the $O(n \log n)$ bound

- Fitness levels: $L_i := \{x \in \{0, 1\}^n \mid |x|_1 = i\}$
- (1+1) EA never decreases its current fitness level.
- From *i* to some higher-level set with prob. at least

$$\underbrace{\binom{n-i}{1}}_{n-i} \cdot \underbrace{\binom{1}{n}}_{n-i} \cdot \underbrace{\binom{1}{n}}_{n-i} \cdot \underbrace{\binom{1-\frac{1}{n}}_{n-i}}_{n-i} \geq \frac{n-i}{en}$$

choose a 0-bit flip this bit keep the other bits

- Expected time to reach a higher-level set is at most $\frac{en}{n-i}$.
- Expected runtime is at most

$$\sum_{i=0}^{n-1} \frac{en}{n-i} = O(n \log n).$$

< □ ▶ 13/54

Carsten Witt Theory of RSHs in Combinatorial Optimisation

Theory of RSHs in Combinatorial Optimisation

Later Results Using Example Functions

• Find the theoretically optimal mutation strength (1/n for OneMax!).

Carsten Witt

Carsten Witt

- optimal population size (often 1!)
- $\bullet\,$ crossover vs. no crossover \rightarrow Real Royal Road Functions
- multistarts vs. populations
- frequent restarts vs. long runs
- dynamic schedules
- ...

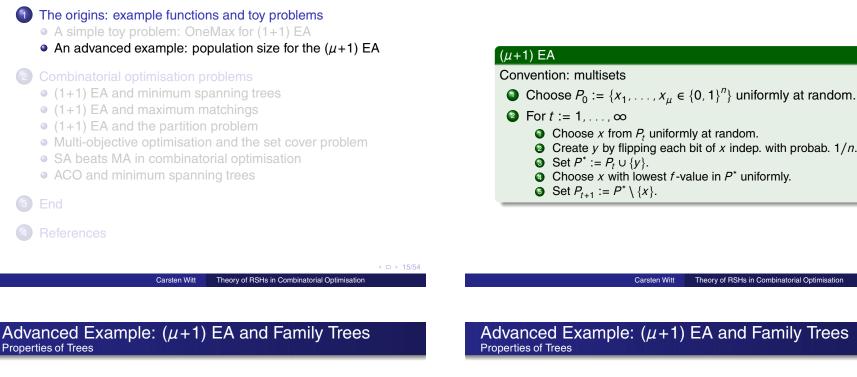
Later Results Using Example Functions

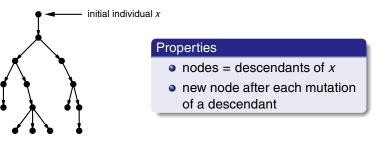
- Find the theoretically optimal mutation strength (1/*n* for OneMax!).
- optimal population size (often 1!)
- crossover vs. no crossover → Real Royal Road Functions
- multistarts vs. populations
- frequent restarts vs. long runs
- dynamic schedules
- ...

Further reading: Droste/Jansen/Wegener (2002), He/Yao (2002, 2003), Jansen (2002), Jansen/De Jong/Wegener (2005), Jansen/Wegener (2001, 2005), Storch/Wegener (2004), Witt (2006)

∢ □ ▶ 14

This Tutorial





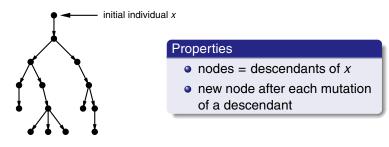
Carsten Witt

2 Create *y* by flipping each bit of *x* indep. with probab. 1/n. • Set $P^* := P_t \cup \{y\}$.

- O Choose x with lowest f-value in P^* uniformly.
- **③** Set $P_{t+1} := P^* \setminus \{x\}$.

Theory of RSHs in Combinatorial Optimisation Carsten Witt

Advanced Example: $(\mu+1)$ EA and Family Trees Properties of Trees



- Interesting: depth of the tree since low depth \rightarrow few progress
- What stochastic process creates the tree?

The Process Behind Family Trees

Sequence of trees T_t such that

- at time 0, there is only the root,
- at time *t*, either nothing happens $(T_{t+1} = T_t)$, or

node from T_t is chosen and new leaf appended $\rightarrow T_{t+1}$.

Theory of RSHs in Combinatorial Optimisation

Crucial: each node chosen with prob. at most $1/\mu$.

Carsten Witt

The Process Behind Family Trees

Sequence of trees T_t such that

- at time 0, there is only the root,
- at time *t*, either nothing happens $(T_{t+1} = T_t)$, or

node from T_t is chosen and new leaf appended $\rightarrow T_{t+1}$.

Crucial: each node chosen with prob. at most $1/\mu$.

Technical Lemma (Witt, 2006)

Depth of tree at time *t*: at most $\frac{3t}{\mu}$ with prob. $1 - 2^{-\Omega(t/\mu)}$.

< □ ▶ 18/54

Carsten Witt Theory of RSHs in Combinatorial Optimisation

Proof of Technical Lemma

- Each path has a unique history t₁,..., t_e
 s. t. *i*-th node appears at time t_i.
- Prob(path with history t_1, \ldots, t_{ℓ} created) $\leq \left(\frac{1}{\mu}\right)^{\ell}$

Carsten Witt

Proof of Technical Lemma

- Each path has a unique history t₁,..., t_ℓ
 s. t. *i*-th node appears at time t_i.
- Prob(path with history t_1, \ldots, t_{ℓ} created) $\leq \left(\frac{1}{\mu}\right)^{\ell}$
- Consider at most t steps: at most (^t_ℓ) choices for 0 ≤ t₁ < t₂ < ··· < t_ℓ ≤ t.
- Prob(\exists path of length ℓ after $\ell \mu/3$ steps)

$$\leq \binom{\ell \mu/3}{\ell} \left(\frac{1}{\mu}\right)^{\ell} \leq \left(\frac{\vartheta \ell \mu}{3\ell}\right)^{\ell} \left(\frac{1}{\mu}\right)^{\ell} = 2^{-\Omega(\ell)}. \qquad \Box$$

Application: General Lower Bound

Theorem (Witt, 2006)

Let *f* be a function with a unique optimum and $\mu = poly(n)$. Then the runtime of the $(\mu+1)$ EA on *f* is $\Omega(\mu n)$ with probability $1 - 2^{-\Omega(n)}$.

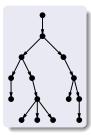
Application: General Lower Bound

Theorem (Witt, 2006)

Let *f* be a function with a unique optimum and $\mu = poly(n)$. Then the runtime of the $(\mu+1)$ EA on *f* is $\Omega(\mu n)$ with probability $1 - 2^{-\Omega(n)}$.

Proof idea:

- W. o. p.: after μn/12 steps: all paths in family trees have length ≤ n/4.
- W. o. p.: initially, for all individuals: Hamming distance $\geq n/3$ from optimum.
- W. o. p.: n/4 mutations do not overcome Hamming distance ≥ n/3.



V LI V 20.

Carsten Witt Theory of RSHs in Combinatorial Optimisation

RSHs for Combinatorial Optimisation

Carsten Witt

- Analyse runtime and approximation quality on well-known combinatorial optimisation problems, e.g.,
 - sorting problems (is this an optimisation problem?),
 - shortest path problems,
 - Eulerian cycles,
 - mininum spanning trees,
 - maximum matchings,
 - partition problem,
 - set cover problem,
 - ...

RSHs for Combinatorial Optimisation

- Analyse runtime and approximation quality on well-known combinatorial optimisation problems, e.g.,
 - sorting problems (is this an optimisation problem?),
 - shortest path problems,
 - Eulerian cycles,
 - mininum spanning trees,
 - maximum matchings,
 - partition problem,
 - set cover problem,
 - ۰...
- What we do not hope: to be better than the best problem-specific algorithms

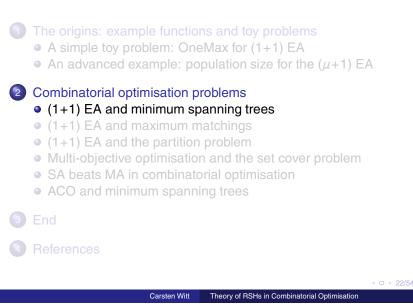
∢ □ ▶ 21/

RSHs for Combinatorial Optimisation

- Analyse runtime and approximation quality on well-known combinatorial optimisation problems, e.g.,
 - sorting problems (is this an optimisation problem?),
 - shortest path problems,
 - Eulerian cycles,
 - mininum spanning trees,
 - maximum matchings,
 - partition problem,
 - set cover problem,
 - ...
- What we do not hope: to be better than the best problem-specific algorithms
- In the following no fine-tuning of the results

Carsten Witt

This Tutorial



(1+1) EA for the Minimum Spanning Tree Problem

Theory of RSHs in Combinatorial Optimisation

n nodes, *m* edges: bit string from $\{0, 1\}^m$ selects edges Fitness function: weight of tree/leading to trees for non-trees

Carsten Witt

(1+1) EA for the Minimum Spanning Tree Problem

n nodes, *m* edges: bit string from $\{0, 1\}^m$ selects edges

Fitness function: weight of tree/leading to trees for non-trees

Observation: non-optimal trees improvable by exchanging just two edges \rightarrow local change with expected factor 1 - 1/n for distance decrease from optimum

(1+1) EA for the Minimum Spanning Tree Problem

n nodes, *m* edges: bit string from $\{0, 1\}^m$ selects edges

Fitness function: weight of tree/leading to trees for non-trees

Observation: non-optimal trees improvable by exchanging just two edges \rightarrow local change with expected factor 1 - 1/n for distance decrease from optimum

Theorem (Neumann/Wegener, 2007)

The expected time until the (1+1) EA has created an MST is bounded by $O(n^4(\log n + \log w_{\max}))$.

Carsten Witt

Carsten Witt

(1+1) EA for the Minimum Spanning Tree Problem

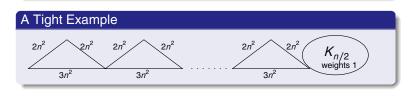
n nodes, *m* edges: bit string from $\{0, 1\}^m$ selects edges

Fitness function: weight of tree/leading to trees for non-trees

Observation: non-optimal trees improvable by exchanging just two edges \rightarrow local change with expected factor 1 - 1/n for distance decrease from optimum

Theorem (Neumann/Wegener, 2007)

The expected time until the (1+1) EA has created an MST is bounded by $O(n^4(\log n + \log w_{\max}))$.



Carsten Witt Theory of RSHs in Combinatorial Optimisation

This Tutorial

The origins: example functions and toy problems

 A simple toy problem: OneMax for (1+1) EA
 An advanced example: population size for the (μ+1) EA

 Combinatorial optimisation problems

 (1+1) EA and minimum spanning trees
 (1+1) EA and maximum matchings
 (1+1) EA and the partition problem
 Multi-objective optimisation and the set cover problem
 SA beats MA in combinatorial optimisation
 ACO and minimum spanning trees

 End

(1+1) EA for the Maximum Matching Problem

n + 1 nodes, n edges: bit string from $\{0, 1\}^n$ selects edges

Fitness function: size of matching/negative for non-matchings

(1+1) EA for the Maximum Matching Problem The Behaviour on Paths

n + 1 nodes, *n* edges: bit string from $\{0, 1\}^n$ selects edges

Fitness function: size of matching/negative for non-matchings

Theorem (Giel/Wegener, 2003)

The expected time until the (1+1) EA finds a maximum matching on a path of *n* edges is $O(n^4)$.

(1+1) EA for the Maximum Matching Problem The Behaviour on Paths (2)

Proof idea:

- Consider a second-best matching.
- Is there a free edge? Flip one bit! \rightarrow probability $\Theta(1/n)$.
- Else 2-bit flips \rightarrow probability $\Theta(1/n^2)$.

□ ▶ 26/54

< □ ▶ 26/54

Carsten Witt Theory of RSHs in Combinatorial Optimisation

(1+1) EA for the Maximum Matching Problem The Behaviour on Paths (2)

Carsten Witt

Proof idea:

- Consider a second-best matching.
- Is there a free edge? Flip one bit! \rightarrow probability $\Theta(1/n)$.
- Else 2-bit flips \rightarrow probability $\Theta(1/n^2)$.
- Shorten augmenting path

(1+1) EA for the Maximum Matching Problem The Behaviour on Paths (2)

Proof idea:

- Consider a second-best matching.
- Is there a free edge? Flip one bit! \rightarrow probability $\Theta(1/n)$.
- Else 2-bit flips \rightarrow probability $\Theta(1/n^2)$.
- Shorten augmenting path

Carsten Witt

(1+1) EA for the Maximum Matching Problem The Behaviour on Paths (2)

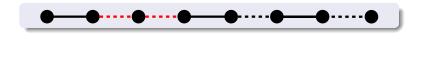
Proof idea:

- Consider a second-best matching.
- Is there a free edge? Flip one bit! \rightarrow probability $\Theta(1/n)$.
- Else 2-bit flips \rightarrow probability $\Theta(1/n^2)$.
- Shorten augmenting path

(1+1) EA for the Maximum Matching Problem The Behaviour on Paths (2)

Proof idea:

- Consider a second-best matching.
- Is there a free edge? Flip one bit! \rightarrow probability $\Theta(1/n)$.
- Else 2-bit flips \rightarrow probability $\Theta(1/n^2)$.
- Shorten augmenting path



Theory of RSHs in Combinatorial Optimisation

□ ▶ 26/54

< □ ▶ 26/54

Carsten Witt Theory of RSHs in Combinatorial Optimisation

(1+1) EA for the Maximum Matching Problem The Behaviour on Paths (2)

Carsten Witt

Proof idea:

- Consider a second-best matching.
- Is there a free edge? Flip one bit! \rightarrow probability $\Theta(1/n)$.
- Else 2-bit flips \rightarrow probability $\Theta(1/n^2)$.
- Shorten augmenting path
- Then flip the free edge!

Carsten Witt

(1+1) EA for the Maximum Matching Problem The Behaviour on Paths (2)

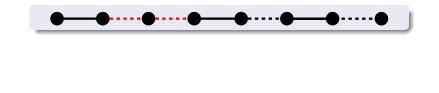
Proof idea:

- Consider a second-best matching.
- Is there a free edge? Flip one bit! \rightarrow probability $\Theta(1/n)$.
- Else 2-bit flips \rightarrow probability $\Theta(1/n^2)$.
- Shorten augmenting path
- Then flip the free edge!

(1+1) EA for the Maximum Matching Problem The Behaviour on Paths (2)

Proof idea:

- Consider a second-best matching.
- Is there a free edge? Flip one bit! \rightarrow probability $\Theta(1/n)$.
- Else 2-bit flips \rightarrow probability $\Theta(1/n^2)$.
- Shorten augmenting path
- Then flip the free edge!



Theory of RSHs in Combinatorial Optimisation

(1+1) EA for the Maximum Matching Problem The Behaviour on Paths (2)

Proof idea:

- Consider a second-best matching.
- Is there a free edge? Flip one bit! \rightarrow probability $\Theta(1/n)$.
- Else 2-bit flips \rightarrow probability $\Theta(1/n^2)$.
- Shorten augmenting path
- Then flip the free edge!

□ ▶ 26/54

4 □ ▶ 26/54

Carsten Witt Theory of RSHs in Combinatorial Optimisation

(1+1) EA for the Maximum Matching Problem The Behaviour on Paths (2)

Carsten Witt

Proof idea:

- Consider a second-best matching.
- Is there a free edge? Flip one bit! \rightarrow probability $\Theta(1/n)$.
- Else 2-bit flips \rightarrow probability $\Theta(1/n^2)$.
- Shorten augmenting path
- Then flip the free edge!

Carsten Witt

(1+1) EA for the Maximum Matching Problem The Behaviour on Paths (2)

Proof idea:

- Consider a second-best matching.
- Is there a free edge? Flip one bit! \rightarrow probability $\Theta(1/n)$.
- Else 2-bit flips \rightarrow probability $\Theta(1/n^2)$.
- Shorten augmenting path
- Then flip the free edge!
- (1+1) EA follows the concept of an augmenting path!

(1+1) EA for the Maximum Matching Problem The Behaviour on Paths (2)

Proof idea:

- Consider a second-best matching.
- Is there a free edge? Flip one bit! \rightarrow probability $\Theta(1/n)$.
- Else 2-bit flips \rightarrow probability $\Theta(1/n^2)$.
- Shorten augmenting path
- Then flip the free edge!
- (1+1) EA follows the concept of an augmenting path!

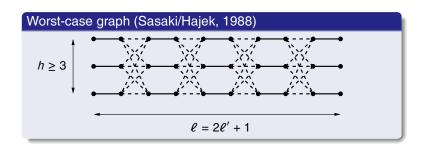
Theory of RSHs in Combinatorial Optimisation

 Length changes according to a fair random walk (Gambler's Ruin Problem)
 → Expected runtime Q(n²) : Q(n²) = Q(n⁴)

$$\rightarrow$$
 Expected runtime $O(n^{-}) \cdot O(n^{-}) = O(n^{+})$.

Carsten Witt

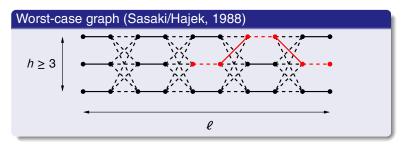
(1+1) EA for the Maximum Matching Problem



∢ □ ▶ 27/54

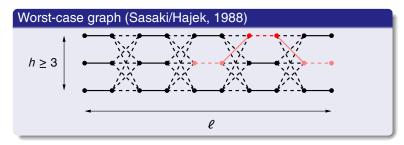
Carsten Witt Theory of RSHs in Combinatorial Optimisation

(1+1) EA for the Maximum Matching Problem A Negative Result



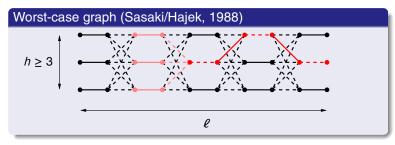
Augmenting path

(1+1) EA for the Maximum Matching Problem



Augmenting path can get shorter

(1+1) EA for the Maximum Matching Problem



Augmenting path can get shorter but is more likely to get longer.

Theorem	
For $h \ge 3$, the (1+1) EA has exponential expected rules on $G_{h,\ell}$.	In time $2^{\Omega(\ell)}$

Proof by drift analysis

Theory of RSHs in Combinatorial Optimisation

(1+1) EA for the Maximum Matching Problem (1+1) EA is a PRAS

Insight: do not hope for exact solutions but for approximations

Theorem (Giel/Wegener, 2003)

For $\varepsilon > 0$, the (1+1) EA finds a (1 + ε)-approximation of a maximum matching in expected time $O(m^{2[1/\varepsilon]})$ and is a polynomial-time randomised approximation scheme (PRAS).

□ ▶ 28/54

Carsten Witt Theory of RSHs in Combinatorial Optimisation

(1+1) EA for the Maximum Matching Problem (1+1) EA is a PRAS

Carsten Witt

Insight: do not hope for exact solutions but for approximations

Theorem (Giel/Wegener, 2003)

For $\varepsilon > 0$, the (1+1) EA finds a (1 + ε)-approximation of a maximum matching in expected time $O(m^{2\lceil 1/\varepsilon \rceil})$ and is a polynomial-time randomised approximation scheme (PRAS).

Proof idea:

- Look into the analysis of the Hopcroft/Karp algorithm.
- Current solution worse than (1 + ε)-approximate → many augmenting paths, in partic. a short one of length ≤ 2[ε⁻¹]
- Wait for the (1+1) EA to optimise this short path.

Carsten Witt

A More General View

Minimum spanning trees and bipartite matching are special cases of matroid optimisation problems.

A More General View

Minimum spanning trees and bipartite matching are special cases of matroid optimisation problems.

Let *E* be a finite set and $\mathcal{F} \subseteq 2^{E}$. $M = (E, \mathcal{F})$ is a *matroid* if

(i) $\emptyset \in \mathcal{F}$,

(ii) $\forall X \subseteq Y \in \mathcal{F} : X \in \mathcal{F}$, and

(iii) $\forall X, Y \in \mathcal{F}, |X| > |Y|: \exists x \in X \setminus Y \text{ with } Y \cup \{x\} \in \mathcal{F}.$

Adding a function $w: E \rightarrow \mathbb{N}$ yields a weighted matroid.

A More General View

Minimum spanning trees and bipartite matching are special cases of matroid optimisation problems.

Let *E* be a finite set and $\mathcal{F} \subseteq 2^{E}$. $M = (E, \mathcal{F})$ is a *matroid* if (i) $\emptyset \in \mathcal{F}$,

(ii) $\forall X \subseteq Y \in \mathcal{F} : X \in \mathcal{F}$, and (iii) $\forall X, Y \in \mathcal{F}, |X| > |Y|: \exists x \in X \setminus Y$ with $Y \cup \{x\} \in \mathcal{F}$. Adding a function $w: E \to \mathbb{N}$ yields a weighted matroid.

Exemplary Results (Reichel and Skutella, 2007)

The (1+1) EA and RLS solve the matroid optimisation problems

- min. weight basis exactly in time $O(|E|^2 (\log |E| + \log w_{max}))$.
- unweighted intersection up to 1ε in time $O(|E|^{2[1/\varepsilon]})$.

< □ ▶ 29/54

< □ ▶ 30/54

Carsten Witt Theory of RSHs in Combinatorial Optimisation

A More General View

Minimum spanning trees and bipartite matching are special cases of matroid optimisation problems.

Theory of RSHs in Combinatorial Optimisation

Theory of RSHs in Combinatorial Optimisation

Let *E* be a finite set and $\mathcal{F} \subseteq 2^{E}$. $M = (E, \mathcal{F})$ is a *matroid* if

Carsten Witt

(i) $\emptyset \in \mathcal{F}$, (ii) $\forall X \subseteq Y \in \mathcal{F} \colon X \in \mathcal{F}$, and (iii) $\forall X, Y \in \mathcal{F}, |X| > |Y| \colon \exists x \in X \setminus Y \text{ with } Y \cup \{x\} \in \mathcal{F}$.

```
Adding a function w: E \rightarrow \mathbb{N} yields a weighted matroid.
```

Exemplary Results (Reichel and Skutella, 2007)

The (1+1) EA and RLS solve the matroid optimisation problems

• min. weight basis exactly in time $O(|E|^2(\log |E| + \log w_{\max}))$.

• unweighted intersection up to $1 - \varepsilon$ in time $O(|E|^{2[1/\varepsilon]})$.

Carsten Witt

Very abstract/general, a step towards a characterisation of polynomially solvable problems on which EAs are efficient

This Tutorial

- The origins: example functions and toy problems
 - A simple toy problem: OneMax for (1+1) EA
 - An advanced example: population size for the $(\mu+1)$ EA

2 Combinatorial optimisation problems

- (1+1) EA and minimum spanning trees
- (1+1) EA and maximum matchings
- (1+1) EA and the partition problem
- Multi-objective optimisation and the set cover problem
- SA beats MA in combinatorial optimisation
- ACO and minimum spanning trees

3 End

4 References

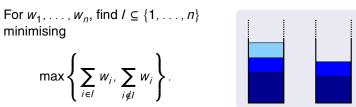
2924

(1+1) EA and the Partition Problem

What about NP-hard problems? → Study approximation quality

(1+1) EA and the Partition Problem

What about NP-hard problems? → Study approximation quality



Carsten Witt Theory of RSHs in Combinatorial Optimisation

(1+1) EA and the Partition Problem

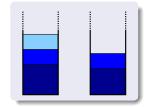
Carsten Witt

Carsten Witt

What about NP-hard problems? → Study approximation quality

For w_1, \ldots, w_n , find $I \subseteq \{1, \ldots, n\}$ minimising

$$\max\left\{\sum_{i\in I}w_i,\sum_{i\notin I}w_i\right\}.$$



Theory of RSHs in Combinatorial Optimisation

This is an "easy" NP-hard problem:

- not strongly NP-hard,
- FPTAS exist,
- ...

(1+1) EA for the Partition Problem Worst-Case Results

Coding: bit string $\{0, 1\}^n$ characteristic vector of *I*

Fitness function: weight of fuller bin

Theorem (Witt, 2005)

On any instance for the partition problem, the (1+1) EA reaches a solution with approximation ratio 4/3 in expected time $O(n^2)$.

ms? \rightarrow Study approximation \dots, n

(1+1) EA for the Partition Problem Worst-Case Results

Coding: bit string $\{0, 1\}^n$ characteristic vector of /

Fitness function: weight of fuller bin

Theorem (Witt, 2005)

On any instance for the partition problem, the (1+1) EA reaches a solution with approximation ratio 4/3 in expected time $O(n^2)$.

Theorem (Witt, 2005)

There is an instance such that the (1+1) EA needs with prob. $\Omega(1)$ at least $n^{\Omega(n)}$ steps to find a solution with a better ratio than $4/3 - \varepsilon$.

Proof ideas: study effect of local steps and local optima

Carsten Witt

Theory of RSHs in Combinatorial Optimisation

(1+1) EA for the Partition Problem Worst Case – PRAS by Parallelism

Theorem (Witt, 2005)

On any instance, the (1+1) EA with prob. $\geq 2^{-c[1/\varepsilon]\ln(1/\varepsilon)}$ finds a (1 + ε)-approximation within $O(n \ln(1/\varepsilon))$ steps.

□ ▶ 33/54

Carsten Witt Theory of RSHs in Combinatorial Optimisation

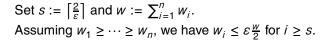
(1+1) EA for the Partition Problem Worst Case – PRAS by Parallelism

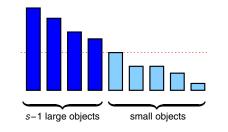
Theorem (Witt, 2005)

On any instance, the (1+1) EA with prob. $\geq 2^{-c[1/\varepsilon]\ln(1/\varepsilon)}$ finds a (1 + ε)-approximation within $O(n \ln(1/\varepsilon))$ steps.

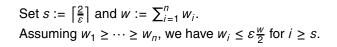
- $2^{O([1/\varepsilon]\ln(1/\varepsilon))}$ parallel runs find a $(1 + \varepsilon)$ -approximation with prob. $\ge 3/4$ in $O(n \ln(1/\varepsilon))$ parallel steps.
- Parallel runs form a PRAS!

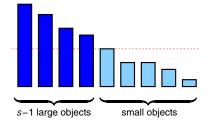
(1+1) EA for the Partition Problem Worst Case – PRAS by Parallelism (Proof Idea)





(1+1) EA for the Partition Problem Worst Case – PRAS by Parallelism (Proof Idea)





Analyse probability of distributing

- large objects in an optimal way,
- small objects greedily \Rightarrow additive error $\leq \varepsilon w/2$,

This is the algorithmic idea by Graham (1969).

Carsten Witt Theory of RSHs in Combinatorial Optimisation

Theory of RSHs in Combinatorial Optimisation

(1+1) EA for the Partition Problem Average-Case Analyses

Models: each weight drawn independently at random, namely

- uniformly from the interval [0, 1],
- exponentially distributed with parameter 1
 - (i. e., $Prob(X \ge t) = e^{-t}$ for $t \ge 0$).

Approximation ratio no longer meaningful, we investigate: discrepancy = absolute difference between weights of bins.

□ ▶ 35/54

< □ ▶ 36/54

Carsten Witt Theory of RSHs in Combinatorial Optimisation

(1+1) EA for the Partition Problem Average-Case Analyses

Models: each weight drawn independently at random, namely

- uniformly from the interval [0, 1],
- exponentially distributed with parameter 1 (i. e., $\operatorname{Prob}(X \ge t) = e^{-t}$ for $t \ge 0$).

Approximation ratio no longer meaningful, we investigate: discrepancy = absolute difference between weights of bins.

Carsten Witt

How close to discrepancy 0 do we come?

(1+1) EA for the Partition Problem Partition Problem - Known Averge-Case Results

Deterministic, problem-specific heuristic LPT

Sort weights decreasingly, put every object into currently emptier bin.

Analysis in both random models:

After LPT has been run, additive error is $O((\log n)/n)$ (Frenk/Rinnooy Kan, 1986).

(1+1) EA for the Partition Problem

Partition Problem - Known Averge-Case Results

Deterministic, problem-specific heuristic LPT

Sort weights decreasingly, put every object into currently emptier bin.

Analysis in both random models:

After LPT has been run, additive error is $O((\log n)/n)$ (Frenk/Rinnooy Kan, 1986).

Carsten Witt

Can RLS or the (1+1) EA reach a discrepancy of o(1)?

(1+1) EA for the Partition Problem

Theorem (Witt, 2005)

In both models, the (1+1) EA reaches discrepancy $O((\log n)/n)$ after $O(n^{c+4} \log^2 n)$ steps with probability $1 - O(1/n^c)$.

Almost the same result as for LPT!

∢ □ ▶ 37/5

< □ ▶ 38/54

Carsten Witt Theory of RSHs in Combinatorial Optimisation

(1+1) EA for the Partition Problem

Theorem (Witt, 2005)

In both models, the (1+1) EA reaches discrepancy $O((\log n)/n)$ after $O(n^{c+4}\log^2 n)$ steps with probability $1 - O(1/n^c)$.

Carsten Witt

Almost the same result as for LPT!

Proof exploits order statistics:

W. h. p. $X_{(i)} - X_{(i+1)} = O((\log n)/n)$ for $i = \Omega(n)$.

Theory of RSHs in Combinatorial Optimisation

This Tutorial

- 1 The origins: example functions and toy problems
 - A simple toy problem: OneMax for (1+1) EA
 - An advanced example: population size for the $(\mu+1)$ EA

2 Combinatorial optimisation problems

- (1+1) EA and minimum spanning trees
- (1+1) EA and maximum matchings
- (1+1) EA and the partition problem
- Multi-objective optimisation and the set cover problem
- SA beats MA in combinatorial optimisation
- ACO and minimum spanning trees

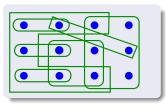
3 End

4 References

I □ ▶ 36/54

The Set Cover Problem

Another NP-hard problem

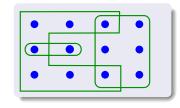


Given:

- ground set S,
- collection C₁,..., C_n of subsets with positive costs c₁,..., c_n.

The Set Cover Problem

Another NP-hard problem



Given:

- ground set *S*,
- collection C_1, \ldots, C_n of subsets with positive costs c_1, \ldots, c_n .

Goal: find a minimum-cost selection C_{i_1}, \ldots, C_{i_k} such that $\bigcup_{i=1}^k C_{i_i} = S$.

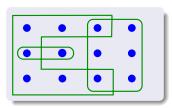
▲ □ ▶ 39/5

■ ▶ 40/54

Carsten Witt Theory of RSHs in Combinatorial Optimisation

The Set Cover Problem

Another NP-hard problem



Given:

• ground set S,

• collection C_1, \ldots, C_n of subsets with positive costs c_1, \ldots, c_n .

Theory of RSHs in Combinatorial Optimisation

Goal: find a minimum-cost selection C_{i_1}, \ldots, C_{i_k} such that $\bigcup_{j=1}^k C_{i_j} = S$.

Theory of RSHs in Combinatorial Optimisation

Traditional single-objective approach

Fitness = cost of selection of subsets, penalty for non-covers

Carsten Witt

Theorem

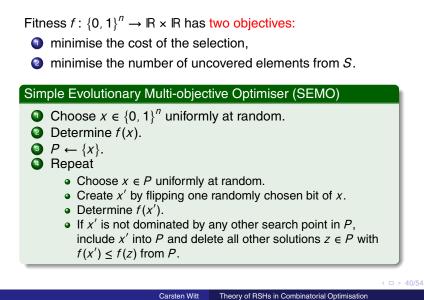
There is a Set Cover instance parameterized by c > 0 such that RLS and the (1+1) EA for any c need an infinite resp. exponential expected time to obtain a c-approximation.

Carsten Witt

Multi-objective Optimisation

- Fitness $f: \{0, 1\}^n \rightarrow \mathbb{R} \times \mathbb{R}$ has two objectives:
- minimise the cost of the selection,
- Image: minimise the number of uncovered elements from S.

Multi-objective Optimisation



Achieving Almost Best-possible Approximations

Theorem (Friedrich, He, Hebbinghaus, Neumann, Witt, 2007)

For any instance of the Set Cover problem, SEMO finds an $(\ln|S| + 1)$ -approximate solution in expected time $O(n|S|^2 + n|S|(\log n + \log c_{\max})).$

Proof idea:

 Greedy procedure by cost-effectiveness: stepwise choose sets covering new elements at minimum average cost.

< □ ▶ 41/54

■ ▶ 41/54

Theory of RSHs in Combinatorial Optimisation

Achieving Almost Best-possible Approximations

Theorem (Friedrich, He, Hebbinghaus, Neumann, Witt, 2007)

For any instance of the Set Cover problem, SEMO finds an $(\ln|S| + 1)$ -approximate solution in expected time $O(n|S|^2 + n|S|(\log n + \log c_{\max})).$

Proof idea:

- Greedy procedure by cost-effectiveness: stepwise choose sets covering new elements at minimum average cost.
- SEMO maintain covers with different numbers of uncovered elements.
- Potential k: SEMO covers k elements at cost $\leq \sum_{i=k+1}^{|S|} \frac{OPT}{i}$.

Achieving Almost Best-possible Approximations

Carsten Witt

Theorem (Friedrich, He, Hebbinghaus, Neumann, Witt, 2007)

For any instance of the Set Cover problem, SEMO finds an $(\ln|S| + 1)$ -approximate solution in expected time $O(n|S|^2 + n|S|(\log n + \log c_{\max})).$

Proof idea:

- Greedy procedure by cost-effectiveness: stepwise choose sets covering new elements at minimum average cost.
- SEMO maintain covers with different numbers of uncovered elements.
- Potential k: SEMO covers k elements at cost $\leq \sum_{i=k+1}^{|S|} \frac{OPT}{i}$
- Potential is increased by adding a most cost-effective set.
- Such step has probability Ω(1/(n|S|)), at most |S| increases to obtain approximation by factor ∑^{|S|}_{i=1} 1/i ≤ ln|S| + 1.

∢ □ ▶ 4

Carsten Witt Theory of RSHs in Combinatorial Optimisation

Achieving Almost Best-possible Approximations

Theorem (Friedrich, He, Hebbinghaus, Neumann, Witt, 2007)

For any instance of the Set Cover problem, SEMO finds an $(\ln |S| + 1)$ -approximate solution in expected time $O(n|S|^2 + n|S|(\log n + \log c_{\max})).$

Proof idea:

- Greedy procedure by cost-effectiveness: stepwise choose sets covering new elements at minimum average cost.
- SEMO maintain covers with different numbers of uncovered elements.
- Potential k: SEMO covers k elements at cost $\leq \sum_{i=k+1}^{|S|} \frac{OPT}{i}$.
- Potential is increased by adding a most cost-effective set.
- Such step has probability $\Omega(1/(n|S|))$, at most |S| increases to obtain approximation by factor $\sum_{i=1}^{|S|} 1/i \le \ln|S| + 1$.

Theory of RSHs in Combinatorial Optimisation

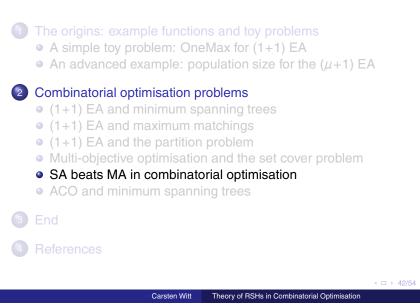
It probably cannot be done better in polynomial time. Carsten Witt

Simulated Annealing Beats Metropolis in Combinatorial Optimisation

Jerrum/Sinclair (1996)

"It remains an outstanding open problem to exhibit a natural example in which simulated annealing with any non-trivial cooling schedule provably outperforms the Metropolis algorithm at a carefully chosen fixed value" of the temperature.

This Tutorial

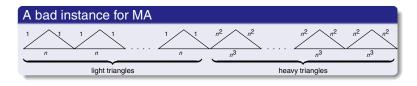


Simulated Annealing Beats Metropolis in Combinatorial Optimisation

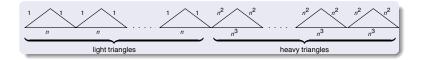
Jerrum/Sinclair (1996)

"It remains an outstanding open problem to exhibit a natural example in which simulated annealing with any non-trivial cooling schedule provably outperforms the Metropolis algorithm at a carefully chosen fixed value" of the temperature.

Solution (Wegener, 2005): MSTs are such an example.



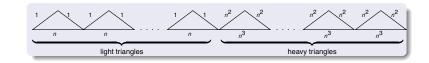
Simulated Annealing Beats Metropolis in Combinatorial Optimisation



Theorem (Wegener, 2005)

The MA with arbitrary temperature computes the MST for this instance only with probability $e^{-\Omega(n)}$ in polynomial time. SA with temperature $T_t := n^3(1 - \Theta(1/n))^t$ computes the MST in $O(n \log n)$ steps with probability 1 - O(1/poly(n)).

Simulated Annealing Beats Metropolis in Combinatorial Optimisation



Theorem (Wegener, 2005)

The MA with arbitrary temperature computes the MST for this instance only with probability $e^{-\Omega(n)}$ in polynomial time. SA with temperature $T_t := n^3(1 - \Theta(1/n))^t$ computes the MST in $O(n \log n)$ steps with probability 1 - O(1/poly(n)).

Proof idea: need different temperatures to optimise all triangles.

Theory of RSHs in Combinatorial Optimisation

Carsten Witt Theory of RSHs in Combinatorial Optimisation

This Tutorial

The origins: example functions and toy problems

Carsten Witt

- A simple toy problem: OneMax for (1+1) EA
- An advanced example: population size for the $(\mu+1)$ EA

2 Combinatorial optimisation problems

- (1+1) EA and minimum spanning trees
- (1+1) EA and maximum matchings
- (1+1) EA and the partition problem
- Multi-objective optimisation and the set cover problem
- SA beats MA in combinatorial optimisation

Carsten Witt

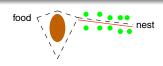
ACO and minimum spanning trees

References

Ant Colony Optimisation — A Modern Search Heuristic Background and Motivation

Ant colonies in nature

- find shortest paths in an unknown environment
- using communication via pheromone trails
- show adaptive behaviour

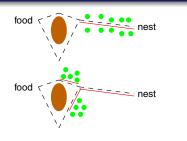


I □ ▶ 46/54

Ant Colony Optimisation — A Modern Search Heuristic Background and Motivation

Ant colonies in nature

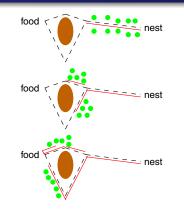
- find shortest paths in an unknown environment
- using communication via pheromone trails
- show adaptive behaviour



Ant Colony Optimisation — A Modern Search Heuristic

Ant colonies in nature

- find shortest paths in an unknown environment
- using communication via pheromone trails
- show adaptive behaviour



46/54

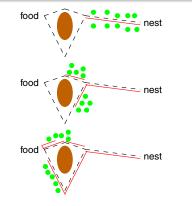
■ ▶ 47/54

	∢ □ ▶ 46/54			
Carsten Witt	Theory of RSHs in Combinatorial Optimisation	Carsten Witt	Theory of RSHs in Combinatorial Optimisation	

Ant Colony Optimisation — A Modern Search Heuristic

Ant colonies in nature

- find shortest paths in an unknown environment
- using communication via pheromone trails
- show adaptive behaviour



Ant Colony Optimisation (ACO) is yet another biologically inspired search heuristic.

Applications: combinatorial optimisation problems, e.g., TSP

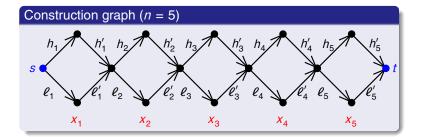
Carsten Witt Theory of RSHs in Combinatorial Optimisation

1-ANT for Pseudo-Boolean Optimisation

1-ANT

- Simple ACO algorithm
- Previously studied w. r. t. convergence
- Find maximum for pseudo-Boolean function $f: \{0, 1\}^n \to \mathbb{R}$

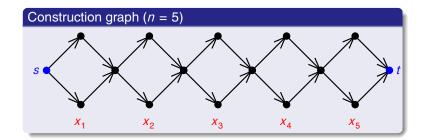
□ ▶ 46/54



- Pheromone values $\tau(e)$ for all 4n edges e
- Ant constructs random path P(x) from s to t.
- Edge h_i is taken with probability $\tau(h_i)/(\tau(h_i) + \tau(\ell_i))$, accordingly for ℓ_i .
- Walk constructs bitstring $x \in \{0, 1\}^n$.

Theory of RSHs in Combinatorial Optimisation

1-ANT for Pseudo-Boolean Optimisation



- Pheromone values $\tau(e)$ for all 4n edges e
- Ant constructs random path P(x) from *s* to *t*.
- Edge h_i is taken with probability $\tau(h_i)/(\tau(h_i) + \tau(\ell_i))$, accordingly for ℓ_i .
- Walk constructs bitstring $x \in \{0, 1\}^n$.

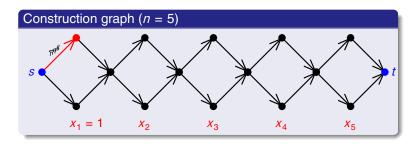
∢ □ ▶ 47/54

■ ▶ 47/54

Carsten Witt Theory of RSHs in Combinatorial Optimisation

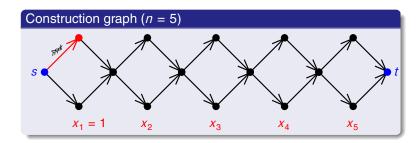
1-ANT for Pseudo-Boolean Optimisation

Carsten Witt



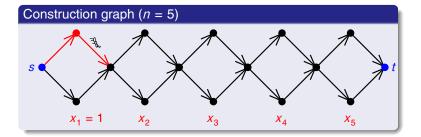
- Pheromone values $\tau(e)$ for all 4n edges e
- Ant constructs random path P(x) from s to t.
- Edge h_i is taken with probability $\tau(h_i)/(\tau(h_i) + \tau(\ell_i))$, accordingly for ℓ_i .
- Walk constructs bitstring $x \in \{0, 1\}^n$.

1-ANT for Pseudo-Boolean Optimisation



- Pheromone values $\tau(e)$ for all 4n edges e
- Ant constructs random path P(x) from s to t.
- Edge h_i is taken with probability $\tau(h_i)/(\tau(h_i) + \tau(\ell_i))$, accordingly for ℓ_i .
- Walk constructs bitstring $x \in \{0, 1\}^n$.

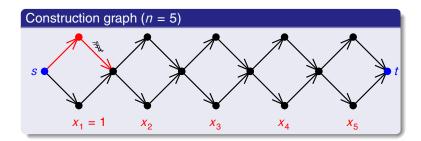
∢ □ ▶ 47/54



- Pheromone values $\tau(e)$ for all 4n edges e
- Ant constructs random path P(x) from s to t.
- Edge h_i is taken with probability $\tau(h_i)/(\tau(h_i) + \tau(\ell_i))$, accordingly for ℓ_i .
- Walk constructs bitstring $x \in \{0, 1\}^n$.

Theory of RSHs in Combinatorial Optimisation

1-ANT for Pseudo-Boolean Optimisation



- Pheromone values $\tau(e)$ for all 4n edges e
- Ant constructs random path P(x) from *s* to *t*.
- Edge h_i is taken with probability $\tau(h_i)/(\tau(h_i) + \tau(\ell_i))$, accordingly for ℓ_i .
- Walk constructs bitstring $x \in \{0, 1\}^n$.

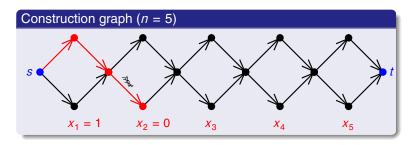
∢ □ ▶ 47/54

■ ▶ 47/54

Carsten Witt Theory of RSHs in Combinatorial Optimisation

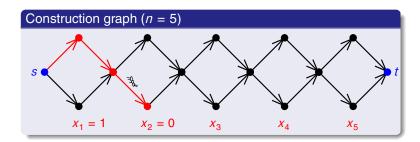
1-ANT for Pseudo-Boolean Optimisation

Carsten Witt



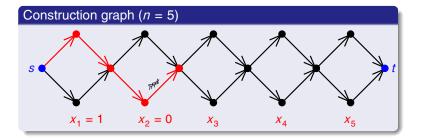
- Pheromone values $\tau(e)$ for all 4n edges e
- Ant constructs random path P(x) from *s* to *t*.
- Edge h_i is taken with probability $\tau(h_i)/(\tau(h_i) + \tau(\ell_i))$, accordingly for ℓ_i .
- Walk constructs bitstring $x \in \{0, 1\}^n$.

1-ANT for Pseudo-Boolean Optimisation



- Pheromone values $\tau(e)$ for all 4n edges e
- Ant constructs random path P(x) from s to t.
- Edge h_i is taken with probability $\tau(h_i)/(\tau(h_i) + \tau(\ell_i))$, accordingly for ℓ_i .
- Walk constructs bitstring $x \in \{0, 1\}^n$.

∢ □ ▶ 47/54



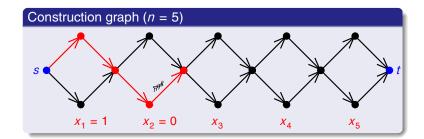
- Pheromone values $\tau(e)$ for all 4n edges e
- Ant constructs random path P(x) from s to t.

Carsten Witt

- Edge h_i is taken with probability $\tau(h_i)/(\tau(h_i) + \tau(\ell_i))$, accordingly for ℓ_i .
- Walk constructs bitstring $x \in \{0, 1\}^n$.

Theory of RSHs in Combinatorial Optimisation

1-ANT for Pseudo-Boolean Optimisation



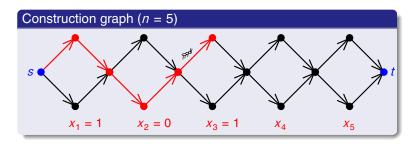
- Pheromone values $\tau(e)$ for all 4n edges e
- Ant constructs random path P(x) from *s* to *t*.
- Edge h_i is taken with probability $\tau(h_i)/(\tau(h_i) + \tau(\ell_i))$, accordingly for ℓ_i .
- Walk constructs bitstring $x \in \{0, 1\}^n$.

∢ □ ▶ 47/54

■ ▶ 47/54

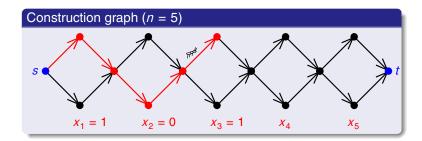
Carsten Witt Theory of RSHs in Combinatorial Optimisation

1-ANT for Pseudo-Boolean Optimisation



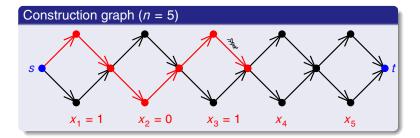
- Pheromone values $\tau(e)$ for all 4n edges e
- Ant constructs random path P(x) from s to t.
- Edge h_i is taken with probability $\tau(h_i)/(\tau(h_i) + \tau(\ell_i))$, accordingly for ℓ_i .
- Walk constructs bitstring $x \in \{0, 1\}^n$.

1-ANT for Pseudo-Boolean Optimisation



- Pheromone values $\tau(e)$ for all 4n edges e
- Ant constructs random path P(x) from s to t.
- Edge h_i is taken with probability $\tau(h_i)/(\tau(h_i) + \tau(\ell_i))$, accordingly for ℓ_i .
- Walk constructs bitstring $x \in \{0, 1\}^n$.

■ ► 47/54



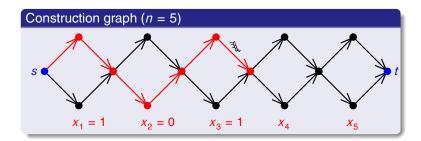
- Pheromone values $\tau(e)$ for all 4n edges e
- Ant constructs random path P(x) from s to t.

Carsten Witt

- Edge h_i is taken with probability $\tau(h_i)/(\tau(h_i) + \tau(\ell_i))$, accordingly for ℓ_i .
- Walk constructs bitstring $x \in \{0, 1\}^n$.

Theory of RSHs in Combinatorial Optimisation

1-ANT for Pseudo-Boolean Optimisation



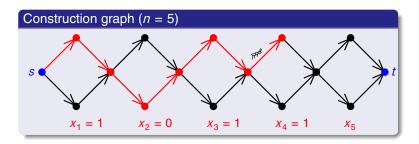
- Pheromone values $\tau(e)$ for all 4n edges e
- Ant constructs random path P(x) from *s* to *t*.
- Edge h_i is taken with probability $\tau(h_i)/(\tau(h_i) + \tau(\ell_i))$, accordingly for ℓ_i .
- Walk constructs bitstring $x \in \{0, 1\}^n$.

∢ □ ▶ 47/54

■ ▶ 47/54

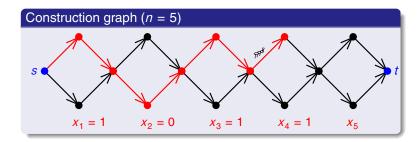
Carsten Witt Theory of RSHs in Combinatorial Optimisation

1-ANT for Pseudo-Boolean Optimisation



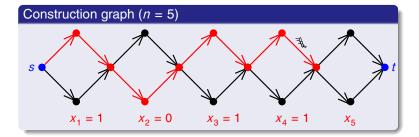
- Pheromone values $\tau(e)$ for all 4n edges e
- Ant constructs random path P(x) from *s* to *t*.
- Edge h_i is taken with probability $\tau(h_i)/(\tau(h_i) + \tau(\ell_i))$, accordingly for ℓ_i .
- Walk constructs bitstring $x \in \{0, 1\}^n$.

1-ANT for Pseudo-Boolean Optimisation



- Pheromone values τ(e) for all 4n edges e
- Ant constructs random path P(x) from s to t.
- Edge h_i is taken with probability $\tau(h_i)/(\tau(h_i) + \tau(\ell_i))$, accordingly for ℓ_i .
- Walk constructs bitstring $x \in \{0, 1\}^n$.

■ ► 47/54



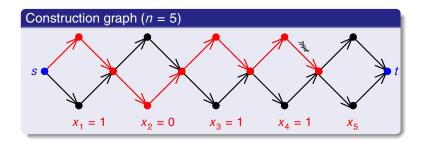
- Pheromone values $\tau(e)$ for all 4n edges e
- Ant constructs random path P(x) from s to t.

Carsten Witt

- Edge h_i is taken with probability $\tau(h_i)/(\tau(h_i) + \tau(\ell_i))$, accordingly for ℓ_i .
- Walk constructs bitstring $x \in \{0, 1\}^n$.

✓ □ ▶ 47/54
Theory of RSHs in Combinatorial Optimisation

1-ANT for Pseudo-Boolean Optimisation



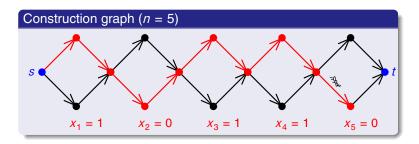
- Pheromone values $\tau(e)$ for all 4n edges e
- Ant constructs random path P(x) from *s* to *t*.
- Edge h_i is taken with probability $\tau(h_i)/(\tau(h_i) + \tau(\ell_i))$, accordingly for ℓ_i .
- Walk constructs bitstring $x \in \{0, 1\}^n$.

∢ □ ▶ 47/54

■ ▶ 47/54

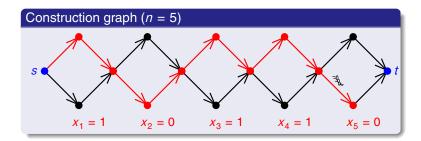
Carsten Witt Theory of RSHs in Combinatorial Optimisation

1-ANT for Pseudo-Boolean Optimisation



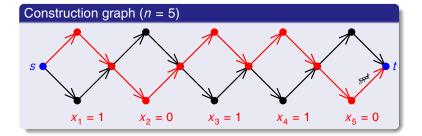
- Pheromone values $\tau(e)$ for all 4n edges e
- Ant constructs random path P(x) from *s* to *t*.
- Edge h_i is taken with probability $\tau(h_i)/(\tau(h_i) + \tau(\ell_i))$, accordingly for ℓ_i .
- Walk constructs bitstring $x \in \{0, 1\}^n$.

1-ANT for Pseudo-Boolean Optimisation



- Pheromone values τ(e) for all 4n edges e
- Ant constructs random path P(x) from s to t.
- Edge h_i is taken with probability $\tau(h_i)/(\tau(h_i) + \tau(\ell_i))$, accordingly for ℓ_i .
- Walk constructs bitstring $x \in \{0, 1\}^n$.

■ ► 47/54



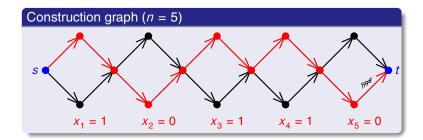
- Pheromone values $\tau(e)$ for all 4n edges e
- Ant constructs random path P(x) from s to t.

Carsten Witt

- Edge h_i is taken with probability $\tau(h_i)/(\tau(h_i) + \tau(\ell_i))$, accordingly for ℓ_i .
- Walk constructs bitstring $x \in \{0, 1\}^n$.

✓ □ ► 47/54 Theory of RSHs in Combinatorial Optimisation

1-ANT for Pseudo-Boolean Optimisation



- Pheromone values $\tau(e)$ for all 4n edges e
- Ant constructs random path P(x) from *s* to *t*.
- Edge h_i is taken with probability $\tau(h_i)/(\tau(h_i) + \tau(\ell_i))$, accordingly for ℓ_i .
- Walk constructs bitstring $x \in \{0, 1\}^n$.

∢ □ ▶ 47/54

< □ ▶ 48/54

Carsten Witt Theory of RSHs in Combinatorial Optimisation

1-ANT – Outline

Conventions

- Pheromone values = probabilities
- Upper and lower bounds for pheromone values
- Runtime = # constructed solutions until optimum found

1-ANT – Outline

Conventions

- Pheromone values = probabilities
- Upper and lower bounds for pheromone values
- Runtime = # constructed solutions until optimum found

Algorithm 1-ANT for functions $f: \{0, 1\}^n \to \mathbb{R}$

- Set $\tau(e) = \frac{1}{2}$ for all edges *e*.
- Construct x (and P(x)), update pheromone; set $x^* := x$.
- Repeat
 - Construct x (and P(x)).
 - If $f(x) \ge f(x^*)$, update pheromone and set $x^* := x$.

∢ □ ▶ 48

1-ANT – Pheromone Update

- Crucial parameter: evaporation factor ρ , $0 \le \rho \le 1$
- Edge *e* is updated according to

$$e \in P(x) \implies \tau(e) := \min\left\{ (1-\rho) \cdot \tau(e) + \rho, 1 - \frac{1}{n} \right\}$$
$$e \notin P(x) \implies \tau(e) := \max\left\{ (1-\rho) \cdot \tau(e), \frac{1}{n} \right\}.$$

1-ANT – Pheromone Update

- Crucial parameter: evaporation factor ρ , $0 \le \rho \le 1$
- Edge *e* is updated according to

$$e \in P(x) \implies \tau(e) := \min\left\{ (1 - \rho) \cdot \tau(e) + \rho, 1 - \frac{1}{n} \right\}$$
$$e \notin P(x) \implies \tau(e) := \max\left\{ (1 - \rho) \cdot \tau(e), \frac{1}{n} \right\}.$$

- $\tau(h_i) + \tau(\ell_i) = 1$ for $1 \le i \le n$, i. e., probabilities
- Upper and lower bounds ensure that all probabilities in [1/n, 1 1/n].

∢ □ ▶ 49/54

Carsten Witt Theory of RSHs in Combinatorial Optimisation

1-ANT: Runtime Analyses

 Simple but crucial: 1-ANT generalises (1+1) EA (just choose ρ large enough to keep all pheromone values in {1/n, 1 - 1/n}).

Theory of RSHs in Combinatorial Optimisation

Carsten Witt

1-ANT: Runtime Analyses

- Simple but crucial: 1-ANT generalises (1+1) EA (just choose ρ large enough to keep all pheromone values in {1/n, 1 - 1/n}).
- Old friends return: example functions
- Results depending on ρ :

	superpol. runtime	poly. runtime
OneMax	$\rho = o(1/\log n)$	$\rho = 1 - O(n^{-\varepsilon})$
LeadingOnes	$\rho \le c_1 / \log n$	$\rho \ge c_2/\log n$
BinVal	$\rho \le c_1 / \log n$	$\rho \ge c_2/\log n$

(Neumann/Witt, 2006; Doerr/Neumann/Sudholt/Witt, 2007; Doerr/Johannsen, 2007)

• Phase transitions: 1-ANT is not robust w.r.t. *ρ*

Carsten Witt Theory of RSHs in Combinatorial Optimisation

1-ANT: Runtime Analyses

- Simple but crucial: 1-ANT generalises (1+1) EA (just choose ρ large enough to keep all pheromone values in $\{1/n, 1 1/n\}$).
- Old friends return: example functions
- Results depending on *ρ*:

	superpol. runtime	poly. runtime
OneMax	$\rho = o(1/\log n)$	$\rho = 1 - O(n^{-\varepsilon})$
LeadingOnes	$\rho \le c_1 / \log n$	$\rho \ge c_2/\log n$
BinVal	$\rho \le c_1 / \log n$	$\rho \ge c_2/\log n$

(Neumann/Witt, 2006; Doerr/Neumann/Sudholt/Witt, 2007; Doerr/Johannsen, 2007)

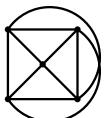
- Phase transitions: 1-ANT is not robust w. r. t. ρ
- Interesting for proofs: need inverse of concentration inequalities (old result by Hoeffding)

Carsten Witt Theory of RSHs in Combinatorial Optimisation

∢ □ ► 50

1-ANT for the MST problem 1st Construction Graph

- Algorithm by Broder (1989): uniformly generate spanning trees by random walks on graphs
- Random walk uniformly chooses a neighbour. If unvisited, add edge to spanning tree
- Algorithm stops after expected $O(n^3)$ steps (cover time).



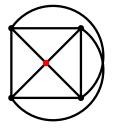
Selected edges obtain higher, (but not too high) pheromone values \rightarrow next constructed tree similar, but also likely to be better

Theory of RSHs in Combinatorial Optimisation

1-ANT for the MST problem 1st Construction Graph

- Algorithm by Broder (1989): uniformly generate spanning trees by random walks on graphs
- Random walk uniformly chooses a neighbour. If unvisited, add edge to spanning tree
- Algorithm stops after expected $O(n^3)$ steps (cover time).

Carsten Witt



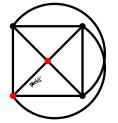
Selected edges obtain higher, (but not too high) pheromone values \rightarrow next constructed tree similar, but also likely to be better

1-ANT for the MST problem 1st Construction Graph

• Algorithm by Broder (1989): uniformly generate spanning trees by random walks on graphs

Carsten Witt

- Random walk uniformly chooses a neighbour. If unvisited, add edge to spanning tree
- Algorithm stops after expected $O(n^3)$ steps (cover time).

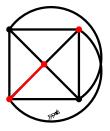


Selected edges obtain higher, (but not too high) pheromone values \rightarrow next constructed tree similar, but also likely to be better

Theory of RSHs in Combinatorial Optimisation $4 \square \ge 51/54$

1-ANT for the MST problem 1st Construction Graph

- Algorithm by Broder (1989): uniformly generate spanning trees by random walks on graphs
- Random walk uniformly chooses a neighbour. If unvisited, add edge to spanning tree
- Algorithm stops after expected $O(n^3)$ steps (cover time).

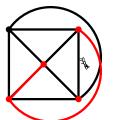


Selected edges obtain higher, (but not too high) pheromone values \rightarrow next constructed tree similar, but also likely to be better

Theory of RSHs in Combinatorial Optimisation

1-ANT for the MST problem 1st Construction Graph

- Algorithm by Broder (1989): uniformly generate spanning trees by random walks on graphs
- Random walk uniformly chooses a neighbour. If unvisited, add edge to spanning tree
- Algorithm stops after expected $O(n^3)$ steps (cover time).



Selected edges obtain higher, (but not too high) pheromone values \rightarrow next constructed tree similar, but also likely to be better

Carsten Witt Theory of RSHs in Combinatorial Optimisation

1-ANT for the MST problem 1st Construction Graph

• Algorithm by Broder (1989): uniformly generate spanning trees by random walks on graphs

Carsten Witt

- Random walk uniformly chooses a neighbour. If unvisited, add edge to spanning tree
- Algorithm stops after expected $O(n^3)$ steps (cover time).

Carsten Witt

Selected edges obtain higher, (but not too high) pheromone values \rightarrow next constructed tree similar, but also likely to be better

1-ANT for the MST problem 1st Construction Graph

- Algorithm by Broder (1989): uniformly generate spanning trees by random walks on graphs
- Random walk uniformly chooses a neighbour. If unvisited, add edge to spanning tree
- Algorithm stops after expected $O(n^3)$ steps (cover time).

Selected edges obtain higher, (but not too high) pheromone values \rightarrow next constructed tree similar, but also likely to be better

Theory of RSHs in Combinatorial Optimisation
 A □ ▶ 51/52
 State
 St

1-ANT for the MST problem 1st Construction Graph

- Algorithm by Broder (1989): uniformly generate spanning trees by random walks on graphs
- Random walk uniformly chooses a neighbour. If unvisited, add edge to spanning tree
- Algorithm stops after expected $O(n^3)$ steps (cover time).

Selected edges obtain higher, (but not too high) pheromone values \rightarrow next constructed tree similar, but also likely to be better

Theory of RSHs in Combinatorial Optimisation

1-ANT for the MST problem 2nd Construction Graph

- Canonical construction graphs for a combinatorial optimisation problem identifies components with nodes and possible combinations with selectable edges.
- Here: components = edges \rightarrow canonical construction graph C(G) = (N, A) with $N = \{0, \dots, m\}$ (start node 0) and $A = \{(i, j) \mid 0 \le i \le m, 1 \le j \le m, i \ne j\}.$

I □ ► 52/54

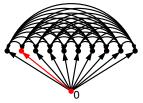
Carsten Witt Theory of RSHs in Combinatorial Optimisation

1-ANT for the MST problem 2nd Construction Graph

 Canonical construction graphs for a combinatorial optimisation problem identifies components with nodes and possible combinations with selectable edges.

Carsten Witt

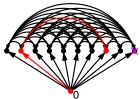
• Here: components = edges \rightarrow canonical construction graph C(G) = (N, A) with $N = \{0, \dots, m\}$ (start node 0) and $A = \{(i, j) \mid 0 \le i \le m, 1 \le j \le m, i \ne j\}.$



For path v_1, \ldots, v_k allowed neighbourhood $N(v_1, \ldots, v_k) :=$ $(E \setminus \{v_1, \ldots, v_k\}) \setminus \{e \in E \mid$ $(V, \{v_1, \ldots, v_k, e\})$ contains cycle} (problem-specific aspect of ACO).

1-ANT for the MST problem 2nd Construction Graph

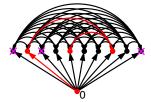
- Canonical construction graphs for a combinatorial optimisation problem identifies components with nodes and possible combinations with selectable edges.
- Here: components = edges \rightarrow canonical construction graph C(G) = (N, A) with $N = \{0, ..., m\}$ (start node 0) and $A = \{(i, j) \mid 0 \le i \le m, 1 \le j \le m, i \ne j\}.$



For path v_1, \ldots, v_k allowed neighbourhood $N(v_1, \ldots, v_k) :=$ $(E \setminus \{v_1, \ldots, v_k\}) \setminus \{e \in E \mid$ $(V, \{v_1, \ldots, v_k, e\})$ contains cycle} (problem-specific aspect of ACO).

1-ANT for the MST problem 2nd Construction Graph

- Canonical construction graphs for a combinatorial optimisation problem identifies components with nodes and possible combinations with selectable edges.
- Here: components = edges \rightarrow canonical construction graph C(G) = (N, A) with $N = \{0, \dots, m\}$ (start node 0) and $A = \{(i, j) \mid 0 \le i \le m, 1 \le j \le m, i \ne j\}.$

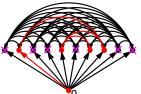


For path v_1, \ldots, v_k allowed neighbourhood $N(v_1, \ldots, v_k) :=$ $(E \setminus \{v_1, \ldots, v_k\}) \setminus \{e \in E \mid (V, \{v_1, \ldots, v_k, e\})$ contains cycle} (problem-specific aspect of ACO).

Theory of RSHs in Combinatorial Optimisation

1-ANT for the MST problem 2nd Construction Graph

- Canonical construction graphs for a combinatorial optimisation problem identifies components with nodes and possible combinations with selectable edges.
- Here: components = edges \rightarrow canonical construction graph C(G) = (N, A) with $N = \{0, ..., m\}$ (start node 0) and $A = \{(i, j) \mid 0 \le i \le m, 1 \le j \le m, i \ne j\}.$



For path v_1, \ldots, v_k allowed neighbourhood $N(v_1, \ldots, v_k) :=$ $(E \setminus \{v_1, \ldots, v_k\}) \setminus \{e \in E \mid (V, \{v_1, \ldots, v_k, e\})$ contains cycle} (problem-specific aspect of ACO).

Theory of RSHs in Combinatorial Optimisation

□ ▶ 52/54

1-ANT for the MST Problem Results

Theorem (Neumann/Witt, 2006)

The expected number of constructed solutions until the 1-ANT with the 1st construction graph finds an MST is $O(n^6(\log n + \log w_{\max}))$ The expected runtime of the construction procedure is $O(n^3)$.

Carsten Witt

1-ANT for the MST Problem Results

Theorem (Neumann/Witt, 2006)

The expected number of constructed solutions until the 1-ANT with the 1st construction graph finds an MST is $O(n^6(\log n + \log w_{max}))$

Carsten Witt

The expected runtime of the construction procedure is $O(n^3)$.

Theorem (Neumann/Witt, 2006)

The expected number of constructed solutions until the 1-ANT with the 2nd construction graph finds an MST is $O(mn(\log n + \log w_{max}))$.

Better than the (1+1) EA!

∢ □ ▶ 53/5

Summary and Conclusions

- Analysis of RSHs in combinatorial optimisation
- Starting from toy problems to real problems
- Surprising results
- Interesting techniques
- Can analyse even new approaches

Summary and Conclusions

- Analysis of RSHs in combinatorial optimisation
- Starting from toy problems to real problems
- Surprising results
- Interesting techniques
- Can analyse even new approaches
- \rightarrow The analysis of RSHs is an exciting research direction.

Carsten Witt Theory of RSHs in Combinatorial Optimisation
Selected Literature II
O. Giel and I. Wegener (2003): Evolutionary algorithms and the maximum matching problem. Proc. of STACS '03, LNCS 2607, 415–426, Springer
R. L. Grahm (1969): Bounds on multiprocessing timing anomalies. SIAM Journal of Applied Mathematics, 17(2): 416–429
J. He and X. Yao (2001): Drift analysis and average time complexity of evolutionary algorithms. Artificial Intelligence, 127(1), 57–85
J. He and X. Yao (2002): Erratum to: Drift analysis and average time complexity of evolutionary algorithms. Artificial Intelligence, 140(1), 245–248
J. He and X. Yao (2003): Towards an analytic framework for analysing the computation time of evolutionary algorithms. Artificial Intelligence, 145(1–2), 59–97
T. Jansen (2002): On the analysis of dynamic restart strategies for evolutionary algorithms. Proc. of PPSN VIII, LNCS 2439, 33–43, Springer

Selected Literature III

T. Jansen, K. A. De Jong and I. Wegener (2005): On the choice of the offspring population size in evolutionary algorithms.
Evolutionary Computation, 13(4): 413–440, 2005 T. Jansen and I. Wegener (2001): On the utility of populations.
Proc. of GECCO '01, 1034–1041, Morgan Kaufmann T. Jansen and I. Wegener (2002): The analysis of evolutionary algorithms – a proof that crossover really can help.
Algorithmica, 34:47–66 T. Jansen and I. Wegener (2005): Real royal road functions – where crossover provably is essential.
Discrete Applied Mathematics, 149:111-125 T. Jansen and I. Wegener (2006):
On the analysis of a dynamic evolutionary algorithm. <i>Journal of Discrete Algorithms</i> , 4(1):181-199 M. Jerrum (1992):
 Large cliques elude the Metropolis process. Random Structures and Algorithms, 3(4):347–360

Selected Literature IV

M. Jerrum and G. B. Sorkin (1998):
The Metropolis algorithm for graph bisection. Discrete Applied Mathematics, 82(1–3):155–175. Preliminary version in FOCS '93
H. Mühlenbein (1992):
How genetic algorithms really work: mutation and hill-climbing. Proc. of PPSN II, 15–26, North Holland
F. Neumann and I. Wegener (2007):
Randomized local search, evolutionary algorithms, and the minimum spanning tree problem. <i>Theoretical Computer Science</i> , 378(1): 32–40
F. Neumann and C. Witt (2006):
Runtime analysis of a simple ant colony optimization algorithm. Proc. of ISAAC 2006, 618–627, Springer, extended version to appear in Algorithmica (2008)
F. Neumann and C. Witt (2008):
Ant colony optimization and the minimum spanning tree problem. Proc. of LION II (to appear).
Preliminary version in Electronic Colloquium on Computational Complexity (ECCC), Report No. 143
J. Reichel and M. Skutella (2007):
Evolutionary algorithms and matroid optimization problems. Proc. of GECCO '07, 947–954, ACM Press

Carsten Witt Theory of RSHs in Combinatorial Optimisation

Carsten Witt Theory of RSHs in Combinatorial Optimisation

∢ □ ▶ 58/54

Selected Literature V

G. H. Sasaki and B. Hajek (1988): The time complexity of maximum matching by simulated annealing. <i>Journal of the ACM</i> , 35(2): 387–403
G. B. Sorkin (1991): Efficient simulated annealing on fractal energy landscapes. <i>Algorithmica</i> , 6(3): 367–418
T. Storch and I. Wegener (2004): Real royal road functions for constant population size. <i>Theoretical Computer Science</i> , 320(1): 123–134.
I. Wegener (2005): Simulated annealing beats Metropolis in combinatorial optimization. Proc. of ICALP 2005, LNCS 3580, 589-601, Springer
C. Witt (2005): Worst-case and average-case approximations by simple randomized search heuristics. Proc. of STACS 2005, LNCS 3404, 44-56, Springer
C. Witt (2006): Runtime analysis of the (μ +1) EA on simple pseudo-boolean functions. <i>Evolutionary Computation</i> , 14(1), 65–86

◄ □ ▶ 59/54