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ABSTRACT 
This paper compares three common evolutionary algorithms and 
our modified GA, a Distributed Adaptive Genetic Algorithm 
(DAGA). The optimal approach is sought to adapt, in near real-
time, biological model behaviour to that of real biology within a 
laboratory.   

Near real-time adaptation is achieved with a Graphics Processing 
Unit (GPU). This, together with evolutionary computation, 
enables new forms of experimentation such as online testing, 
where biology and computational model are simultaneously 
stimulated and their responses compared.  Rapid analysis and 
validation provide a platform that is required for rapid 
prototyping, and along with online testing, can provide new 
insight into the cause of biological behaviour.   

In this context, results demonstrate that our DAGA 
implementation is more efficient than the other three evolutionary 
algorithms due to its suitability to the adaptation environment, 
namely the large population sizes promoted by the GPU 
architecture. 

Categories and Subject Descriptors 
I.6.5 [Model Development]:  Modelling methodologies 

General Terms 
Algorithms, Verification. 

Keywords 
Bioinformatics, Evolutionary Strategies, Modelling behaviours 
and ecosystems, Parameter tuning, Speedup technique. 

1. INTRODUCTION 
In computational neuroscience modelling is an important process 
for testing hypotheses that seek to explain neural behaviour. This 
paper describes a study of the vasopressin releasing neurons that 
are found within the hypothalamus.  These neurons are important 
physiologically because vasopressin is essential for homeostatic 
regulation of fluid and electrolyte balance in the body, and they 
have been studied very extensively in a wide range of conditions - 
they are an important “model system” in neuroscience. In 
response to dehydration, these neurons discharge action potentials 
in a distinctly phasic pattern [1][2][3] (i.e. with bursts of activity, 
followed by periods of inactivity, as shown in Figure 1) that has 
been shown to be important for optimizing the efficiency of 
vasopressin secretion: the phasic firing pattern is generated by 
complex activity-dependent feedback influences on neuronal 
excitability. 

 

A computational model that represents a simplified representation of 
the vasopressin neuron already exists [4]. The representation 
consists of a series of exponential decays and step functions that 
describe the effects of a series of action potentials on subsequent 
excitability.  The model is based upon an “integrate and fire” neuron 
[5], within which a Poisson distributed noise source represents the 
input from synapses, as shown in Figure 2.  Fourteen inter-
dependent parameters control the model, resulting in a multimodal 
14-dimensional parameter space.  The model has been evaluated by 
comparing neural data recorded from a series of 
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Figure 1. Rate based recordings from three individual 
bursting vasopressin neurons.  Note the range of behaviours 
that these neurons can produce.  Additionally, these neurons 

can produce sparse sporadic, as well as continuous firing. 
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neurons within a lab, with data collected from a randomly 
generated population of model instances. 

This paper reports attempts to improve the testing process by 
adapting the parameters that control the model automatically and 
algorithmically, such that its resultant behaviour matches 
individual biological samples.  The model's behavioural 
parameter space is complex, and so we have opted for an 
evolutionary approach to the optimization problem.  Due to the 
high computational cost associated with evolutionary approaches, 
a Graphics Processing Unit (GPU) was chosen to perform the 
majority of the computationally expensive fitness calculations. 

Fast fitness analysis is important, as it allows the optimization 
process to be performed in a laboratory, emulating a biological 
sample in real-time.  This facilitates rapid analysis, validation and 
adjustment of a model's structure, and thus is a form of “rapid 
prototyping”.  Online tests, where a stimulus is applied to both 
model and biology simultaneously and the changes in behaviour 
compared, may also be used to critique models.  Once a model is 
established and trusted, it may also be used as a route to “what if” 
modelling during a biological experiment, allowing real-time 
decisions to be made regarding the future conduct of the 
experiment. 

The remainder of this paper is arranged as follows.  Section 2 
introduces and addresses the need for hardware acceleration.  
Several solutions are explored, with the chosen form dictating the 
environment of the evolutionary approach.  Section 3 discusses 
four different forms of evolutionary algorithm, three commonly 
found within the literature, with the final, a Distributed Adaptive 
Genetic Algorithm (DAGA) being of our own construction.  
Section 4 presents and analyses the results of our adaptations, 
discussing the causes of the success and failure of the various 
evolutionary approaches.  Our paper closes with a brief 
conclusion, discussing the work carried out thus far as well as 
listing future goals. 

2. ALGORITHMIC ACCELERATION 
Due to the large number of fitness evaluations required, 
evolutionary algorithms are computationally expensive.  This is 
especially so within the field of computational neuroscience, 
where a model's fitness function consist of a simulation run 
combined with a statistical analysis of the resulting data.  To 
model and adapt to a biological system in near real-time, some 
form of acceleration is required to reach the simulation speed 
necessary.  Three options were explored – server farm, custom 
hardware and graphics card hardware. 

2.1 Server Farm 
A server farm (multiple inter-communicating computers) would 
provide a large performance increase whilst still allowing the 
flexibility to change the adaptation process.    However, as the 
ultimate goal of this work is to allow the methodology to be used 
within a lab, where access to a server farm may not always be 
available, this approach must be discarded. 

2.2 Custom Hardware 
Simulation calculations could be performed by specially-designed 
Application-Specific Integrated Circuit (ASIC) [6] or Field-
Programmable Gate-Array (FPGA) chips [7].  This approach does 
not have the availability issues associated with a server farm as 
the chip could be easily used alongside a PC within the lab 
environment.  However, while an ASIC would provide the 
greatest performance increase, its functionality is essentially fixed 
at the design stage.  It is therefore unsuited to experimental 
applications, such as ours, where the functions controlling fitness 
may be required to change to isolate specific behavioural 
characteristics of the model. FPGAs can be re-programmed easily, 
even within a lab, whilst still providing a significant performance 
increase.  However, any form of custom device tends to 
discourage early adoption by end-users [8].  As our express aim is 
to get hardware-accelerated modelling into the biology laboratory 
as rapidly as possible, the FPGA option was discarded in favour 
of a more “off-the-shelf” acceleration approach.  

2.3 Graphics Card Hardware 
The development of 3D graphics cards has been driven heavily by 
the aggressive nature of the computer gaming industry.  Currently 
there are various development platforms and programming 
languages available to exploit the raw power available within 
Graphics Processing Units (GPUs).  Late in 2006, Microsoft 
released the DirectX 10 Application Programming Interface 
(API), which included a new version of Direct3D, requiring 
specific functionality within all new GPU architectures that claim 
compatibility.  DirectX 10 enforces a “Unified Architecture”, 
such that different tasks, such as vertex, pixel, and geometry 
shading are now handled by a series of general purpose Single 
Instruction Multiple Data (SIMD) processors. (In earlier 
architectures, they were processed by different elements within 
the GPU.)  This provides enhanced flexibility and allows 
evolutionary programmers to utilize the full computational power 
of the GPU by performing multiple fitness evaluations in parallel.  
Both ATI [9] and NVIDIA [10] offer DirectX 10 compatible 
GPUs, but NVIDIA has also released an API, which is heavily 
grounded in the C programming language.  One aspect of the API 
is its ability to streamline the memory accesses within the 
graphics card, allowing developers to pipeline multiple fitness 

Figure 2.  Functional structure of the vasopressin neural 
model [4].  Poisson spaced input inhibitory and excitatory 

action potentials are accumulated on the membrane potential 
along with feedback from the HAP, DAP and AHP, which are 
exponential decays, that models the influence of ion channels.  
The membrane potential also includes a simple state machine 

to represent the heightened rest potential caused by DAP 
summation during bursts by repeated action potentials. 
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evaluations on a single element of an SIMD processor. With 
GPUs, a different approach to simulation must be taken, even 
with the flexibility offered by a C based API, as the hardware is 
not amenable to approaches which may have been optimal in pure 
software, such as branching caused by “if” and “switch” 
statements.  Furthermore, the availability of onboard memory 
limits the quantity and type of data that can be collected from 
each simulation.  However, the ability to gain powerful hardware 
acceleration, which is easily applied within a lab environment, 
and is cheaply and readily available off-the-shelf, offsets the 
coding-based drawbacks substantially.  We have therefore used 
GPU acceleration, using NVIDIA's CUDA API [11] and an 
8800GTX graphics card. This card can simulate a maximum of 
4096 neuronal experiments simultaneously, so this has been 
chosen as the population size for all the evolutionary approaches.  
Because of the parallel nature of the hardware acceleration, 
reducing this number provides no performance increase.  When 
using this method, a minimum experimental throughput increase 
of 150 times the pure software approach was obtained. 

3. EVOLUTIONARY ALGORITHMS (EA) 
The adaptation problem is to find a global minimum in a fourteen 
dimensional parameter space, minimizing the difference (or error) 
between the behaviours of the biological neuron and the model.  
Each parameter is bounded between biologically plausible 
maximum and minimum values, and is a direct representation of a 
biological phenomenon, for example, the half-life of the 
Membrane Potential Decay [12], or the magnitude of the 
Hyperpolarizing After Potential.  The fitness function is 
characterized by descriptive statistics of Inter-spike Intervals 
(ISIs) of event data and the mean and variance of bursting 
behaviour. These levels of fitness compete during the 
optimization process, making this a multi-objective task.  As was 
shown in Section 2, the chosen hardware acceleration promotes 
large population sizes, but a low number of generations, typically 
less than 30.  Four evolutionary algorithms have been compared. 

1. Genetic Algorithms (GA) [13, 14, 15] 

2. Kernel based Estimation of Distribution Algorithm 
(EDA) [16] 

3. Particle Swarm Optimizer (PSO)[17, 18, 19, 20] 

4. Distributed Adaptive Genetic Algorithm (DAGA) 

All solutions are stored in a single global population, ordered by 
fitness. The EAs create each generation either by performing the 

chosen algorithm directly on the fittest members of this 
population, or by selecting the elite from this global population to 
complement the previous working generation of the EA.  This is 
done for two reasons; firstly to accumulate knowledge found 
throughout the adaptation process instead of relying on the 
previous generation's results alone, and secondly to make the 
algorithm more elite and exploitative.  Accumulated knowledge is 
also beneficial when adapting to a biological target that has 
shifting behaviour, as previously searched and discarded areas 
may become more favourable.  Annealing has been applied to 
each EA, to take advantage of the a priori knowledge of how 
close the algorithm has adapted to the perfect solution. 

3.1 Real Valued Genetic Algorithm (GA) 
The GA [13, 14, 15] was chosen because it is an established and 
well-understood baseline for the evaluation process.  The GA is 
implemented with 2-point cross-over and mutation.  The Mutation 
operator involves randomly selecting genes after the cross-over 
has been performed, and choosing new values randomly from a 
range either side of the current value.  This range is scaled along 
with the fitness of the population to make the algorithm more 
exploitative, performing a more detailed search as fitter solutions 
are found.  This selection scheme of the GA favours fitter 
experiments, as shown in Figure 3.  

GAs provide an automatic balance between exploration and 
exploitation of the parameter space through the cross-over 
mechanism.  Cross-over disperses the population proportionally to 
the number of clusters found and the dimensionality of the 
parameter space.  This promotes heavy exploration during initial 
generations, but reduces the algorithm's efficiency at isolating 
minima later on. 

3.2 Kernel-Based Estimation of Distribution 
Algorithm (EDA) 
An EDA [16] creates a new generation by analyzing the 
distribution of the fittest solutions within the current population 
and selecting new solutions probabilistically from within this 
distribution.  As an increasing number of fitter solutions are 
created, the distribution will converge upon the minimum as the 
average fitness required to remain within the population increases. 
EDAs can search several areas of the parameter space 

Figure 3.  Selection scheme used within the GA.  The 
probability of selection, which is not directly related to fitness, 

but instead the order, falls linearly across the ordered set.  
The black line represents the chance of selection, whereas the 

red line is the fitness of the experiments (lower is better). 

Figure 4.  Two dimensional representation of kernel variance 
scaling based on cluster density within the EDA.  A nearest 

neighbor search is applied to the fittest points of each generation.  
The average distance to each point is used to scale the variances 

of the kernels that are applied during the generation process. 
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simultaneously and so would seem suited to adapt our model that 
has a high number of modes (minima in our case, as we are trying 
to minimize deviation from model to target).  Our kernel based 
EDA takes advantage of the global sorted population by selecting 
a small subset of the fittest solutions to merge with the current 
generation for the purposes of solution selection.  Additionally, 
the EDA utilizes a nearest neighbour algorithm to control the 
variance of the multidimensional Gaussian kernels used, as shown 
in Figure 4. This allows the algorithm to search areas of good 
fitness more closely - an effect similar to that of annealed 
mutation in the GA.  If points are clustered tightly, the variance of 
the Gaussian kernel is reduced, increasing the probability that 
new experiments are selected towards the centres of the clusters.  
This EDA is therefore greedy, focusing quickly on the centre of 
experimental clusters; a side effect of which is its vulnerability to 
local minima, failing to explore the parameter space properly.  To 
account for this, the base variance of the kernel was enlarged, 
making the algorithm globally more explorative.  

3.3 Particle Swarm Optimization (PSO) 
Inspired by schooling behaviour in fish and flocking birds, PSOs 
[17] treat the population as a series of agents that move through 
multi-dimensional space.  At every iteration of the population, 
each agent's velocity is re-calculated as shown in Figure 5. 

The annealing process within the PSO is implemented by limiting 
each agent's momentum as a function of fitness, such that agents 
are less likely to leave areas of good fitness.  PSOs are robust, 
owing to their ability to search large areas of the parameter space 
with only a small population size.  For example, the 2006 
standard of the PSO algorithm [18] suggests 18 agents for a 14 
dimensional parameter space.  This is two orders of magnitude 
less than the population size available to us through the use of our 
GPU acceleration.  However, PSOs are not necessarily more 
efficient, as many more iterations are usually required than in 
other evolutionary algorithms, and it is even suggested that the 
greatest performance is obtained when the global best solution is 
updated after each agent moves [19].  Hence PSOs are generally 
more suited for sequential applications where small generation 
sizes are appropriate, with many more iterations [20].  

3.4 Distributed Adaptive Genetic Algorithm 
(DAGA)  
Out of the three algorithms, GA, EDA, and PSO, the GA gave by 
far the greatest performance (see section 4). However, even the GA 
had difficulty adapting the model to each of the target behaviours, 
with maximum fitness’ ranging from 5.39% to 21.58% deviation 
from target behaviours.  These values were improved by altering the 
underlying parameters that control the genetic algorithm, namely the 

parent select range, which represents the number of solutions from 
the global population that have a chance of selection, and the 
mutation rate, which corresponds to the chance each model 
parameter has of having the mutation operator applied to it.  
Changing these control parameters can produce large changes in 
algorithm behaviour ranging from the extremes of exploitative to 
explorative. 

As we do not know in advance the shape of the parameter space, 
and hence the optimal approach for adapting to each biological cell 
behaviour, it would be useful to have a mechanism that sits atop of 
the GA steering its behaviour from explorative to exploitative and 
back again on a generation to generation basis.  To accomplish this 
we have taken advantage of the large population sizes that are 
enforced by the GPU architecture to implement a form of 
individual-level self-adaptation [21].  As stated in section 2, our 
GPU enforces a population size of 4096, which is large enough to 
observe the entire parameter space of the GA, and then guide the 
GA based upon the performance within each area.  This population 
we split in two, with the first half designated as “Observers”, and 
the second half “Workers”.  Both Observers and Workers each 
control the adaptation of a single member of every generation of the 
GA.  The Observers are distributed randomly across the GA’s 
parameter space, and do not move from generation to generation.  
Each Observer has a Pheromone value, which represents how 
successful the GA has been at optimizing when using the Observers 
GA control parameters.  This Pheromone value decays over time to 
emphasize recent good configurations of the GA.  After each 
generation of the GA has been analyzed, the fittest 5% of that 
generation increase the pheromone value of any observer they are 
attached to as a function of their performance within that 5% (only 
half the population is attached to observers).  The Workers choose 
which Observer they wish to mimic each generation, which is 
determined by the strength of each Observer’s Pheromone value.   
In this way, the workers move to produce the most appropriate 
behaviour at the current time.  Figure 6 shows the final distribution 
of pheromone of one optimization run. Optimizations tend to 
initially favour a low parent select range with a high level of 
mutation.  This is likely due to the large number of points within the 
parameter space that produce un-analyzable data.  

Figure 5. Pictorial representation of the PSO algorithm.     
C → Current position;  G → Global best position found so 
far ;  P →  Personal Best Position found so far;  N → New 

position after altered velocity is applied to current 
iti

Figure 6. Pheromone distribution.  The size of the circles 
represent the chance of selection by a worker.  This particular 

adaptation favors an elite approach with a high level of 
mutation.  
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Figure 8.  A point of good fitness using the DAGA, displaying in more detail the various measures of fitness used to guide 
each algorithm. (a)  Distribution of Inter Spike Interval (b) Distribution of Burst Length, (c) Distribution of Space Length, 

(d) Distribution of Spike Rate, (e) Rate over Time; both traces do not have to match in time, but should look as if they 
came from the same cell.  For a, b, c, and d, the perfect fitness would be represented by the red line (adapted model) 

perfectly overlaying the blue line (biological target). 

4.  RESULTS 
To evaluate the performance of the evolutionary algorithms, they 
were each used to adapt to the behaviours of twenty six different 
neural recordings, fifteen from an in-vivo environment and eleven 
from in-vitro.  Figure 7 presents the fitness values, relative 
deviations from target behaviour (lower is better), attained when 
applying each of the optimization methods against these two sets of 
data.  The GA and DAGA drastically outperform both the EDA and 
PSO, with the DAGA providing the greatest performance for 14 out 
of the 15 in-vivo targets.  However, the DAGA does not provide any 
significant improvement over the traditional GA when working with 
the in-vitro data (the DAGA demonstrates fitter values for 7 
adaptations compared to 4 for the GA).  

In Figure 8, a more detailed depiction of a point evaluation from one 
of the previous adaptation runs, shows how close, behaviourally, the 
model can be optimized to fit the biology.  In each section of the 
diagram, blue represents the target, and red the adapted simulation. 
8a is the distribution of the Inter Spike Interval (ISI), 8b and 8c 
show how closely the simulation matches the target's burst and 
space lengths, 8d shows the distribution of spike rate, and 8e shows 
a comparison of rate recordings.  It is important to note that 
limitations of the fitness function and model structure mean that it Figure 7. Presents the best attained fitness values when 

adapting to both in-vivo and in-vitro data. 
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is highly unlikely that a perfect behavioural match will be 
obtained.  These limitations are most apparent when the quantity 
of recorded data is restricted, essentially skewing the target, and 
producing uncharacteristic biological behaviour. 

Figure 9 shows the four algorithms adapting to the same 
biological target.  Each point within the figures represents an 
evaluated position within the parameter space, where the bands 
within the X axis correspond to generations, and the Y axis 
corresponds to fitness as a relative deviation from the target 
(lower is better).  The spread of fitness within each generation 
illustrates how exploitative an algorithm is, where exploitative 
algorithms search more heavily within the areas of best fitness; 
hence the majority of new positions have similar or improved 
fitness.   

It was readily apparent, by the number of members within the 
initial populations that produced unanalysable data (too many or 
too few events per simulation), that much of the parameter space 

was invalid, even when constrained heavily within a biologically 
plausible range.  As a result, any algorithm that did not 
immediately respond to this problem suffered in performance.  
The PSO is one such algorithm, but in this case it also performs 
badly because it is not a suitable search method to be used 
alongside hardware acceleration that imposes the restriction of 
large population sizes.  In this circumstance, a PSO will offer 
progressively better locations in different areas of the parameter 
space.  This causes general “indecisiveness”, from iteration to 
iteration, of the global best fit that excites the agents within the 
PSO to ever greater velocities and prevents timely convergence.  
This reinforces the view that PSOs are best suited to applications 
that have small population sizes but a large number of available 
iterations.  Because we are utilizing graphics card hardware, our 
neuronal modelling task has precisely the opposite characteristics.  
With this algorithm the extra power provided by the GPU is being 
wasted. 

Figure 9.  Algorithmic adaptation over time, (a) Estimation of Distribution Algorithm (EDA), (b) Particle Swarm Optimization 
(PSO), (c) Genetic Algorithm (GA), (d) Distributed Adaptive Genetic Algorithm(DAGA).  The X axis corresponds to the 

generation number.  The Y axis represents goodness of fit (the lower the value the better).  
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The EDA has a tendency to focus on promising areas of 
parameter space too soon, which causes it to perform badly.  This 
“greedy” behaviour, even when reduced by globally increasing 
the kernel size, searches and finds many other favourable points 
within those areas and then “forgets” about exploring the rest of 
the parameter space.  This can be seen by the rapid adaptation of 
the population to an average fitness of 75% deviation from the 
target by the 4th generation, followed by the algorithms 
stagnation.  Because of the large kernel size, over time the 
algorithm slowly spreads and is able to find better areas to search.  
However, because of this large kernel size, the EDA finds it 
difficult to exploit these improved areas, and by the end of the 
adaptation the average fitness has yet to improve significantly.  

A side effect of the EDAs aggressive nature is its ability to act as 
a good indicator of the modality of the parameter space.  Figure 
10 shows the progress of a single parameter across the adaptation 
run and clearly shows two final modes along with three others 
that have been previously discarded.  Many of the other 
parameters had similar behaviours, and hence is a good indication 
that this parameter space is highly multi-modal. 

   

The GA outperforms the EDA and PSO.  We suggest that this is 
due to the algorithms’ greater suitability to the adaptation 
environment, as the GA, through a combination of the selection 
scheme and cross-over mechanism, splits the population into 
subsets with varying degrees of exploration/exploitation.  The 
DAGA improves upon this regime by dividing the base GA into 
individual elements that have the potential for alternate 
algorithmic configuration.  These elements are monitored such 
that a large portion of the computational power can be adapted to 
the more favourable areas within the configuration space.  
Although only two algorithm parameters were adapted, and the 
mechanism for this adaptation is simplistic, this approach showed 
a general increase in performance across the majority of the cell 
adaptations compared to the GA, which itself showed great 
improvement over the alternate algorithms. The in-vivo data was 
easier to adapt to than in-vitro data. The difference in overall 
performance of all the algorithms, when presented with in-vivo 

and in-vitro data, can be attributed to over-constraining the 
problem parameter space, reducing the suitability of the 
biologically plausible range of values for cells that are removed 
from their natural environments.  This presents another avenue 
where an adaptive GA may flourish by altering the parameter 
constraints during the adaptation process [22].    

The GPU allowed for an experimental fitness analysis rate of 
approximately 40 seconds to a minute per generation, though this 
can easily be reduced by decreasing the simulation length.  This 
results in a model being analyzable once every 15 minutes, 
instead of the one and a half days that would normally be 
required.  The typical maximum length of a neural experiment 
within electrophysiology is six hours; so many iterations of a 
model design can be tested within this period, while data is 
simultaneously being collected from the biological sample.  

5. CONCLUSION 
We have developed a methodology for the rapid adaptation of 
behaviour-based biological models to mimic the biological 
behaviour of many independent cells of the same class.  This is a 
useful tool as it can enable experimental biologists to perform 
iterative design within a lab environment.  Additionally, insight 
into the internal workings of a cell may be provided within the 
time frame of an experiment, which can be used to guide 
experimental procedure.  Because model analysis is essentially 
“blind”, i.e. nothing is known of the parameter space except for 
its dimensionality, a robust algorithm is required to explore the 
parameter space of the model.  

We have compared four evolutionary algorithms to determine 
which gives the best performance within the parameter space of 
this and similar models.  We postulate that models that are 
generated as a result of an iterative design process will form 
similar parameter spaces that present similar challenges to any 
adaptation algorithm.  We have found that the parameter spaces 
are highly multimodal, but include many areas that produce un-
analyzable data.  Therefore, suitable algorithms should be initially 
exploitative to reject these null areas, but should be explorative 
once these areas have been removed, to tackle the multi-modality 
of the parameter space. 

To perform the many computationally intensive fitness evaluation 
processes, we use Graphics Processing Units (GPUs) which 
evaluate thousands of points simultaneously within the parameter 
space.  GPU technology is upgradeable, cheap, and currently 
provides more than two orders of magnitude improvement in 
performance over conventional processors.  However, GPU 
architecture itself affects the optimum choice of algorithm, which 
must be chosen to exploit the large population sizes it imposes.  
To explore this theorem we have developed a Distributed 
Adaptive Genetic Algorithm (DAGA), to take advantage of large 
population sizes.  DAGA does this by dividing the base GA into a 
number of differently configured elements equal to its population 
size, which emphasize varying degrees of exploration and 
exploitation.  Using a pheromone-based approach, areas of the 
base GA’s configuration space that are consistently favourable 
will attract a larger portion of the computation power available.  
DAGA has performed well in comparison to more traditional 
approaches. We are still optimising the DAGA and have already 
found further improvements. This provides a strong indication 
that as population sizes increase, which may be due to 

Figure 10.  Algorithmic adaptation of a single 
parameter using EDA.  The clusters of points show 
how different modes are found, explored and then 

discarded until the fittest is found. 
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environmental constraints such as GPU architecture, an individual 
member is more efficiently utilized for monitoring the algorithms 
configuration space, than actively searching the problem 
parameter space.  

6. FUTURE WORK 
We will create a user-friendly interface that will allow biologists 
to create, adjust and test the underlying functionality and structure 
of neural models iteratively.  This will not only allow rapid 
prototyping to be used within a lab, but also online testing in the 
form of real-time comparative tests and cell classification.  
Biological phenomena may also be studied by analyzing the 
distribution of adapted parameters that control the behaviour of 
trusted biological models.   

The techniques we are developing will allow biologists, and any 
other concerned with modelling in real-time, to work more 
efficiently and effectively in a lab environment.  In many cases, 
they may be able to perform new science.  
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