
Rapid Evaluation and Evolution of Neural Models
using Graphics Card Hardware

T.F. Clayton1, L.N. Patel1, G. Leng2, A.F. Murray1, I.A.B. Lindsay1
(1)

Institute of Integrated Micro and Nano Systems
Kings Buildings, West Mains Road,

EH9 3JF, Edinburgh
+44(0)131 650 5664

 (2)

Centre for Integrative Physiology
Hugh Robson Building, George Square,

EH8 9XD, Edinburgh
+44(0)131 650 2869

{T.Clayton, L.Patel, Gareth.Leng, Alan.Murray, Iain.Lindsay}@ed.ac.uk

ABSTRACT
This paper compares three common evolutionary algorithms and
our modified GA, a Distributed Adaptive Genetic Algorithm
(DAGA). The optimal approach is sought to adapt, in near real-
time, biological model behaviour to that of real biology within a
laboratory.

Near real-time adaptation is achieved with a Graphics Processing
Unit (GPU). This, together with evolutionary computation,
enables new forms of experimentation such as online testing,
where biology and computational model are simultaneously
stimulated and their responses compared. Rapid analysis and
validation provide a platform that is required for rapid
prototyping, and along with online testing, can provide new
insight into the cause of biological behaviour.

In this context, results demonstrate that our DAGA
implementation is more efficient than the other three evolutionary
algorithms due to its suitability to the adaptation environment,
namely the large population sizes promoted by the GPU
architecture.

Categories and Subject Descriptors
I.6.5 [Model Development]: Modelling methodologies

General Terms
Algorithms, Verification.

Keywords
Bioinformatics, Evolutionary Strategies, Modelling behaviours
and ecosystems, Parameter tuning, Speedup technique.

1. INTRODUCTION
In computational neuroscience modelling is an important process
for testing hypotheses that seek to explain neural behaviour. This
paper describes a study of the vasopressin releasing neurons that
are found within the hypothalamus. These neurons are important
physiologically because vasopressin is essential for homeostatic
regulation of fluid and electrolyte balance in the body, and they
have been studied very extensively in a wide range of conditions -
they are an important “model system” in neuroscience. In
response to dehydration, these neurons discharge action potentials
in a distinctly phasic pattern [1][2][3] (i.e. with bursts of activity,
followed by periods of inactivity, as shown in Figure 1) that has
been shown to be important for optimizing the efficiency of
vasopressin secretion: the phasic firing pattern is generated by
complex activity-dependent feedback influences on neuronal
excitability.

A computational model that represents a simplified representation of
the vasopressin neuron already exists [4]. The representation
consists of a series of exponential decays and step functions that
describe the effects of a series of action potentials on subsequent
excitability. The model is based upon an “integrate and fire” neuron
[5], within which a Poisson distributed noise source represents the
input from synapses, as shown in Figure 2. Fourteen inter-
dependent parameters control the model, resulting in a multimodal
14-dimensional parameter space. The model has been evaluated by
comparing neural data recorded from a series of

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
GECCO’08, July 12–16, 2008, Atlanta, Georgia, USA.
Copyright 2008 ACM 978-1-60558-130-9/08/07...$5.00.

Figure 1. Rate based recordings from three individual
bursting vasopressin neurons. Note the range of behaviours
that these neurons can produce. Additionally, these neurons

can produce sparse sporadic, as well as continuous firing.

299

neurons within a lab, with data collected from a randomly
generated population of model instances.

This paper reports attempts to improve the testing process by
adapting the parameters that control the model automatically and
algorithmically, such that its resultant behaviour matches
individual biological samples. The model's behavioural
parameter space is complex, and so we have opted for an
evolutionary approach to the optimization problem. Due to the
high computational cost associated with evolutionary approaches,
a Graphics Processing Unit (GPU) was chosen to perform the
majority of the computationally expensive fitness calculations.

Fast fitness analysis is important, as it allows the optimization
process to be performed in a laboratory, emulating a biological
sample in real-time. This facilitates rapid analysis, validation and
adjustment of a model's structure, and thus is a form of “rapid
prototyping”. Online tests, where a stimulus is applied to both
model and biology simultaneously and the changes in behaviour
compared, may also be used to critique models. Once a model is
established and trusted, it may also be used as a route to “what if”
modelling during a biological experiment, allowing real-time
decisions to be made regarding the future conduct of the
experiment.

The remainder of this paper is arranged as follows. Section 2
introduces and addresses the need for hardware acceleration.
Several solutions are explored, with the chosen form dictating the
environment of the evolutionary approach. Section 3 discusses
four different forms of evolutionary algorithm, three commonly
found within the literature, with the final, a Distributed Adaptive
Genetic Algorithm (DAGA) being of our own construction.
Section 4 presents and analyses the results of our adaptations,
discussing the causes of the success and failure of the various
evolutionary approaches. Our paper closes with a brief
conclusion, discussing the work carried out thus far as well as
listing future goals.

2. ALGORITHMIC ACCELERATION
Due to the large number of fitness evaluations required,
evolutionary algorithms are computationally expensive. This is
especially so within the field of computational neuroscience,
where a model's fitness function consist of a simulation run
combined with a statistical analysis of the resulting data. To
model and adapt to a biological system in near real-time, some
form of acceleration is required to reach the simulation speed
necessary. Three options were explored – server farm, custom
hardware and graphics card hardware.

2.1 Server Farm
A server farm (multiple inter-communicating computers) would
provide a large performance increase whilst still allowing the
flexibility to change the adaptation process. However, as the
ultimate goal of this work is to allow the methodology to be used
within a lab, where access to a server farm may not always be
available, this approach must be discarded.

2.2 Custom Hardware
Simulation calculations could be performed by specially-designed
Application-Specific Integrated Circuit (ASIC) [6] or Field-
Programmable Gate-Array (FPGA) chips [7]. This approach does
not have the availability issues associated with a server farm as
the chip could be easily used alongside a PC within the lab
environment. However, while an ASIC would provide the
greatest performance increase, its functionality is essentially fixed
at the design stage. It is therefore unsuited to experimental
applications, such as ours, where the functions controlling fitness
may be required to change to isolate specific behavioural
characteristics of the model. FPGAs can be re-programmed easily,
even within a lab, whilst still providing a significant performance
increase. However, any form of custom device tends to
discourage early adoption by end-users [8]. As our express aim is
to get hardware-accelerated modelling into the biology laboratory
as rapidly as possible, the FPGA option was discarded in favour
of a more “off-the-shelf” acceleration approach.

2.3 Graphics Card Hardware
The development of 3D graphics cards has been driven heavily by
the aggressive nature of the computer gaming industry. Currently
there are various development platforms and programming
languages available to exploit the raw power available within
Graphics Processing Units (GPUs). Late in 2006, Microsoft
released the DirectX 10 Application Programming Interface
(API), which included a new version of Direct3D, requiring
specific functionality within all new GPU architectures that claim
compatibility. DirectX 10 enforces a “Unified Architecture”,
such that different tasks, such as vertex, pixel, and geometry
shading are now handled by a series of general purpose Single
Instruction Multiple Data (SIMD) processors. (In earlier
architectures, they were processed by different elements within
the GPU.) This provides enhanced flexibility and allows
evolutionary programmers to utilize the full computational power
of the GPU by performing multiple fitness evaluations in parallel.
Both ATI [9] and NVIDIA [10] offer DirectX 10 compatible
GPUs, but NVIDIA has also released an API, which is heavily
grounded in the C programming language. One aspect of the API
is its ability to streamline the memory accesses within the
graphics card, allowing developers to pipeline multiple fitness

Figure 2. Functional structure of the vasopressin neural
model [4]. Poisson spaced input inhibitory and excitatory

action potentials are accumulated on the membrane potential
along with feedback from the HAP, DAP and AHP, which are
exponential decays, that models the influence of ion channels.
The membrane potential also includes a simple state machine

to represent the heightened rest potential caused by DAP
summation during bursts by repeated action potentials.

300

evaluations on a single element of an SIMD processor. With
GPUs, a different approach to simulation must be taken, even
with the flexibility offered by a C based API, as the hardware is
not amenable to approaches which may have been optimal in pure
software, such as branching caused by “if” and “switch”
statements. Furthermore, the availability of onboard memory
limits the quantity and type of data that can be collected from
each simulation. However, the ability to gain powerful hardware
acceleration, which is easily applied within a lab environment,
and is cheaply and readily available off-the-shelf, offsets the
coding-based drawbacks substantially. We have therefore used
GPU acceleration, using NVIDIA's CUDA API [11] and an
8800GTX graphics card. This card can simulate a maximum of
4096 neuronal experiments simultaneously, so this has been
chosen as the population size for all the evolutionary approaches.
Because of the parallel nature of the hardware acceleration,
reducing this number provides no performance increase. When
using this method, a minimum experimental throughput increase
of 150 times the pure software approach was obtained.

3. EVOLUTIONARY ALGORITHMS (EA)
The adaptation problem is to find a global minimum in a fourteen
dimensional parameter space, minimizing the difference (or error)
between the behaviours of the biological neuron and the model.
Each parameter is bounded between biologically plausible
maximum and minimum values, and is a direct representation of a
biological phenomenon, for example, the half-life of the
Membrane Potential Decay [12], or the magnitude of the
Hyperpolarizing After Potential. The fitness function is
characterized by descriptive statistics of Inter-spike Intervals
(ISIs) of event data and the mean and variance of bursting
behaviour. These levels of fitness compete during the
optimization process, making this a multi-objective task. As was
shown in Section 2, the chosen hardware acceleration promotes
large population sizes, but a low number of generations, typically
less than 30. Four evolutionary algorithms have been compared.

1. Genetic Algorithms (GA) [13, 14, 15]

2. Kernel based Estimation of Distribution Algorithm
(EDA) [16]

3. Particle Swarm Optimizer (PSO)[17, 18, 19, 20]

4. Distributed Adaptive Genetic Algorithm (DAGA)

All solutions are stored in a single global population, ordered by
fitness. The EAs create each generation either by performing the

chosen algorithm directly on the fittest members of this
population, or by selecting the elite from this global population to
complement the previous working generation of the EA. This is
done for two reasons; firstly to accumulate knowledge found
throughout the adaptation process instead of relying on the
previous generation's results alone, and secondly to make the
algorithm more elite and exploitative. Accumulated knowledge is
also beneficial when adapting to a biological target that has
shifting behaviour, as previously searched and discarded areas
may become more favourable. Annealing has been applied to
each EA, to take advantage of the a priori knowledge of how
close the algorithm has adapted to the perfect solution.

3.1 Real Valued Genetic Algorithm (GA)
The GA [13, 14, 15] was chosen because it is an established and
well-understood baseline for the evaluation process. The GA is
implemented with 2-point cross-over and mutation. The Mutation
operator involves randomly selecting genes after the cross-over
has been performed, and choosing new values randomly from a
range either side of the current value. This range is scaled along
with the fitness of the population to make the algorithm more
exploitative, performing a more detailed search as fitter solutions
are found. This selection scheme of the GA favours fitter
experiments, as shown in Figure 3.

GAs provide an automatic balance between exploration and
exploitation of the parameter space through the cross-over
mechanism. Cross-over disperses the population proportionally to
the number of clusters found and the dimensionality of the
parameter space. This promotes heavy exploration during initial
generations, but reduces the algorithm's efficiency at isolating
minima later on.

3.2 Kernel-Based Estimation of Distribution
Algorithm (EDA)
An EDA [16] creates a new generation by analyzing the
distribution of the fittest solutions within the current population
and selecting new solutions probabilistically from within this
distribution. As an increasing number of fitter solutions are
created, the distribution will converge upon the minimum as the
average fitness required to remain within the population increases.
EDAs can search several areas of the parameter space

Figure 3. Selection scheme used within the GA. The
probability of selection, which is not directly related to fitness,

but instead the order, falls linearly across the ordered set.
The black line represents the chance of selection, whereas the

red line is the fitness of the experiments (lower is better).

Figure 4. Two dimensional representation of kernel variance
scaling based on cluster density within the EDA. A nearest

neighbor search is applied to the fittest points of each generation.
The average distance to each point is used to scale the variances

of the kernels that are applied during the generation process.

301

simultaneously and so would seem suited to adapt our model that
has a high number of modes (minima in our case, as we are trying
to minimize deviation from model to target). Our kernel based
EDA takes advantage of the global sorted population by selecting
a small subset of the fittest solutions to merge with the current
generation for the purposes of solution selection. Additionally,
the EDA utilizes a nearest neighbour algorithm to control the
variance of the multidimensional Gaussian kernels used, as shown
in Figure 4. This allows the algorithm to search areas of good
fitness more closely - an effect similar to that of annealed
mutation in the GA. If points are clustered tightly, the variance of
the Gaussian kernel is reduced, increasing the probability that
new experiments are selected towards the centres of the clusters.
This EDA is therefore greedy, focusing quickly on the centre of
experimental clusters; a side effect of which is its vulnerability to
local minima, failing to explore the parameter space properly. To
account for this, the base variance of the kernel was enlarged,
making the algorithm globally more explorative.

3.3 Particle Swarm Optimization (PSO)
Inspired by schooling behaviour in fish and flocking birds, PSOs
[17] treat the population as a series of agents that move through
multi-dimensional space. At every iteration of the population,
each agent's velocity is re-calculated as shown in Figure 5.

The annealing process within the PSO is implemented by limiting
each agent's momentum as a function of fitness, such that agents
are less likely to leave areas of good fitness. PSOs are robust,
owing to their ability to search large areas of the parameter space
with only a small population size. For example, the 2006
standard of the PSO algorithm [18] suggests 18 agents for a 14
dimensional parameter space. This is two orders of magnitude
less than the population size available to us through the use of our
GPU acceleration. However, PSOs are not necessarily more
efficient, as many more iterations are usually required than in
other evolutionary algorithms, and it is even suggested that the
greatest performance is obtained when the global best solution is
updated after each agent moves [19]. Hence PSOs are generally
more suited for sequential applications where small generation
sizes are appropriate, with many more iterations [20].

3.4 Distributed Adaptive Genetic Algorithm
(DAGA)
Out of the three algorithms, GA, EDA, and PSO, the GA gave by
far the greatest performance (see section 4). However, even the GA
had difficulty adapting the model to each of the target behaviours,
with maximum fitness’ ranging from 5.39% to 21.58% deviation
from target behaviours. These values were improved by altering the
underlying parameters that control the genetic algorithm, namely the

parent select range, which represents the number of solutions from
the global population that have a chance of selection, and the
mutation rate, which corresponds to the chance each model
parameter has of having the mutation operator applied to it.
Changing these control parameters can produce large changes in
algorithm behaviour ranging from the extremes of exploitative to
explorative.

As we do not know in advance the shape of the parameter space,
and hence the optimal approach for adapting to each biological cell
behaviour, it would be useful to have a mechanism that sits atop of
the GA steering its behaviour from explorative to exploitative and
back again on a generation to generation basis. To accomplish this
we have taken advantage of the large population sizes that are
enforced by the GPU architecture to implement a form of
individual-level self-adaptation [21]. As stated in section 2, our
GPU enforces a population size of 4096, which is large enough to
observe the entire parameter space of the GA, and then guide the
GA based upon the performance within each area. This population
we split in two, with the first half designated as “Observers”, and
the second half “Workers”. Both Observers and Workers each
control the adaptation of a single member of every generation of the
GA. The Observers are distributed randomly across the GA’s
parameter space, and do not move from generation to generation.
Each Observer has a Pheromone value, which represents how
successful the GA has been at optimizing when using the Observers
GA control parameters. This Pheromone value decays over time to
emphasize recent good configurations of the GA. After each
generation of the GA has been analyzed, the fittest 5% of that
generation increase the pheromone value of any observer they are
attached to as a function of their performance within that 5% (only
half the population is attached to observers). The Workers choose
which Observer they wish to mimic each generation, which is
determined by the strength of each Observer’s Pheromone value.
In this way, the workers move to produce the most appropriate
behaviour at the current time. Figure 6 shows the final distribution
of pheromone of one optimization run. Optimizations tend to
initially favour a low parent select range with a high level of
mutation. This is likely due to the large number of points within the
parameter space that produce un-analyzable data.

Figure 5. Pictorial representation of the PSO algorithm.
C → Current position; G → Global best position found so
far ; P → Personal Best Position found so far; N → New

position after altered velocity is applied to current
iti

Figure 6. Pheromone distribution. The size of the circles
represent the chance of selection by a worker. This particular

adaptation favors an elite approach with a high level of
mutation.

302

Figure 8. A point of good fitness using the DAGA, displaying in more detail the various measures of fitness used to guide
each algorithm. (a) Distribution of Inter Spike Interval (b) Distribution of Burst Length, (c) Distribution of Space Length,

(d) Distribution of Spike Rate, (e) Rate over Time; both traces do not have to match in time, but should look as if they
came from the same cell. For a, b, c, and d, the perfect fitness would be represented by the red line (adapted model)

perfectly overlaying the blue line (biological target).

4. RESULTS
To evaluate the performance of the evolutionary algorithms, they
were each used to adapt to the behaviours of twenty six different
neural recordings, fifteen from an in-vivo environment and eleven
from in-vitro. Figure 7 presents the fitness values, relative
deviations from target behaviour (lower is better), attained when
applying each of the optimization methods against these two sets of
data. The GA and DAGA drastically outperform both the EDA and
PSO, with the DAGA providing the greatest performance for 14 out
of the 15 in-vivo targets. However, the DAGA does not provide any
significant improvement over the traditional GA when working with
the in-vitro data (the DAGA demonstrates fitter values for 7
adaptations compared to 4 for the GA).

In Figure 8, a more detailed depiction of a point evaluation from one
of the previous adaptation runs, shows how close, behaviourally, the
model can be optimized to fit the biology. In each section of the
diagram, blue represents the target, and red the adapted simulation.
8a is the distribution of the Inter Spike Interval (ISI), 8b and 8c
show how closely the simulation matches the target's burst and
space lengths, 8d shows the distribution of spike rate, and 8e shows
a comparison of rate recordings. It is important to note that
limitations of the fitness function and model structure mean that it Figure 7. Presents the best attained fitness values when

adapting to both in-vivo and in-vitro data.

303

is highly unlikely that a perfect behavioural match will be
obtained. These limitations are most apparent when the quantity
of recorded data is restricted, essentially skewing the target, and
producing uncharacteristic biological behaviour.

Figure 9 shows the four algorithms adapting to the same
biological target. Each point within the figures represents an
evaluated position within the parameter space, where the bands
within the X axis correspond to generations, and the Y axis
corresponds to fitness as a relative deviation from the target
(lower is better). The spread of fitness within each generation
illustrates how exploitative an algorithm is, where exploitative
algorithms search more heavily within the areas of best fitness;
hence the majority of new positions have similar or improved
fitness.

It was readily apparent, by the number of members within the
initial populations that produced unanalysable data (too many or
too few events per simulation), that much of the parameter space

was invalid, even when constrained heavily within a biologically
plausible range. As a result, any algorithm that did not
immediately respond to this problem suffered in performance.
The PSO is one such algorithm, but in this case it also performs
badly because it is not a suitable search method to be used
alongside hardware acceleration that imposes the restriction of
large population sizes. In this circumstance, a PSO will offer
progressively better locations in different areas of the parameter
space. This causes general “indecisiveness”, from iteration to
iteration, of the global best fit that excites the agents within the
PSO to ever greater velocities and prevents timely convergence.
This reinforces the view that PSOs are best suited to applications
that have small population sizes but a large number of available
iterations. Because we are utilizing graphics card hardware, our
neuronal modelling task has precisely the opposite characteristics.
With this algorithm the extra power provided by the GPU is being
wasted.

Figure 9. Algorithmic adaptation over time, (a) Estimation of Distribution Algorithm (EDA), (b) Particle Swarm Optimization
(PSO), (c) Genetic Algorithm (GA), (d) Distributed Adaptive Genetic Algorithm(DAGA). The X axis corresponds to the

generation number. The Y axis represents goodness of fit (the lower the value the better).

304

The EDA has a tendency to focus on promising areas of
parameter space too soon, which causes it to perform badly. This
“greedy” behaviour, even when reduced by globally increasing
the kernel size, searches and finds many other favourable points
within those areas and then “forgets” about exploring the rest of
the parameter space. This can be seen by the rapid adaptation of
the population to an average fitness of 75% deviation from the
target by the 4th generation, followed by the algorithms
stagnation. Because of the large kernel size, over time the
algorithm slowly spreads and is able to find better areas to search.
However, because of this large kernel size, the EDA finds it
difficult to exploit these improved areas, and by the end of the
adaptation the average fitness has yet to improve significantly.

A side effect of the EDAs aggressive nature is its ability to act as
a good indicator of the modality of the parameter space. Figure
10 shows the progress of a single parameter across the adaptation
run and clearly shows two final modes along with three others
that have been previously discarded. Many of the other
parameters had similar behaviours, and hence is a good indication
that this parameter space is highly multi-modal.

The GA outperforms the EDA and PSO. We suggest that this is
due to the algorithms’ greater suitability to the adaptation
environment, as the GA, through a combination of the selection
scheme and cross-over mechanism, splits the population into
subsets with varying degrees of exploration/exploitation. The
DAGA improves upon this regime by dividing the base GA into
individual elements that have the potential for alternate
algorithmic configuration. These elements are monitored such
that a large portion of the computational power can be adapted to
the more favourable areas within the configuration space.
Although only two algorithm parameters were adapted, and the
mechanism for this adaptation is simplistic, this approach showed
a general increase in performance across the majority of the cell
adaptations compared to the GA, which itself showed great
improvement over the alternate algorithms. The in-vivo data was
easier to adapt to than in-vitro data. The difference in overall
performance of all the algorithms, when presented with in-vivo

and in-vitro data, can be attributed to over-constraining the
problem parameter space, reducing the suitability of the
biologically plausible range of values for cells that are removed
from their natural environments. This presents another avenue
where an adaptive GA may flourish by altering the parameter
constraints during the adaptation process [22].

The GPU allowed for an experimental fitness analysis rate of
approximately 40 seconds to a minute per generation, though this
can easily be reduced by decreasing the simulation length. This
results in a model being analyzable once every 15 minutes,
instead of the one and a half days that would normally be
required. The typical maximum length of a neural experiment
within electrophysiology is six hours; so many iterations of a
model design can be tested within this period, while data is
simultaneously being collected from the biological sample.

5. CONCLUSION
We have developed a methodology for the rapid adaptation of
behaviour-based biological models to mimic the biological
behaviour of many independent cells of the same class. This is a
useful tool as it can enable experimental biologists to perform
iterative design within a lab environment. Additionally, insight
into the internal workings of a cell may be provided within the
time frame of an experiment, which can be used to guide
experimental procedure. Because model analysis is essentially
“blind”, i.e. nothing is known of the parameter space except for
its dimensionality, a robust algorithm is required to explore the
parameter space of the model.

We have compared four evolutionary algorithms to determine
which gives the best performance within the parameter space of
this and similar models. We postulate that models that are
generated as a result of an iterative design process will form
similar parameter spaces that present similar challenges to any
adaptation algorithm. We have found that the parameter spaces
are highly multimodal, but include many areas that produce un-
analyzable data. Therefore, suitable algorithms should be initially
exploitative to reject these null areas, but should be explorative
once these areas have been removed, to tackle the multi-modality
of the parameter space.

To perform the many computationally intensive fitness evaluation
processes, we use Graphics Processing Units (GPUs) which
evaluate thousands of points simultaneously within the parameter
space. GPU technology is upgradeable, cheap, and currently
provides more than two orders of magnitude improvement in
performance over conventional processors. However, GPU
architecture itself affects the optimum choice of algorithm, which
must be chosen to exploit the large population sizes it imposes.
To explore this theorem we have developed a Distributed
Adaptive Genetic Algorithm (DAGA), to take advantage of large
population sizes. DAGA does this by dividing the base GA into a
number of differently configured elements equal to its population
size, which emphasize varying degrees of exploration and
exploitation. Using a pheromone-based approach, areas of the
base GA’s configuration space that are consistently favourable
will attract a larger portion of the computation power available.
DAGA has performed well in comparison to more traditional
approaches. We are still optimising the DAGA and have already
found further improvements. This provides a strong indication
that as population sizes increase, which may be due to

Figure 10. Algorithmic adaptation of a single
parameter using EDA. The clusters of points show
how different modes are found, explored and then

discarded until the fittest is found.

305

environmental constraints such as GPU architecture, an individual
member is more efficiently utilized for monitoring the algorithms
configuration space, than actively searching the problem
parameter space.

6. FUTURE WORK
We will create a user-friendly interface that will allow biologists
to create, adjust and test the underlying functionality and structure
of neural models iteratively. This will not only allow rapid
prototyping to be used within a lab, but also online testing in the
form of real-time comparative tests and cell classification.
Biological phenomena may also be studied by analyzing the
distribution of adapted parameters that control the behaviour of
trusted biological models.

The techniques we are developing will allow biologists, and any
other concerned with modelling in real-time, to work more
efficiently and effectively in a lab environment. In many cases,
they may be able to perform new science.

7. ACKNOWLEDGMENTS
The authors would like to thank Dr Katherine Cameron for her
insight and assistance, and EPSRC for PhD studentship funding.

8. REFERENCES
[1] Sabatier, N., Brown, C.H., Ludwig, M., Leng, G.: Phasic

spike patterning in the rat supraoptic neurones in-vivo and in-
vitro. Journal of Physiology 558(1) (July 2004), 161-180.

[2] Brown, C.H.: Rhythmogenesis in vasopressin cells. Journal
of Neuroendocrinology 16(9) (September 2004), 727-739.

[3] Sabatier, N., Brown, C.H., Ludwig, M., Leng, G.: Burst
initiation and termination in phasic vasopressin cells of the
rat supraoptic nucleus. Journal of Neuroscience 24(20) (May
2004), 4818-4831.

[4] Durie, R.: A Population Model of Vasopressin Secretion.
PhD Thesis, University of Edinburgh (2007).

[5] Gerstner, W., Kistler, W.: Spiking Neuron Models: Single
Neurons, Populations, Plasticity. Cambridge University Press
(2002).

[6] Saїghi, S., Bornat, Y., Tomas, J., Renaud, S.: Neuromimetic
ICs and system for parameters extraction in biological
neuron models. Proceeedings of the IEEE International
Symposium on Circuits and Systems. (May 2006), 4207-
4211.

[7] La Rosa, M., Caruso, E., Fortuna, L., Frasca, M., Occhipinti,
L. and Rivoli, F., Bioengineered and Bioinspired Systems II,
Proceedings of the SPIE 5839, (June, 2005).

[8] Furber, S., Temple, S.: Neural systems engineering. Journal
of the Royal Society 4 (2007), 193-206.

[9] ATI Developers Website.
http://ati.amd.com/developer/index.html

[10] NVIDIA Developers Website.
http://developer.nvidia.com/page/home.html

[11] NVIDIA: CUDA Programming Guide 1.0.
http://developer.nvidia.com/object/cuda.html

[12] Roper, P., Callaway, J., Shevchenko, T., Teruyama, R.,
Armstrong, W.: AHP's, HAP's and DAP's: How potassium
currents regulate the excitability of rat supraoptic neurones.
Journal of Computational Neuroscience 15 (2003), 367-389.

[13] Holland, J.H.: Adaptation in Natural and Artificial Systems.
University of Michigan Press, Ann Arbor, Michigan (1975).

[14] Patel, L.N., Murray, A.F and Hallam, J.: Super-lampreys and
wave energy: Optimised control of artificially-evolved,
simulated swimming lamprey, Neurocomputing, 70(7-9),
(March 2007), 1139-1154.

[15] Wright, A.H.: Genetic Algorithms for Real Parameter
Optimization, Foundations of genetic algorithms, (1991),
205-218.

[16] Larranga, P., Lozano, J.A.: Estimation of Distribution
Algorithms: A new tool for evolutionary computation.
Kluwer Academic Publishers, Boston (2002).

[17] Kennedy, J., Eberhart, R.: Particle swarm optimization.
Proceedings of the IEEE International Conference on Neural
Networks 4. (1995) 1942-1948

[18] Particle Swarm Central Website:
http://www.particleswarm.info

[19] Carlisle, A., Dozier, G.: An off-the-shelf PSO. Proceedings
of the Workshop on Particle Swarm Optimization. (2001),
1-6

[20] Diosan, L., Oltean, M.: Observing the swarm behavior
during its evolutionary design. Proceedings of the genetic
and Evolutionary Computation Conference (GECCO),
(2007).

[21] Angeline, P.J.: Adaptive and Self-Adaptive Evolutionary
Computations. Computational Intelligence: A Dynamic
Systems Perspective, IEEE Press, 152-163, (1995).

[22] Eiben, A.E., Hinterding, R. Michalewicz, Z.: Parameter
control in evolutionary algorithms. IEEE transactions on
Evolutionary Computation, 124-141, (1999).

306

