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What Are Randomised Search Heuristics (RSHs)?

Most famous example: Evolutionary Algorithms (EAs)

a bio-inspired heuristic

paradigm: evolution in nature,

“survival of the fittest”
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What Are Randomised Search Heuristics (RSHs)?

Most famous example: Evolutionary Algorithms (EAs)

a bio-inspired heuristic

paradigm: evolution in nature,

“survival of the fittest”

actually it’s only an algorithm,

a randomised search heuristic

Initialisation

Selection

Variation

Selection

Stop?

no

Goal: optimisation

Here: discrete search spaces, combinatorial optimisation,

in particular pseudo-boolean functions

Optimise f : {0, 1}n → R

Carsten Witt Theory of RSHs in Combinatorial Optimisation
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Why Do We Consider Randomised Search Heuristics?

Not enough resources (time, money, knowledge)

for a tailored algorithm

Black Box Scenario
x f (x)

rules out problem-specific algorithms

We like the simplicity, robustness, . . .

of Randomised Search Heuristics

“And they are surprisingly successful . . . ”
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Why Do We Consider Randomised Search Heuristics?

Not enough resources (time, money, knowledge)

for a tailored algorithm

Black Box Scenario
x f (x)

rules out problem-specific algorithms

We like the simplicity, robustness, . . .

of Randomised Search Heuristics

“And they are surprisingly successful . . . ”

My point of view

Do not only consider RSHs empirically. We need a solid theory

to understand how (and when) they work.
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What RSHs Do We Consider?

Theoretically considered RSHs

(1+1) EA

(1+λ) EA (offspring population)

(μ+1) EA (parent population)

(μ+1) GA (parent population and crossover)

GIGA (crossover)

SEMO (multi-objective)

Randomised Local Search (RLS)

Metropolis Algorithm/Simulated Annealing (MA/SA)

Ant Colony Optimisation (ACO)

. . .

First of all: define the simple ones

Carsten Witt Theory of RSHs in Combinatorial Optimisation
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The Most Basic RSHs

(1+1) EA, RLS, MA and SA for maximisation problems

(1+1) EA

1 Choose x0 ∈ {0, 1}n uniformly at random.
2 For t := 1, . . . ,∞

1 Create y by flipping each bit of xt indep. with probab. 1/n.
2 If f (y) ≥ f (xt) set xt+1 := y else xt+1 := xt.

Carsten Witt Theory of RSHs in Combinatorial Optimisation
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The Most Basic RSHs

(1+1) EA, RLS, MA and SA for maximisation problems

RLS

1 Choose x0 ∈ {0, 1}n uniformly at random.
2 For t := 1, . . . ,∞

1 Create y by flipping one bit of xt uniformly.
2 If f (y) ≥ f (xt) set xt+1 := y else xt+1 := xt.
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The Most Basic RSHs

(1+1) EA, RLS, MA and SA for maximisation problems

MA

1 Choose x0 ∈ {0, 1}n uniformly at random.
2 For t := 1, . . . ,∞

1 Create y by flipping one bit of xt uniformly.
2 If f (y) ≥ f (xt) set xt+1 := y

else xt+1 := y with probability e(f (xt )−f (y))/T
anyway

and xt+1 := xt otherwise.

T is fixed over all iterations.
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The Most Basic RSHs

(1+1) EA, RLS, MA and SA for maximisation problems

SA

1 Choose x0 ∈ {0, 1}n uniformly at random.
2 For t := 1, . . . ,∞

1 Create y by flipping one bit of xt uniformly.
2 If f (y) ≥ f (xt) set xt+1 := y

else xt+1 := y with probability e
(f (xt )−f (y))/Tt anyway

and xt+1 := xt otherwise.

Tt is dependent on t, typically decreasing

Carsten Witt Theory of RSHs in Combinatorial Optimisation
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What Kind of Theory Are We Interested In?

Not interesting here: convergence (often trivial), local

progress, models of EAs (e. g., infinite populations), . . .

Treat RSHs as randomised algorithm!

Analyse their “runtime” on selected problems

Carsten Witt Theory of RSHs in Combinatorial Optimisation
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What Kind of Theory Are We Interested In?

Not interesting here: convergence (often trivial), local

progress, models of EAs (e. g., infinite populations), . . .

Treat RSHs as randomised algorithm!

Analyse their “runtime” on selected problems

Definition

Let RSH A optimise f . Each f -evaluation is counted as a time

step. The runtime TA,f of A is the random first point of time such

that A has sampled an optimal search point.

Often considered: expected runtime, distribution of TA,f

Asymptotical results w. r. t. n

Carsten Witt Theory of RSHs in Combinatorial Optimisation
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How Do We Obtain Results?

We use (rarely in their pure form):

Coupon Collector’s Theorem

Principle of Deferred Decisions

Concentration inequalities:

Markov, Chebyshev, Chernoff, Hoeffding, . . . bounds

Markov chain theory: waiting times, first hitting times

Rapidly Mixing Markov Chains

Random Walks: Gambler’s Ruin, drift analysis (Wald’s

equation), martingale theory, electrical networks

Random graphs (esp. random trees)

Identifying typical events and failure events

Potential functions and amortised analysis

. . .
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How Do We Obtain Results?

We use (rarely in their pure form):

Coupon Collector’s Theorem

Principle of Deferred Decisions

Concentration inequalities:

Markov, Chebyshev, Chernoff, Hoeffding, . . . bounds

Markov chain theory: waiting times, first hitting times

Rapidly Mixing Markov Chains

Random Walks: Gambler’s Ruin, drift analysis (Wald’s

equation), martingale theory, electrical networks

Random graphs (esp. random trees)

Identifying typical events and failure events

Potential functions and amortised analysis

. . .

Adapt tools from the analysis of randomised algorithms;

understanding the stochastic process is often the hardest task.
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Early Results

Analysis of RSHs already in the 1980s:

Sasaki/Hajek (1988): SA and Maximum Matchings

Sorkin (1991): SA vs. MA

Jerrum (1992): SA and Cliques

Jerrum/Sorkin (1993, 1998): SA/MA for Graph Bisection

. . .

These were high-quality results, however, limited to SA/MA

(nothing about EAs) and hard to generalise.
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Early Results

Analysis of RSHs already in the 1980s:

Sasaki/Hajek (1988): SA and Maximum Matchings

Sorkin (1991): SA vs. MA

Jerrum (1992): SA and Cliques

Jerrum/Sorkin (1993, 1998): SA/MA for Graph Bisection

. . .

These were high-quality results, however, limited to SA/MA

(nothing about EAs) and hard to generalise.

Since the early 1990s

Systematic approach for the analysis of RSHs,

building up a completely new research area
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This Tutorial

1 The origins: example functions and toy problems

A simple toy problem: OneMax for (1+1) EA

An advanced example: population size for the (μ+1) EA

2 Combinatorial optimisation problems

(1+1) EA and minimum spanning trees

(1+1) EA and maximum matchings

(1+1) EA and the partition problem

Multi-objective optimisation and the set cover problem

SA beats MA in combinatorial optimisation

ACO and minimum spanning trees

3 End

4 References
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How the Systematic Research Began — Toy Problems

Simple example functions (test functions)

OneMax(x1, . . . , xn) = x1 + · · · + xn

LeadingOnes(x1, . . . , xn) =
∑n

i=1

∏i
j=1 xj

BinVal(x1, . . . , xn) =
∑n

i=1 2
n−ixi

polynomials of fixed degree

Goal: derive first runtime bounds and methods
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How the Systematic Research Began — Toy Problems

Simple example functions (test functions)

OneMax(x1, . . . , xn) = x1 + · · · + xn

LeadingOnes(x1, . . . , xn) =
∑n

i=1

∏i
j=1 xj

BinVal(x1, . . . , xn) =
∑n

i=1 2
n−ixi

polynomials of fixed degree

Goal: derive first runtime bounds and methods

Artificially designed functions

with sometimes really horrible definitions

but for the first time these allow rigorous statements

Goal: prove benefits and harm of RSH components,

e. g., crossover, mutation strength, population size . . .
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This Tutorial

1 The origins: example functions and toy problems

A simple toy problem: OneMax for (1+1) EA

An advanced example: population size for the (μ+1) EA

2 Combinatorial optimisation problems

(1+1) EA and minimum spanning trees
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(1+1) EA and the partition problem

Multi-objective optimisation and the set cover problem

SA beats MA in combinatorial optimisation
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4 References
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Example: OneMax

Theorem (e. g., Droste/Jansen/Wegener, 1998)

The expected runtime of the RLS, (1+1) EA, (μ+1) EA,

(1+λ) EA on ONEMAX is Ω(n logn).

Proof by modifications of Coupon Collector’s Theorem.

Carsten Witt Theory of RSHs in Combinatorial Optimisation

12/54

Example: OneMax

Theorem (e. g., Droste/Jansen/Wegener, 1998)

The expected runtime of the RLS, (1+1) EA, (μ+1) EA,

(1+λ) EA on ONEMAX is Ω(n logn).

Proof by modifications of Coupon Collector’s Theorem.

Theorem (e. g., Mühlenbein, 1992)

The expected runtime of RLS and the (1+1) EA on ONEMAX is

O(n logn).

Holds also for population-based (μ+1) EA and

for (1+λ) EA with small populations.
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Proof of the O(n logn) bound

Fitness levels: Li := {x ∈ {0, 1}n | |x|1 = i}

Carsten Witt Theory of RSHs in Combinatorial Optimisation
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Proof of the O(n logn) bound

Fitness levels: Li := {x ∈ {0, 1}n | |x|1 = i}

(1+1) EA never decreases its current fitness level.
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Proof of the O(n logn) bound

Fitness levels: Li := {x ∈ {0, 1}n | |x|1 = i}

(1+1) EA never decreases its current fitness level.

From i to some higher-level set with prob. at least

(
n − i

1

)
︸ ︷︷ ︸

choose a 0-bit

·

(
1

n

)
︸ ︷︷ ︸

flip this bit

·

(
1 −

1

n

)n−1

︸ ︷︷ ︸
keep the other bits

≥
n − i

en

Expected time to reach a higher-level set is at most en
n−i .

Expected runtime is at most

n−1∑
i=0

en

n − i
= O(n logn). �
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Later Results Using Example Functions

Find the theoretically optimal mutation strength

(1/n for OneMax!).

optimal population size (often 1!)

crossover vs. no crossover → Real Royal Road Functions

multistarts vs. populations

frequent restarts vs. long runs

dynamic schedules

. . .
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Later Results Using Example Functions

Find the theoretically optimal mutation strength

(1/n for OneMax!).

optimal population size (often 1!)

crossover vs. no crossover → Real Royal Road Functions

multistarts vs. populations

frequent restarts vs. long runs

dynamic schedules

. . .

Further reading: Droste/Jansen/Wegener (2002), He/Yao (2002,

2003), Jansen (2002), Jansen/De Jong/Wegener (2005),

Jansen/Wegener (2001, 2005), Storch/Wegener (2004), Witt (2006)

Carsten Witt Theory of RSHs in Combinatorial Optimisation
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This Tutorial

1 The origins: example functions and toy problems

A simple toy problem: OneMax for (1+1) EA

An advanced example: population size for the (μ+1) EA

2 Combinatorial optimisation problems

(1+1) EA and minimum spanning trees

(1+1) EA and maximum matchings

(1+1) EA and the partition problem

Multi-objective optimisation and the set cover problem

SA beats MA in combinatorial optimisation

ACO and minimum spanning trees

3 End

4 References
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An Advanced Example: (μ+1) EA
Definition

(μ+1) EA

Convention: multisets

1 Choose P0 := {x1, . . . , xμ ∈ {0, 1}n} uniformly at random.

2 For t := 1, . . . ,∞
1 Choose x from Pt uniformly at random.
2 Create y by flipping each bit of x indep. with probab. 1/n.
3 Set P

∗
:= Pt ∪ {y}.

4 Choose x with lowest f -value in P ∗
uniformly.

5 Set Pt+1 := P
∗ \ {x}.

Carsten Witt Theory of RSHs in Combinatorial Optimisation
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Advanced Example: (μ+1) EA and Family Trees
Properties of Trees

initial individual x

Properties

nodes = descendants of x

new node after each mutation

of a descendant
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Advanced Example: (μ+1) EA and Family Trees
Properties of Trees

initial individual x

Properties

nodes = descendants of x

new node after each mutation

of a descendant

Interesting: depth of the tree since

low depth → few progress

What stochastic process creates the tree?

Carsten Witt Theory of RSHs in Combinatorial Optimisation
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The Process Behind Family Trees

Sequence of trees Tt such that

at time 0, there is only the root,

at time t, either nothing happens (Tt+1 = Tt), or

node from Tt is chosen and new leaf appended

→ Tt+1.

Crucial: each node chosen with prob. at most 1/μ.
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The Process Behind Family Trees

Sequence of trees Tt such that

at time 0, there is only the root,

at time t, either nothing happens (Tt+1 = Tt), or

node from Tt is chosen and new leaf appended

→ Tt+1.

Crucial: each node chosen with prob. at most 1/μ.

Technical Lemma (Witt, 2006)

Depth of tree at time t: at most 3t
μ with prob. 1 − 2

−Ω(t/μ)
.
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Proof of Technical Lemma

Each path has a unique history t1, . . . , t�
s. t. i -th node appears at time ti .

Prob(path with history t1, . . . , t� created) ≤
(

1
μ

)�
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Proof of Technical Lemma

Each path has a unique history t1, . . . , t�
s. t. i -th node appears at time ti .

Prob(path with history t1, . . . , t� created) ≤
(

1
μ

)�
Consider at most t steps:

at most
(t
�

)
choices for 0 ≤ t1 < t2 < · · · < t� ≤ t.

Prob(∃ path of length � after �μ/3 steps)

≤

(
�μ/3

�

)(
1

μ

)�

≤

(
e�μ

3�

)� (
1

μ

)�

= 2−Ω(�). �
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Application: General Lower Bound

Theorem (Witt, 2006)

Let f be a function with a unique optimum and μ = poly(n).

Then the runtime of the (μ+1) EA on f is Ω(μn) with probability

1 − 2
−Ω(n)

.
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Application: General Lower Bound

Theorem (Witt, 2006)

Let f be a function with a unique optimum and μ = poly(n).

Then the runtime of the (μ+1) EA on f is Ω(μn) with probability

1 − 2
−Ω(n)

.

Proof idea:

W. o. p.: after μn/12 steps:

all paths in family trees have length ≤ n/4 .

W. o. p.: initially, for all individuals:

Hamming distance ≥ n/3 from optimum.

W. o. p.: n/4 mutations do not overcome

Hamming distance ≥ n/3.

Carsten Witt Theory of RSHs in Combinatorial Optimisation
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RSHs for Combinatorial Optimisation

Analyse runtime and approximation quality on well-known
combinatorial optimisation problems, e. g.,

sorting problems (is this an optimisation problem?),
shortest path problems,

Eulerian cycles,

mininum spanning trees,
maximum matchings,

partition problem,

set cover problem,
. . .
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RSHs for Combinatorial Optimisation

Analyse runtime and approximation quality on well-known
combinatorial optimisation problems, e. g.,

sorting problems (is this an optimisation problem?),
shortest path problems,

Eulerian cycles,

mininum spanning trees,
maximum matchings,

partition problem,

set cover problem,
. . .

What we do not hope: to be better than the best

problem-specific algorithms
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RSHs for Combinatorial Optimisation

Analyse runtime and approximation quality on well-known
combinatorial optimisation problems, e. g.,

sorting problems (is this an optimisation problem?),
shortest path problems,

Eulerian cycles,

mininum spanning trees,
maximum matchings,

partition problem,

set cover problem,
. . .

What we do not hope: to be better than the best

problem-specific algorithms

In the following no fine-tuning of the results

Carsten Witt Theory of RSHs in Combinatorial Optimisation
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This Tutorial

1 The origins: example functions and toy problems

A simple toy problem: OneMax for (1+1) EA

An advanced example: population size for the (μ+1) EA

2 Combinatorial optimisation problems

(1+1) EA and minimum spanning trees

(1+1) EA and maximum matchings

(1+1) EA and the partition problem

Multi-objective optimisation and the set cover problem

SA beats MA in combinatorial optimisation

ACO and minimum spanning trees

3 End

4 References
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(1+1) EA for the Minimum Spanning Tree Problem

n nodes, m edges: bit string from {0, 1}m selects edges

Fitness function: weight of tree/leading to trees for non-trees
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(1+1) EA for the Minimum Spanning Tree Problem

n nodes, m edges: bit string from {0, 1}m selects edges

Fitness function: weight of tree/leading to trees for non-trees

Observation: non-optimal trees improvable by exchanging

just two edges → local change with expected fac-

tor 1 − 1/n for distance decrease from optimum
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(1+1) EA for the Minimum Spanning Tree Problem

n nodes, m edges: bit string from {0, 1}m selects edges

Fitness function: weight of tree/leading to trees for non-trees

Observation: non-optimal trees improvable by exchanging

just two edges → local change with expected fac-

tor 1 − 1/n for distance decrease from optimum

Theorem (Neumann/Wegener, 2007)

The expected time until the (1+1) EA has created an MST is

bounded by O(n4
(logn + logwmax)).
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(1+1) EA for the Minimum Spanning Tree Problem

n nodes, m edges: bit string from {0, 1}m selects edges

Fitness function: weight of tree/leading to trees for non-trees

Observation: non-optimal trees improvable by exchanging

just two edges → local change with expected fac-

tor 1 − 1/n for distance decrease from optimum

Theorem (Neumann/Wegener, 2007)

The expected time until the (1+1) EA has created an MST is

bounded by O(n4
(logn + logwmax)).

A Tight Example

2n2
2n2

3n
2

2n2

3n
2

2n2

3n
2

2n2
2n2

Kn/2
weights 1
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This Tutorial

1 The origins: example functions and toy problems

A simple toy problem: OneMax for (1+1) EA

An advanced example: population size for the (μ+1) EA

2 Combinatorial optimisation problems

(1+1) EA and minimum spanning trees

(1+1) EA and maximum matchings

(1+1) EA and the partition problem

Multi-objective optimisation and the set cover problem

SA beats MA in combinatorial optimisation

ACO and minimum spanning trees

3 End

4 References
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(1+1) EA for the Maximum Matching Problem
The Behaviour on Paths

n + 1 nodes, n edges: bit string from {0, 1}n selects edges

Fitness function: size of matching/negative for non-matchings

Carsten Witt Theory of RSHs in Combinatorial Optimisation
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(1+1) EA for the Maximum Matching Problem
The Behaviour on Paths

n + 1 nodes, n edges: bit string from {0, 1}n selects edges

Fitness function: size of matching/negative for non-matchings

Theorem (Giel/Wegener, 2003)

The expected time until the (1+1) EA finds a maximum

matching on a path of n edges is O(n4
).
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(1+1) EA for the Maximum Matching Problem
The Behaviour on Paths (2)

Proof idea:

Consider a second-best matching.

Is there a free edge? Flip one bit! → probability Θ(1/n).

Else 2-bit flips → probability Θ(1/n
2
).
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Proof idea:

Consider a second-best matching.
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Else 2-bit flips → probability Θ(1/n
2
).

Shorten augmenting path
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(1+1) EA for the Maximum Matching Problem
The Behaviour on Paths (2)

Proof idea:

Consider a second-best matching.

Is there a free edge? Flip one bit! → probability Θ(1/n).

Else 2-bit flips → probability Θ(1/n
2
).

Shorten augmenting path

Then flip the free edge!

Carsten Witt Theory of RSHs in Combinatorial Optimisation

26/54

(1+1) EA for the Maximum Matching Problem
The Behaviour on Paths (2)

Proof idea:

Consider a second-best matching.

Is there a free edge? Flip one bit! → probability Θ(1/n).

Else 2-bit flips → probability Θ(1/n
2
).
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Then flip the free edge!
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(1+1) EA for the Maximum Matching Problem
The Behaviour on Paths (2)

Proof idea:

Consider a second-best matching.

Is there a free edge? Flip one bit! → probability Θ(1/n).

Else 2-bit flips → probability Θ(1/n
2
).

Shorten augmenting path

Then flip the free edge!
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(1+1) EA for the Maximum Matching Problem
The Behaviour on Paths (2)

Proof idea:

Consider a second-best matching.

Is there a free edge? Flip one bit! → probability Θ(1/n).

Else 2-bit flips → probability Θ(1/n
2
).
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(1+1) EA for the Maximum Matching Problem
The Behaviour on Paths (2)

Proof idea:

Consider a second-best matching.

Is there a free edge? Flip one bit! → probability Θ(1/n).

Else 2-bit flips → probability Θ(1/n
2
).

Shorten augmenting path

Then flip the free edge!
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(1+1) EA for the Maximum Matching Problem
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Proof idea:

Consider a second-best matching.

Is there a free edge? Flip one bit! → probability Θ(1/n).

Else 2-bit flips → probability Θ(1/n
2
).

Shorten augmenting path

Then flip the free edge!

(1+1) EA follows the concept of an augmenting path!
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(1+1) EA for the Maximum Matching Problem
The Behaviour on Paths (2)

Proof idea:

Consider a second-best matching.

Is there a free edge? Flip one bit! → probability Θ(1/n).

Else 2-bit flips → probability Θ(1/n
2
).

Shorten augmenting path

Then flip the free edge!

(1+1) EA follows the concept of an augmenting path!

Length changes according to a fair random walk

(Gambler’s Ruin Problem)

→ Expected runtime O(n2
) · O(n2

) = O(n4
).
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(1+1) EA for the Maximum Matching Problem
A Negative Result

Worst-case graph (Sasaki/Hajek, 1988)

h ≥ 3

� = 2�
′
+ 1
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(1+1) EA for the Maximum Matching Problem
A Negative Result

Worst-case graph (Sasaki/Hajek, 1988)

h ≥ 3

�

Augmenting path
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(1+1) EA for the Maximum Matching Problem
A Negative Result

Worst-case graph (Sasaki/Hajek, 1988)

h ≥ 3

�

Augmenting path can get shorter
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(1+1) EA for the Maximum Matching Problem
A Negative Result

Worst-case graph (Sasaki/Hajek, 1988)

h ≥ 3

�

Augmenting path can get shorter but is more likely to get longer.

Theorem

For h ≥ 3, the (1+1) EA has exponential expected runtime 2
Ω(�)

on Gh,� .

Proof by drift analysis
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(1+1) EA for the Maximum Matching Problem
(1+1) EA is a PRAS

Insight: do not hope for exact solutions but for approximations

Theorem (Giel/Wegener, 2003)

For ε > 0, the (1+1) EA finds a (1 + ε)-approximation of a

maximum matching in expected time O(m
2�1/ε�

) and is a

polynomial-time randomised approximation scheme (PRAS).
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(1+1) EA for the Maximum Matching Problem
(1+1) EA is a PRAS

Insight: do not hope for exact solutions but for approximations

Theorem (Giel/Wegener, 2003)

For ε > 0, the (1+1) EA finds a (1 + ε)-approximation of a

maximum matching in expected time O(m
2�1/ε�

) and is a

polynomial-time randomised approximation scheme (PRAS).

Proof idea:

Look into the analysis of the Hopcroft/Karp algorithm.

Current solution worse than (1 + ε)-approximate → many

augmenting paths, in partic. a short one of length ≤ 2�ε−1�

Wait for the (1+1) EA to optimise this short path.
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A More General View

Minimum spanning trees and bipartite matching are special

cases of matroid optimisation problems.
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A More General View

Minimum spanning trees and bipartite matching are special

cases of matroid optimisation problems.

Let E be a finite set and F ⊆ 2
E

. M = (E,F ) is a matroid if

(i) ∅ ∈ F ,

(ii) ∀X ⊆ Y ∈ F : X ∈ F , and

(iii) ∀X, Y ∈ F , |X | > |Y | : ∃x ∈ X \ Y with Y ∪ {x} ∈ F .

Adding a function w : E → N yields a weighted matroid.
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A More General View

Minimum spanning trees and bipartite matching are special

cases of matroid optimisation problems.

Let E be a finite set and F ⊆ 2
E

. M = (E,F ) is a matroid if

(i) ∅ ∈ F ,

(ii) ∀X ⊆ Y ∈ F : X ∈ F , and

(iii) ∀X, Y ∈ F , |X | > |Y | : ∃x ∈ X \ Y with Y ∪ {x} ∈ F .

Adding a function w : E → N yields a weighted matroid.

Exemplary Results (Reichel and Skutella, 2007)

The (1+1) EA and RLS solve the matroid optimisation problems

min. weight basis exactly in time O(|E |2(log |E | + logwmax)).

unweighted intersection up to 1 − ε in time O(|E |2�1/ε�).

Carsten Witt Theory of RSHs in Combinatorial Optimisation

29/54

A More General View

Minimum spanning trees and bipartite matching are special

cases of matroid optimisation problems.

Let E be a finite set and F ⊆ 2
E

. M = (E,F ) is a matroid if

(i) ∅ ∈ F ,

(ii) ∀X ⊆ Y ∈ F : X ∈ F , and

(iii) ∀X, Y ∈ F , |X | > |Y | : ∃x ∈ X \ Y with Y ∪ {x} ∈ F .

Adding a function w : E → N yields a weighted matroid.

Exemplary Results (Reichel and Skutella, 2007)

The (1+1) EA and RLS solve the matroid optimisation problems

min. weight basis exactly in time O(|E |2(log |E | + logwmax)).

unweighted intersection up to 1 − ε in time O(|E |2�1/ε�).

Very abstract/general, a step towards a characterisation of

polynomially solvable problems on which EAs are efficient
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This Tutorial

1 The origins: example functions and toy problems

A simple toy problem: OneMax for (1+1) EA

An advanced example: population size for the (μ+1) EA

2 Combinatorial optimisation problems

(1+1) EA and minimum spanning trees

(1+1) EA and maximum matchings

(1+1) EA and the partition problem

Multi-objective optimisation and the set cover problem

SA beats MA in combinatorial optimisation

ACO and minimum spanning trees

3 End

4 References
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2924



31/54

(1+1) EA and the Partition Problem

What about NP-hard problems? → Study approximation quality
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(1+1) EA and the Partition Problem

What about NP-hard problems? → Study approximation quality

For w1, . . . , wn, find I ⊆ {1, . . . , n}
minimising

max

⎧⎨
⎩
∑
i∈I

wi ,
∑
i /∈I

wi

⎫⎬
⎭ .
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(1+1) EA and the Partition Problem

What about NP-hard problems? → Study approximation quality

For w1, . . . , wn, find I ⊆ {1, . . . , n}
minimising

max

⎧⎨
⎩
∑
i∈I

wi ,
∑
i /∈I

wi

⎫⎬
⎭ .

This is an “easy” NP-hard problem:

not strongly NP-hard,

FPTAS exist,

...
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(1+1) EA for the Partition Problem
Worst-Case Results

Coding: bit string {0, 1}n characteristic vector of I

Fitness function: weight of fuller bin

Theorem (Witt, 2005)

On any instance for the partition problem, the (1+1) EA

reaches a solution with approximation ratio 4/3

in expected time O(n
2
).

Carsten Witt Theory of RSHs in Combinatorial Optimisation
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(1+1) EA for the Partition Problem
Worst-Case Results

Coding: bit string {0, 1}n characteristic vector of I

Fitness function: weight of fuller bin

Theorem (Witt, 2005)

On any instance for the partition problem, the (1+1) EA

reaches a solution with approximation ratio 4/3

in expected time O(n
2
).

Theorem (Witt, 2005)

There is an instance such that the (1+1) EA needs with

prob. Ω(1) at least nΩ(n)
steps to find a solution with a better

ratio than 4/3 − ε.

Proof ideas: study effect of local steps and local optima
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(1+1) EA for the Partition Problem
Worst Case – PRAS by Parallelism

Theorem (Witt, 2005)

On any instance, the (1+1) EA with prob. ≥ 2
−c�1/ε� ln(1/ε)

finds

a (1 + ε)-approximation within O(n ln(1/ε)) steps.
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(1+1) EA for the Partition Problem
Worst Case – PRAS by Parallelism

Theorem (Witt, 2005)

On any instance, the (1+1) EA with prob. ≥ 2
−c�1/ε� ln(1/ε)

finds

a (1 + ε)-approximation within O(n ln(1/ε)) steps.

2
O(�1/ε� ln(1/ε))

parallel runs find a (1 + ε)-approximation

with prob. ≥ 3/4 in O(n ln(1/ε)) parallel steps.

Parallel runs form a PRAS!
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(1+1) EA for the Partition Problem
Worst Case – PRAS by Parallelism (Proof Idea)

Set s :=
⌈

2
ε

⌉
and w :=

∑n
i=1 wi .

Assuming w1 ≥ · · · ≥ wn, we have wi ≤ εw
2

for i ≥ s.

︸ ︷︷ ︸
s−1 large objects

︸ ︷︷ ︸
small objects
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(1+1) EA for the Partition Problem
Worst Case – PRAS by Parallelism (Proof Idea)

Set s :=
⌈

2
ε

⌉
and w :=

∑n
i=1 wi .

Assuming w1 ≥ · · · ≥ wn, we have wi ≤ εw
2

for i ≥ s.

︸ ︷︷ ︸
s−1 large objects

︸ ︷︷ ︸
small objects

Analyse probability of distributing

large objects in an optimal way,

small objects greedily ⇒ additive error ≤ εw/2,

This is the algorithmic idea by Graham (1969).
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(1+1) EA for the Partition Problem
Average-Case Analyses

Models: each weight drawn independently at random, namely

1 uniformly from the interval [0, 1],

2 exponentially distributed with parameter 1

(i. e., Prob(X ≥ t) = e
−t

for t ≥ 0).

Approximation ratio no longer meaningful, we investigate:

discrepancy = absolute difference between weights of bins.
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(1+1) EA for the Partition Problem
Average-Case Analyses

Models: each weight drawn independently at random, namely

1 uniformly from the interval [0, 1],

2 exponentially distributed with parameter 1

(i. e., Prob(X ≥ t) = e
−t

for t ≥ 0).

Approximation ratio no longer meaningful, we investigate:

discrepancy = absolute difference between weights of bins.

How close to discrepancy 0 do we come?

Carsten Witt Theory of RSHs in Combinatorial Optimisation
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(1+1) EA for the Partition Problem
Partition Problem - Known Averge-Case Results

Deterministic, problem-specific heuristic LPT

Sort weights decreasingly,

put every object into currently emptier bin.

Analysis in both random models:

After LPT has been run, additive error is O((logn)/n)

(Frenk/Rinnooy Kan, 1986).

Carsten Witt Theory of RSHs in Combinatorial Optimisation
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(1+1) EA for the Partition Problem
Partition Problem - Known Averge-Case Results

Deterministic, problem-specific heuristic LPT

Sort weights decreasingly,

put every object into currently emptier bin.

Analysis in both random models:

After LPT has been run, additive error is O((logn)/n)

(Frenk/Rinnooy Kan, 1986).

Can RLS or the (1+1) EA

reach a discrepancy of o(1)?

Carsten Witt Theory of RSHs in Combinatorial Optimisation
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(1+1) EA for the Partition Problem
New Result

Theorem (Witt, 2005)

In both models, the (1+1) EA reaches discrepancy O((logn)/n)

after O(nc+4
log

2 n) steps with probability 1 − O(1/nc
).

Almost the same result as for LPT!
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(1+1) EA for the Partition Problem
New Result

Theorem (Witt, 2005)

In both models, the (1+1) EA reaches discrepancy O((logn)/n)

after O(nc+4
log

2 n) steps with probability 1 − O(1/nc
).

Almost the same result as for LPT!

Proof exploits order statistics:

W. h. p.

X(i ) − X(i+1) = O((logn)/n)

for i = Ω(n).

}X(i) − X(i+1)

Carsten Witt Theory of RSHs in Combinatorial Optimisation
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This Tutorial

1 The origins: example functions and toy problems

A simple toy problem: OneMax for (1+1) EA

An advanced example: population size for the (μ+1) EA

2 Combinatorial optimisation problems

(1+1) EA and minimum spanning trees

(1+1) EA and maximum matchings

(1+1) EA and the partition problem

Multi-objective optimisation and the set cover problem

SA beats MA in combinatorial optimisation

ACO and minimum spanning trees

3 End

4 References
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The Set Cover Problem

Another NP-hard problem

Given:

ground set S ,
collection C1, . . . , Cn of subsets

with positive costs c1, . . . , cn.
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The Set Cover Problem

Another NP-hard problem

Given:

ground set S ,
collection C1, . . . , Cn of subsets

with positive costs c1, . . . , cn.

Goal: find a minimum-cost selection

Ci1
, . . . , Cik

such that
⋃k

j=1 Cij
= S .
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The Set Cover Problem

Another NP-hard problem

Given:

ground set S ,
collection C1, . . . , Cn of subsets

with positive costs c1, . . . , cn.

Goal: find a minimum-cost selection

Ci1
, . . . , Cik

such that
⋃k

j=1 Cij
= S .

Traditional single-objective approach

Fitness = cost of selection of subsets, penalty for non-covers

Theorem

There is a Set Cover instance parameterized by c > 0 such that

RLS and the (1+1) EA for any c need an infinite resp.

exponential expected time to obtain a c-approximation.
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Multi-objective Optimisation

Fitness f : {0, 1}n → R × R has two objectives:

1 minimise the cost of the selection,

2 minimise the number of uncovered elements from S.
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Multi-objective Optimisation

Fitness f : {0, 1}n → R × R has two objectives:

1 minimise the cost of the selection,

2 minimise the number of uncovered elements from S.

Simple Evolutionary Multi-objective Optimiser (SEMO)

1 Choose x ∈ {0, 1}n uniformly at random.
2 Determine f (x).
3 P ← {x}.
4 Repeat

Choose x ∈ P uniformly at random.

Create x′
by flipping one randomly chosen bit of x.

Determine f (x
′
).

If x′
is not dominated by any other search point in P ,

include x
′
into P and delete all other solutions z ∈ P with

f (x
′
) ≤ f (z) from P .

Carsten Witt Theory of RSHs in Combinatorial Optimisation
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Achieving Almost Best-possible Approximations

Theorem (Friedrich, He, Hebbinghaus, Neumann, Witt, 2007)

For any instance of the Set Cover problem, SEMO finds an

(ln|S | + 1)-approximate solution in expected time

O(n|S |2 + n|S |(logn + logcmax)).

Proof idea:

Greedy procedure by cost-effectiveness: stepwise choose

sets covering new elements at minimum average cost.
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Theorem (Friedrich, He, Hebbinghaus, Neumann, Witt, 2007)

For any instance of the Set Cover problem, SEMO finds an

(ln|S | + 1)-approximate solution in expected time

O(n|S |2 + n|S |(logn + logcmax)).

Proof idea:

Greedy procedure by cost-effectiveness: stepwise choose

sets covering new elements at minimum average cost.

SEMO maintain covers with different numbers of

uncovered elements.

Potential k: SEMO covers k elements at cost ≤
∑|S |

i=k+1
OPT
i

.
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Achieving Almost Best-possible Approximations

Theorem (Friedrich, He, Hebbinghaus, Neumann, Witt, 2007)

For any instance of the Set Cover problem, SEMO finds an

(ln|S | + 1)-approximate solution in expected time

O(n|S |2 + n|S |(logn + logcmax)).

Proof idea:

Greedy procedure by cost-effectiveness: stepwise choose

sets covering new elements at minimum average cost.

SEMO maintain covers with different numbers of

uncovered elements.

Potential k: SEMO covers k elements at cost ≤
∑|S |

i=k+1
OPT
i

.

Potential is increased by adding a most cost-effective set.

Such step has probability Ω(1/(n|S |)), at most |S | increases

to obtain approximation by factor
∑|S |

i=1
1/i ≤ ln|S | + 1.
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Achieving Almost Best-possible Approximations

Theorem (Friedrich, He, Hebbinghaus, Neumann, Witt, 2007)

For any instance of the Set Cover problem, SEMO finds an

(ln|S | + 1)-approximate solution in expected time

O(n|S |2 + n|S |(logn + logcmax)).

Proof idea:

Greedy procedure by cost-effectiveness: stepwise choose

sets covering new elements at minimum average cost.

SEMO maintain covers with different numbers of

uncovered elements.

Potential k: SEMO covers k elements at cost ≤
∑|S |

i=k+1
OPT
i

.

Potential is increased by adding a most cost-effective set.

Such step has probability Ω(1/(n|S |)), at most |S | increases

to obtain approximation by factor
∑|S |

i=1
1/i ≤ ln|S | + 1.

It probably cannot be done better in polynomial time.
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This Tutorial

1 The origins: example functions and toy problems

A simple toy problem: OneMax for (1+1) EA

An advanced example: population size for the (μ+1) EA

2 Combinatorial optimisation problems

(1+1) EA and minimum spanning trees

(1+1) EA and maximum matchings

(1+1) EA and the partition problem

Multi-objective optimisation and the set cover problem

SA beats MA in combinatorial optimisation

ACO and minimum spanning trees

3 End

4 References
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Simulated Annealing Beats Metropolis

in Combinatorial Optimisation

Jerrum/Sinclair (1996)

“It remains an outstanding open problem to exhibit a natural

example in which simulated annealing with any non-trivial

cooling schedule provably outperforms the Metropolis algorithm

at a carefully chosen fixed value” of the temperature.
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Simulated Annealing Beats Metropolis

in Combinatorial Optimisation

Jerrum/Sinclair (1996)

“It remains an outstanding open problem to exhibit a natural

example in which simulated annealing with any non-trivial

cooling schedule provably outperforms the Metropolis algorithm

at a carefully chosen fixed value” of the temperature.

Solution (Wegener, 2005): MSTs are such an example.

A bad instance for MA

1 1 1 1

n3

n2 n2n2 n2

n3

n2n2

n3nn

1 1

n︸ ︷︷ ︸
light triangles

︸ ︷︷ ︸
heavy triangles
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Simulated Annealing Beats Metropolis

in Combinatorial Optimisation
Results

1 1 1 1

n3

n
2

n
2

n
2

n
2

n3

n
2

n
2

n3nn

1 1

n︸ ︷︷ ︸
light triangles

︸ ︷︷ ︸
heavy triangles

Theorem (Wegener, 2005)

The MA with arbitrary temperature computes the MST for this

instance only with probability e
−Ω(n)

in polynomial time. SA with

temperature Tt := n
3
(1 −Θ(1/n))

t
computes the MST in

O(n logn) steps with probability 1 − O(1/poly(n)).
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Simulated Annealing Beats Metropolis

in Combinatorial Optimisation
Results

1 1 1 1

n3

n
2

n
2

n
2

n
2

n3

n
2

n
2

n3nn

1 1

n︸ ︷︷ ︸
light triangles

︸ ︷︷ ︸
heavy triangles

Theorem (Wegener, 2005)

The MA with arbitrary temperature computes the MST for this

instance only with probability e
−Ω(n)

in polynomial time. SA with

temperature Tt := n
3
(1 −Θ(1/n))

t
computes the MST in

O(n logn) steps with probability 1 − O(1/poly(n)).

Proof idea: need different temperatures to optimise all triangles.
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This Tutorial

1 The origins: example functions and toy problems

A simple toy problem: OneMax for (1+1) EA

An advanced example: population size for the (μ+1) EA

2 Combinatorial optimisation problems

(1+1) EA and minimum spanning trees

(1+1) EA and maximum matchings

(1+1) EA and the partition problem

Multi-objective optimisation and the set cover problem

SA beats MA in combinatorial optimisation

ACO and minimum spanning trees

3 End

4 References

Carsten Witt Theory of RSHs in Combinatorial Optimisation

46/54

Ant Colony Optimisation — A Modern Search Heuristic
Background and Motivation

Ant colonies in nature

find shortest paths

in an unknown environment

using communication via

pheromone trails

show adaptive behaviour

food
nest
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Ant Colony Optimisation — A Modern Search Heuristic
Background and Motivation

Ant colonies in nature

find shortest paths

in an unknown environment

using communication via

pheromone trails

show adaptive behaviour

food
nest

food
nest

food
nest

Ant Colony Optimisation (ACO) is yet another

biologically inspired search heuristic.

Applications: combinatorial optimisation problems, e. g., TSP
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1-ANT for Pseudo-Boolean Optimisation

1-ANT

Simple ACO algorithm

Previously studied w. r. t. convergence

Find maximum for pseudo-Boolean function f : {0, 1}n → R
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1-ANT for Pseudo-Boolean Optimisation

Construction graph (n = 5)

x2

ts

h′
1 h′

2 h′
3 h′

4 h′
5

�1 �2 �
′
2 �3 �

′
3 �4 �

′
4 �5 �

′
5�

′
1

h1 h3h2 h4 h5

x1 x5x4x3

Pheromone values τ(e) for all 4n edges e

Ant constructs random path P (x) from s to t.

Edge hi is taken with probability τ(hi )/(τ(hi ) + τ(�i )),
accordingly for �i .

Walk constructs bitstring x ∈ {0, 1}n.
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Pheromone values τ(e) for all 4n edges e

Ant constructs random path P (x) from s to t.

Edge hi is taken with probability τ(hi )/(τ(hi ) + τ(�i )),
accordingly for �i .

Walk constructs bitstring x ∈ {0, 1}n.
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Construction graph (n = 5)

x5x4x3x2

ts

x1 = 1

Pheromone values τ(e) for all 4n edges e

Ant constructs random path P (x) from s to t.

Edge hi is taken with probability τ(hi )/(τ(hi ) + τ(�i )),
accordingly for �i .

Walk constructs bitstring x ∈ {0, 1}n.
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1-ANT for Pseudo-Boolean Optimisation

Construction graph (n = 5)

x5x4x3x2

ts

x1 = 1

Pheromone values τ(e) for all 4n edges e

Ant constructs random path P (x) from s to t.

Edge hi is taken with probability τ(hi )/(τ(hi ) + τ(�i )),
accordingly for �i .

Walk constructs bitstring x ∈ {0, 1}n.
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Construction graph (n = 5)
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x1 = 1

Pheromone values τ(e) for all 4n edges e

Ant constructs random path P (x) from s to t.

Edge hi is taken with probability τ(hi )/(τ(hi ) + τ(�i )),
accordingly for �i .

Walk constructs bitstring x ∈ {0, 1}n.
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1-ANT – Outline

Conventions

Pheromone values = probabilities

Upper and lower bounds for pheromone values

Runtime = # constructed solutions until optimum found
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1-ANT – Outline

Conventions

Pheromone values = probabilities

Upper and lower bounds for pheromone values

Runtime = # constructed solutions until optimum found

Algorithm 1-ANT for functions f : {0, 1}n → R

Set τ(e) = 1
2

for all edges e.

Construct x (and P (x)), update pheromone; set x∗
:= x.

Repeat

Construct x (and P (x)).

If f (x) ≥ f (x
∗
), update pheromone and set x

∗
:= x.
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1-ANT – Pheromone Update

Crucial parameter: evaporation factor ρ, 0 ≤ ρ ≤ 1

Edge e is updated according to

e ∈ P (x) ⇒ τ(e) := min

{
(1 − ρ) · τ(e) + ρ, 1 −

1

n

}
.

e /∈ P (x) ⇒ τ(e) := max

{
(1 − ρ) · τ(e),

1

n

}
.
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Crucial parameter: evaporation factor ρ, 0 ≤ ρ ≤ 1

Edge e is updated according to

e ∈ P (x) ⇒ τ(e) := min

{
(1 − ρ) · τ(e) + ρ, 1 −

1

n

}
.

e /∈ P (x) ⇒ τ(e) := max

{
(1 − ρ) · τ(e),

1

n

}
.

τ(hi ) + τ(�i ) = 1 for 1 ≤ i ≤ n, i. e., probabilities

Upper and lower bounds ensure that

all probabilities in [1/n, 1 − 1/n].
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1-ANT: Runtime Analyses

Simple but crucial: 1-ANT generalises (1+1) EA

(just choose ρ large enough to keep all pheromone values

in {1/n, 1 − 1/n}).
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1-ANT: Runtime Analyses

Simple but crucial: 1-ANT generalises (1+1) EA

(just choose ρ large enough to keep all pheromone values

in {1/n, 1 − 1/n}).

Old friends return: example functions

Results depending on ρ:

superpol. runtime poly. runtime

OneMax ρ = o(1/logn) ρ = 1 − O(n
−ε

)

LeadingOnes ρ ≤ c1/logn ρ ≥ c2/logn

BinVal ρ ≤ c1/logn ρ ≥ c2/logn

(Neumann/Witt, 2006; Doerr/Neumann/Sudholt/Witt, 2007;

Doerr/Johannsen, 2007)

Phase transitions: 1-ANT is not robust w. r. t. ρ

Carsten Witt Theory of RSHs in Combinatorial Optimisation

2940



50/54
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Simple but crucial: 1-ANT generalises (1+1) EA

(just choose ρ large enough to keep all pheromone values

in {1/n, 1 − 1/n}).

Old friends return: example functions

Results depending on ρ:

superpol. runtime poly. runtime

OneMax ρ = o(1/logn) ρ = 1 − O(n
−ε

)

LeadingOnes ρ ≤ c1/logn ρ ≥ c2/logn

BinVal ρ ≤ c1/logn ρ ≥ c2/logn

(Neumann/Witt, 2006; Doerr/Neumann/Sudholt/Witt, 2007;

Doerr/Johannsen, 2007)

Phase transitions: 1-ANT is not robust w. r. t. ρ

Interesting for proofs: need inverse of concentration

inequalities (old result by Hoeffding)
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1-ANT for the MST problem
1st Construction Graph

Algorithm by Broder (1989): uniformly generate spanning

trees by random walks on graphs

Random walk uniformly chooses a neighbour. If unvisited,

add edge to spanning tree

Algorithm stops after expected O(n3
) steps (cover time).

Selected edges obtain higher,

(but not too high) pheromone values

→ next constructed tree similar,

but also likely to be better
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1-ANT for the MST problem
2nd Construction Graph

Canonical construction graphs for a combinatorial

optimisation problem identifies components with nodes

and possible combinations with selectable edges.

Here: components = edges → canonical construction

graph C(G) = (N,A) with N = {0, . . . ,m} (start node 0) and

A = {(i , j ) | 0 ≤ i ≤ m, 1 ≤ j ≤ m, i �= j}.

0
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A = {(i , j ) | 0 ≤ i ≤ m, 1 ≤ j ≤ m, i �= j}.

0

For path v1, . . . , vk allowed

neighbourhood N(v1, . . . , vk) :=

(E \ {v1, . . . , vk}) \ {e ∈ E |
(V, {v1, . . . , vk, e}) contains cycle}

(problem-specific aspect of ACO).
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1-ANT for the MST Problem
Results

Theorem (Neumann/Witt, 2006)

The expected number of constructed solutions until the 1-ANT

with the 1st construction graph finds an MST is

O(n
6
(logn + logwmax))

The expected runtime of the construction procedure is O(n3
).
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1-ANT for the MST Problem
Results

Theorem (Neumann/Witt, 2006)

The expected number of constructed solutions until the 1-ANT

with the 1st construction graph finds an MST is

O(n
6
(logn + logwmax))

The expected runtime of the construction procedure is O(n3
).

Theorem (Neumann/Witt, 2006)

The expected number of constructed solutions until the 1-ANT

with the 2nd construction graph finds an MST is

O(mn(logn + logwmax)).

Better than the (1+1) EA!
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Summary and Conclusions

Analysis of RSHs in combinatorial optimisation

Starting from toy problems to real problems

Surprising results

Interesting techniques

Can analyse even new approaches
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Summary and Conclusions

Analysis of RSHs in combinatorial optimisation

Starting from toy problems to real problems

Surprising results

Interesting techniques

Can analyse even new approaches

→ The analysis of RSHs is an exciting research direction.

Thank you!
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