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ABSTRACT
This paper covers a multi-objective Ant Colony Optimiza-
tion, which is applied to the NP-complete multi-objective
shortest path problem in order to approximate Pareto-fronts.
The efficient single-objective solvability of the problem is
used to improve the results of the ant algorithm signifi-
cantly. A dynamic program is developed which generates
local heuristic values on the edges of the problem graph.
These heuristic values are used by the artificial ants.

Categories and Subject Descriptors
I.2.8 [Artificial Intelligence]: Problem Solving, Control
Methods, and Search—Heuristic methods, Dynamic program-
ming

General Terms
Algorithms, Design, Measurement, Verification
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Multi-Objective Optimization, Hybridization, Ant Colony
Optimization, Dynamic Programming, Shortest-Path Prob-
lems, Pareto-Optimization
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1. INTRODUCTION
Shortest path problems and traveling salesman problems

are typical problems with a broad application range in prac-
tice. Some problems belong to complexity class P and may
be solved efficiently within appropriate time with the help
of known algorithms. Other mostly NP-complete problems
turn out to be more difficult and, therefore, require the use of
heuristic methods such as Ant Colony Optimization in order
to determine approximative solutions. There are some prob-
lems that can be assigned to complexity class P by apply-
ing a single-criterion objective function. The multi-objective
version of the problem is NP-complete. We are going to ex-
emplarily use the multi-objective shortest path problem in
directed, non-cyclical graphs. The single-objective version
of this problem belongs to problems in complexity class P
and can be solved efficiently. Dijkstra developed an algo-
rithm that solves the problem in a complexity of O (

n2
)

[4].
The algorithm of Warshall and Floyd even specifies all
shortest paths between all nodes in O (

n3
)

with the help of
dynamic programming (see in [16], [9]).

The multi-objective version of the shortest path problem
is NP-complete and even the bi-objective case is intractable
(see in [11], [15]). Especially for big problem instances, it
is impossible to use an algorithm, which definitely solves
the problem. Therefore, a heuristic method is used to solve
the Problem, in this case a multi-objective Ant Colony Opti-
mization approach. This article shows how to use the single-
objective solvability to improve the multi-objective ant al-
gorithm.

2. PROBLEM DESCRIPTION
The multi-objective shortest path problem considered here

is based on a non-cyclical, directed graph (digraph) D, which
can be described as the tuple in equation (2.1).

D = {V, E} (2.1)
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The sets V and E are to be described as following in (2.2).

V = {vi : i = 1, ..., z; z ∈ N}

E = {eij : vi → vj : vi, vj ∈ V ; vi 6= vj}

V 6= Ø, E ⊆ V 2

(2.2)

The set V with its elements vi ∈ V describes all nodes of
the graph. These nodes are connected by edges eij ∈ E.
An edge eij depicts a directed relation between the nodes
vi and vj . The node vi is called start node of the edge and
vj is called end node of the edge. The direction of an edge
can be described using the notation eij = vi → vj . The
non-cyclical character of the graphs used here is specified by
the condition in equation (2.3).

@C = {(vk → vk1) , (vk1 → vk2) , ...,(
vkl−1 → vkl

)
(vkl → vk)} ⊆ E

(2.3)

Besides the structure of the graph there is the fact that edges
have weights. Every weight describes the separate cost or
the use of an edge in terms of a component for the later to be
defined objective function for a criterion. Due to the multi-
objective nature of the problem a separate weighting func-
tion for each edge and for all criteria is defined. The function
fc

e in equation (2.4) describes the weighting function for the
edges of the graph having criterion c. The number of all
criteria of the problem is described by n.

fc
e : eij 7→ R+ ∀eij ∈ E with c = 1, . . . , n

2 ≤ n ∈ N
(2.4)

The paths π(vs, vt) through the graph between two defined
nodes vs and vt are solutions of the problem. The set of all
possible solutions of the problem is described by the solution
space Π (vs, vt) [see equation (2.5)]. The nodes vs and vt are
called start and end node of the path.

Π (vs, vt) = {π (vs, vt) : {(vs → vs+1) , (vs+1 → vs+2) ,
. . . , (vt−1 → vt)} ⊆ E}}

(2.5)

Every path is rated regarding all criteria with a aggrega-
tion of the weighting functions for each edge of the path.
Our research project examines a problem with three inde-
pendent or conflicting criteria which are subject to different
aggregation methods (n = 3).1 The first criterion equals a
monetary value of cost, which is the result of summing up all
weights along the certain path. The second criterion is an
aggregated probabilistic value. The particular weights of the
edges describe independent occurrence probabilities of local
events. The aggregated probability value of a path results
from the product of all weights along the path. The third
criterion is subject to the Min-Max aggregation method.
Therefore, the objective function value is created from the
maximum of all weights along the certain path.

While the criteria c = 1 and c = 2 are in a conflicting
relation, criterion c = 3 can be identified as independent.

The calculation used here can be formalized by function

1The assumption n = 3 is only an example and can be
extended to any number of criteria.

fc
π in equation (2.6).

fc
π (π(s, t)) =





∑
∀eij∈π(s,t)

fc
e (eij) if c = 1

∏
∀eij∈π(s,t)

fc
e (eij) if c = 2

max
∀eij∈π(s,t)

fc
e (eij) if c = 3

(2.6)

Expecting that all criteria should be minimized (criteria
that should be maximized have to be inverted properly), the
objective function of the problem can be described as F in
equation (2.7) (see vector optimization in [13]).

min F (π) =




f1
π

f2
π

...
fc

π

...
fn

π




with π ∈ Π (2.7)

It is rarely possible that a single perfect solution π∗∗ ex-
ists that is optimal regarding all criteria and dominates all
other solutions. As we have an existing conflict between two
criteria in our example, there is no possibility for a perfect
solution [14]. That is why the set of all efficient solutions
should be determined. The efficiency of the solutions results
from the non-dominance and the Pareto-optimality of the
solution, respectively. A solution πA dominates the solution
πB weakly (πA º πB) if at least the condition in equation
(2.8) is effective [3].

fc
π (πA) ≤ fc

π (πB) ∀c ∈ {1, . . . , n}

fc
π (πA) < fc

π (πB) ∃c ∈ {1, . . . , n}
(2.8)

A solution πA is regarded as efficient, if there is no solution
πB ∈ Π which dominates πA weakly. [see equation (2.9)].

πA ∈ Π∗ ⇔ @πB ∈ Π : πB º πA (2.9)

These solutions πA ∈ Π∗ are also called Pareto-optimal [3].
In the target area the objective function values of the so-
lutions in Π∗ set up the so called Pareto-front. Π∗ ⊆ Π
describes the set of all efficient (Pareto-optimal) solutions.
The subject of the optimization process is to obtain Π∗ and
therefore, all efficient solutions.

3. MULTI-OBJECTIVE ANT COLONY OP-
TIMIZATION

To solve the described optimization problem, due to the
NP-completeness the Ant Colony Optimization (ACO) Meta-
heuristic is applied. The subject of the algorithm is a Pareto-
optimization to determine all non-dominated solutions of the
problem.

3.1 Ant System
Initial point is the Ant System (AS)2, an algorithm de-

veloped by Dorigo, Maniezzo and Colorni [6]. This is
where artificial ants are used to determine the shortest path
within a graph. Each ant moves through the graph and

2originally Ant System / ant-cycle
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constructs a path πk. The ant has to decide locally which
edge to choose at each node. This random decision by using
the so called random proportional rule is made based on all
available edges (Ni) that go off from the local node position
vi [see equation 3.1)].

p(eij , t) =





(τij(t))α·(ηij)
β

∑
j∈Ni

(τij(t))α·(ηij)
β if j ∈ Ni

0 otherwise

(3.1)

The heuristic information ηij and the pheromone informa-
tion τij(t) of an edge eij at the specific moment t between
the nodes vi and vj influence the decision. The heuristic
information depicts a local information about the length of
a section or the attractiveness of a single alternative, re-
spectively. The pheromone information includes a global
memory of the ants and therewith an experience about the
global attractiveness of alternatives. For the Traveling Sales-
man Problem (TSP) the set Ni of all available alternatives
is built from the total quantity of edges that go out from
node vi without the edges leading to already visited nodes.
Using the shortest path problem in non-cyclical digraphs the
node vt has to be reachable through all edges of the set Ni.
Therefore, all edges that do not lead directly or indirectly to
the node vt (eij /∈ feasible) are removed from the graph.3

Algorithm 1 shows the possibility of how to mark all feasi-
ble edges in the graph. Therewith the subset relation Ni ⊆
feasible arises.

Algorithm 1 Marking all feasible edges (and nodes) in the
graph for the solution construction of ACO

function: DetermineFeasibleEdges
requires digraph D, node vt

begin

1: feasible ← feasible ∪ vt

2: for all edges eij ∈ E : j = t do
3: feasible ← feasible ∪ eij

4: if node vi /∈ feasible then
5: DetermineFeasibleEdges(D, vi)
6: end if
7: end for

end function

The parameters α and β in equation (3.1) regulate the
influence of the pheromone and heuristic information. After
each solution construction the pheromone information is up-
dated based on equation (3.2). All of the edges used by the
ants in the iteration are incremented. After each iteration
an evaporation across all edges of the graph that is affected
by parameter ρ is accomplished.

τij(t + 1) = ρ · τij(t) +∆ τij(t, t + 1) (3.2)

The value ∆τij(t, t + 1) is calculated using equation (3.3).

∆τij(t, t + 1) =
m∑

k=1

∆τk
ij(t, t + 1)

∆τk
ij(t, t + 1) =

{
Q

Lk(t)
eij ∈ πk

0 otherwise

(3.3)

3This results from the fact that we use a non-cyclical di-
graph.

Q depicts a constant and has to be defined as a parameter.
Lk(t) equals the length or the cost of the path which has
been constructed by the ant k in iteration t.

3.2 Bi-Objective Pareto-Optimization Using
Ant System

Iredi, Merkle and Middendorf introduced a bi-objec-
tive version of Ant System for Pareto-optimizing [12]. In this
version m ants are divided onto w colonies. The colonies get
heterogeneous weighting regarding the optimization criteria.
The ants within colonies also get heterogeneous weights.
The weighting parameter λ ∈ [0, 1] describes the relative
importance of the first criterion. The weight of the second
criterion results to (1− λ). The assignment of weighting in-
tervals to the colonies can be done disjoint or overlapping. In
case the intervals are disjoint there is no possibility that two
ants have identical weights. The colonies have intervals sepa-
rated from each other which are distributed to the respective
ants. The weighting parameter λk of an ant k ∈ [1, m/w]
from colony g ∈ [1, w] is determined by equation (3.4).

λk = (g − 1) ·m/w + k (3.4)

The overlapping approach not considered here has weighting
intervals of the colonies that overlap by 50%, so that at least
two ants with the same weight exist.

An ant chooses an edge eij at node vi from the alternative
set Ni with probability p which is shown in equation (3.5).
The pheromone and the heuristic information for the first
criterion are described by the symbols τij and ηij . The sym-
bols τ ′ij and η′ij correspond to the pheromone and heuristic
information for the second criterion.

p(eij) =
τλα

ij · ηλβ
ij · τ ′(1−λ)α

ij · η′(1−λ)β
ij∑

h∈Ni
τλα

ih · ηλβ
ih · τ ′(1−λ)α

ih · η′(1−λ)β
ih

(3.5)

After finishing the solution construction of all ants, the phe-
romone matrices are updated. Two matrices per colony are
used, one for each criterion. In this context, multiple strate-
gies are considered which ants may use for updating. Each
colony g manages a local front, which is derived from the set
Πbsf

g . This set includes all recently found best-so-far solu-
tions that are not dominated by any other solution recently
found by any ant of the colony g. Furthermore a global front
which includes all best-so-far solutions (Πbsf ) of all ants of
all colonies is managed.

Depending on the strategy, an ant may either perform an
update if it found a solution at the local or at the global
front. Experiments in [12] showed that the update strategy
of the global front achieved better results, which is why this
strategy is pursued more specifically.

The pheromone update of an ant k to the related edges
eij ∈ πk will be performed with the value ∆τk

ij , determined

by equation (3.6).4 The set Kt contains all ants eligible for
updates of the iteration t.

∆τk
ij(t, t + 1) =

1

|Kt| (3.6)

In this paper we use the update strategy by origin of the
ants. This is where the pheromone matrices of the colony
the ant belongs to are updated.

4The notation |Kt| describes the length of set Kt (number
of elements).
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3.3 Optimizing More than Two Objectives
The bi-objective approach we described is to be extended

to n > 2 criteria. We replace m by a configurable sampling
parameter χants > 1 which determines the granularity of
the weights between the criteria. Therefore, the number of
ants m automatically results from χants. The weights of

the criteria are captured in a weighting vector ~λk, which is
assigned injectively to ant k. We also define the set Λn

ants,
which includes all feasible weighting vectors for the ants of
an n-criteria problem. Λn

ants is defined in equation (3.7).

Λn
ants =





~λk =




λ1
k

...
λc

k

...
λn

k




:

λc
k ∈ {0, 1

χants
, 2

χants
, . . . , 1};

∑n
c=1 λc

k = 1;

∀k = 1, . . . , m





(3.7)
The number of ants m results from parameter n and χants

and can be determined by equation (3.8).

m(n, χants) =





χants if n = 2

χants∑
i=1

m(n− 1, i) otherwise
(3.8)

Equal to Iredi et al. the ants are pooled to colonies. The
sampling parameter χcolonies handles the generation of the

weighting vectors ~λg for the colonies g = 1, . . . , w.5 To avoid
empty colonies the condition χcolonies ≤ χants needs to be
complied. An ant k will be assigned to colony g if the vector

distance from ~λk to ~λg is the shortest. Formally, this relation
can be described by equation (3.9).6

k ∈ g : arg min
∀g=1,...,w

√√√√
n∑

c=1

(
λc

k − λc
g

)2
(3.9)

The calculation of probability p according to how the ant
makes its decision will be changed to equation (3.10).

p (eij) =

∏n
c=1(τ

c
ij)

α·λk
c · (ηc

ij)
β·λk

c

∑
Ni

∏n
c=1(τ

c
ij)

α·λk
c · (ηc

ij)
β·λk

c

(3.10)

Towards the original approach we only use one pheromone
matrix for all criteria.

3.4 Extensions to Ant Colony System
In the following the approach described in the last section

will be combined with the main properties of Ant Colony
System (ACS) [5]. The decision rule for choosing an edge
eij from the set of alternatives (Ni) is extended by parame-
ter q0 ∈ [0, 1]. q0 describes the probability that an ant selects
the edge with the best value p (eij) from the set Ni. Oth-
erwise, a decision is made using the Random Proportional
Rule as already described (J).

Formally, this so called Pseudo-Random Proportional Rule

5w is also determined as m by equation (3.8) using χcolonies

instead of χants.
6In this case the colonies are disjoint.

can be described by equation (3.11).

eij =





arg max
l∈Ni

p (eil) if q ≤ q0

J otherwise

(3.11)

The global pheromone update is accommodated to the con-
cept of Ant Colony System according to equation (3.12).
The update quantity ∆τij is still be determined as seen in
equation (3.6). The evaporation will only be applied on
edges with a positive update quantity.

τij(t + 1) = (1− ρ) · τij(t) + ρ ·∆ τij(t, t + 1)

∀ ∆τij(t, t + 1) > 0
(3.12)

Furthermore, in ACS a local pheromone update is intro-
duced. Each edge eij selected in an ant’s local decision ex-
periences a negative update. So the attractiveness of those
edges is lowered in comparison to the alternatives and a
higher exploration is targeted. The negative update is real-
ized through equation (3.13). ξ ∈ [0, 1] affects the intensity
of the local negative update.

τij = (1− ξ) · τij + ξ · τ0 (3.13)

The parameter τ0 describes the initial value of the pheromone
information.

4. HEURISTIC INFORMATION
The determination of the heuristic information values ηij

has not been addressed so far and should be described sub-
sequently. In the first stage of the optimization run via Ant
Colony Optimization the most important issue is to lead the
artificial ants into promising regions of the solution space
that will be searched through more intensely in later stages.
But at the beginning there are no significant pheromone in-
formation. To avoid a purely stochastic search in the first
iterations, the heuristic information values are used to con-
trol the exploration. Therefore, the heuristic information
values are essential for creating good initial solutions with
a high level of diversity and affect the algorithm behavior
significantly.

In the following, we discuss the heuristic information val-
ues used in the standard case. After that, we will introduce
an alternative concept based on Dynamic Programming for
the problem considered here.

4.1 Inverted Edge Weights
In the standard case the heuristic information values ηij

for shortest path problems or TSP are based on the local
edge weights of the graph [10]. As shown in equation (4.1),
the inverted local edge weights for minimization problems
are used as heuristic information ηc

ij of edge eij for criterion
c.

In the following we refer to this approach as Standard
Heuristic Information.

ηc
ij =

1

fc
e (eij)

(4.1)

This concept corresponds with a simple Greedy heuristic
and is not really suitable to create good initial solutions,
especially for multi-objective problems.

Because of the strict local principle, edges with extremely
varying objective function values fc

e (eij) (either very good
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or very bad) depict a major problem. The probability dis-
tribution for local decisions in the first iterations are already
extremely high or low for single edges. There is a risk that
entire parts of the graph are excluded from the search pro-
cess. Huge areas of the solution space may possibly not be
reached using this concept. This could lead to a early con-
vergence of the algorithm to a local optimum.

4.2 Look-Ahead Heuristic (LAH)
Subsequently a dynamic program for solving the single-

objective problem exactly is introduced. Algorithm 2 de-
termines the shortest path from all nodes to the end node
separately for all single criteria. The algorithm is heavily
similar to the one of Floyd and Warshall [16], [9].

All objective functions used here are separable and ful-
fill the terms of Dynamic Programming [1]. The Dynamic
Programming algorithm is applied to any criterion of the op-
timization problem. The output of the Dynamic Program
is used to improve the ACO algorithm. The inverted local
edge weights 1/fc

e (eij) are no longer used as heuristic infor-
mation. We set ηc

ij to the single-criterion objective function
values of the respectively shortest (best) path starting from
the node vi to the end node vt by using the edge eij (Look-
Ahead Heuristic information, see also [8], [7] for solving par-
allel path problems).

Formally, a path from a node vi to a node vj by using an
edge eij can be defined as in equation (4.2) as π(vi, eij , vt).

π(vi, eij , vt) = π(vi, vt) ⇔ eij ∈ π(vi, vt) (4.2)

The algorithm introduced here determines all objective func-
tion values of the optimal paths between all nodes vi of the
graph and the end node vt for each criterion. Algorithm 2
shows the optimistic best-case-version of Look-Ahead Heuris-
tic information (LAH/bc). Furthermore we have developed
two other versions.

The pessimistic worst-case-version (LAH/wc) determines
all objective function values of all worst solutions from any
node vi to the end node vt for each criterion. Divergent to
lines 8 and 13 in algorithm (2) the calculation of ηc

ij and
π∗(vs, vt) results, according to equation (4.3).

ηc
ij ← fc

π(π(vi, eij , vt))

π∗(vs, vt) ← π(vs, esj , vt) : arg max
∀esj∈E

fc
π(π(vs, esj , vt));

(4.3)
Using the worst-case-version of the algorithm the deter-

mined heuristic values ηc
ij describe the least guaranteed ob-

jective function value of a (partial) solution from the node vi

to vt by using the edge eij regarding to criterion c. The third
version of the algorithm determines the average value of the
heuristic information calculated by the two other versions
and is referred to as average-case-version (LAH/ac).

Since the optimal and pessimistic path between start and
end node is determined by the heuristic for each criterion,
there are known all limitation vectors of the Pareto-front
of the problem. Therefore, the diversity level of the ini-
tial solutions is improved significantly. Due to the fact that
also partial solutions and not only local weights are rated
by LAH, this should lead to an improvement of the ACO
algorithm.

Algorithm 2 Calculation of Look-Ahead Heuristic values

function: MakeHeuristicValues
requires digraph D, node vs, node vt

begin

1: for all criteria c = 1, . . . , n do
2: GetPath(D, vs, vt, c)
3: end for

end function

function: GetPath
requires digraph D, node vs, node vt, criterion c
begin

1: if node vs marked then
2: return π∗(vs, vt)
3: else
4: π∗(vs, vt) ← ∅
5: for all edges eij ∈ E : i = s do
6: π(vi, eij , vt) ← eij ∪ GetPath(D,vj , vt)
7: if vt ∈ π(vi, eij , vt) then
8: ηc

ij ← fc
π(π(vi, eij , vt))

9: else
10: E ← E \ eij

11: end if
12: end for

13: π∗ (vs, vt) ← π(vs, esj , vt) :
arg min∀esj∈Efc

π(π(vs, esj , vt))
14: end if
15: mark vs

16: return π∗(vs, vt)

end function

5. EVALUATION
The introduced concepts of the multi-objective ACO algo-

rithm and especially the Look-Ahead Heuristic values are to
be evaluated in the following part. Realizing this, instances
of the problem were examined which could be solved exactly
using a multi-objective Dynamic Program. So the exact so-
lution of the problem is determined for comparison to the
approximated fronts by the ACO algorithm. We expect that
the behavior of the ACO algorithm applied to much more
difficult problem instances is similar.

5.1 Performance Figures
First, the performance figures approximation (apx) and

diversity (div) are generated to estimate the applied algo-
rithms. Let ΠA with the elements πA be the set of approx-
imated solutions determined by the ant algorithm and Π∗

with the elements π∗ be the set of all Pareto-optimal so-
lutions of the problem.7 The approximation of a solution
πA

i ∈ ΠA is to be described as the shortest vector distance
to a solution π∗i ∈ Π∗ according to equation (5.2). The di-
versity describes the shortest vector distance from a solution
π∗i ∈ Π∗ to a solution πA

i ∈ ΠA according to equation (5.3).
As these values are distance values, the aim is to get values
near 0.

‖fc
π(πi)‖[0,1] = 1− fc

π(πi)− fc
ideal

fc
neg − fc

π(πi)
(5.1)

7If the set of the exact solutions of the problem is unknown,
the set of the best known solutions may act as reference
set. At this, condition Π∗ º ΠA should be fulfilled. In this
article we use only the set of all Pareto-optimal solutions.
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apx(πA
i ) = min

π∗∈Π∗

√√√√
n∑

c=1

(
‖fc

π(πA
i )‖[0,1] − ‖fc

π(π∗)‖[0,1]

)2

(5.2)

div(π∗i ) = min
πA∈ΠA

√√√√
n∑

c=1

(
‖fc

π(π∗i )‖[0,1] − ‖fc
π(πA)‖[0,1]

)2

(5.3)
For an exact determination of the vector distance, it is nec-
essary to transform the objective function values of the dif-
ferent criteria in such a way that we get a uniform mea-
surement scale. Therefore, a standardization on the interval
between the (positive) ideal point of the problem Fideal and
the negative ideal point Fneg according to equation (5.1) will
be performed.8 The measures apx(ΠA) and div(Π∗) depict
the normalized average values over all elements of the ap-
proximated set of solutions or the reference set of solutions.

apx(ΠA) =

∑
πA

i
∈ΠA

apx(πA
i )

|ΠA|·√n
; div(Π∗) =

∑
π∗

i
∈Π∗

div(π∗i )

|Π∗|·√n

(5.4)

Due to the compensatory effects, the average values div(Π∗)
are not quite meaningful. Therefore, we introduce the di-
versity limit dlim(r) with r ∈ [0, 1] as an additional measure
which describes the number of solutions π∗i ∈ Π∗ which at
least fulfill ‖div(π∗i )‖[0,1] ≥ r. Therewith, it describes the

number of solutions in Π∗ for which there do not exist any
solution in ΠA with a vector distance shorter than r. For-
mally, in equation (5.5) the measure dlim will be defined.

dlim(r) =
∣∣Πdiv

∣∣ with

Πdiv ⊆ Π∗ : π∗i ∈ Πdiv ⇔ ‖div(π∗i )‖[0,1] ≥ r
(5.5)

The normalized performance figure ‖dlim(r)‖[0,1] describes
dlim as a percental ratio from the number of all solutions in
the set Π∗ according to equation (5.6).

‖dlim(r)‖[0,1] =
dlim(r)

|Π∗| (5.6)

The values of dlim(r) can be plotted in a ’curve’ for r =
1, . . . , R. This curve describes the structure of the diversity
of the approximated solutions in comparison to the refer-
ence set Π∗.9 Furthermore in equation (5.7) a performance
figure of the diversity structure dvs is defined which rates
the complete structure of diversity [7].

dvs (R) =

R∑
i=1

i · ‖dlim (i/R)‖[0,1]

R
(5.7)

R is a parameter for controlling the precision of the perfor-
mance figure dvs. In this contribution we use R = 100. In

8The ideal point Fideal usually depicts a non-reachable point
in the target area and its coordinates result from the objec-
tive function values of the single-criterion optimal solution
fc
ideal of all criteria c. The negative ideal point Fneg is con-

structed from the objective function values of single-criterion
pessimistic solutions fc

neg. As the problem is solvable exactly
for a single criterion the determination of F c

ideal and F c
neg is

not problematic.
9This is similar to the concept of Lorenz curve [2].

dvs the different values for dlim are aggregated by rating
high values for r significantly higher than low values for r.
With this method bigger distances of single solutions from
the reference set to the approximated set in the target area
are penalized much more than smaller distances. The lower
the value of dvs is, the better the approximated set can be
rated regarding the diversity.

5.2 Results
During a parameter test, robust configurations of the multi-

objective ant algorithms solely using the Standard Heuristic
(inverted edge weights) was determined.

Using the values q0 = 0.5, α = 1, β = 3, ρ = 0.1, τ0 =
0.05, multiple problem instances returned very good results
with Ant Colony System. The sampling parameters χants =
5 and χcolonies = 5 were chosen (m = w = 15). The number
of t = 600 iterations were processed and 9000 solutions were
created per optimization run.

It turned out that the parameters α = 1, β = 5, ρ = 0.01,
χants = 3 and χcolonies = 3 depict a robust configuration for
the Ant System algorithm. Since m = w = 6 Ant System
has performed t = 1500 iterations to create 9000 solutions
per optimization run.

Both configurations have also been tested using the Look-
Ahead Heuristic values. Table 110 shows the results in com-
parison to each other.

Heuristic apx
(
ΠA

)
div

(
ΠA

)
dvs (100) |ΠA|

Ant System
Standard 0.0440 0.2367 0.4715 67,9
LAH/wc 0.0255 0.0402 0.1309 104,7

Ant Colony System
Standard 0.0231 0.0532 0.3192 106.8
LAH/bc 0.0161 0.0247 0.0495 137.7
LAH/ac 0.0169 0.0251 0.0505 135.8
LAH/wc 0.0164 0.0246 0.0467 138.0

Table 1: Average results over 8 problems with an
input length (|E|+ |V |) from 527 to 1408 over 5 runs
each.

It is obvious that the results of the Ant System are consid-
erably inferior to the Ant Colony System. Furthermore, all
versions of Look-Ahead Heuristic values create significantly
better results than the Standard Heuristic. The worst-case-
version achieves the overall best and most robust results.
As the calculation of the Look-Ahead Heuristic values only
took some seconds in all problem cases, the developed con-
cept can be approved.

Consecutively, the problem D1 should be examined more
specifically to point out the results. This concerns a prob-
lem graph with 415 nodes and 762 edges. The solution space
includes a total of approximately 3.95 · 1018 solutions, the
Pareto-front includes a total of 990 non-dominated solutions.
Table 2 shows the results for this problem D1 which are sig-
nificantly similar to the values from table 1. To secure the
convergence of the algorithm, the iterations were raised to
t = 1800. Thus 18,000 solutions were created per optimiza-
tion run. This also shows that the usage of the Look-Ahead
Heuristic information results in a significant improvement of

10best value, worst value
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the algorithm. Figure 1 shows the Pareto-front of the prob-
lem in comparison to the approximated fronts of the Ant
algorithms. It is obvious that the approximation of ACS al-
gorithm using LAH is clearly better than the approximation
of ACS using the Standard Heuristic information, especially
regarding the approximation of the second criterion.

Heuristic apx
(
ΠA

)
div

(
ΠA

)
dvs (100) |ΠA|

Ant Colony System
Standard 0.0127 0.0807 0.6998 82.6
LAH/bc 0.0117 0.0176 0.0264 126.6
LAH/ac 0.0123 0.0187 0.0303 128.8
LAH/wc 0.0110 0.0168 0.0259 128.6

Table 2: Results of the exemplary problem D1 (av-
erage values from 5 runs each).

Figure 1: Approximated front of ACS with Standard
Heuristic (top) and ACS with LAH/wc (bottom) in
comparison to the exact Pareto-front.

Figure 2 shows the curves of the diversity structure with
the percental diversity limits ‖dlim(r)‖[0,1] for all r = i/R
with i = 1, . . . , 100 and R = 100 by using ACS with the
Standard Heuristic and LAH. The values of the curve of
ACS/LAH decrease significantly faster and earlier than the
values of the other curve. Therewith a solution in the ap-
proximated set exists for a lot more solutions of the reference
set.

Figure 3 shows the development of the approximation, di-
versity and the size of the approximated front in relation to
the progress of the iterations. This once more shows that the
use of the Look-Ahead Heuristic information achieves a sig-
nificant improvement, especially regarding the development
of diversity and front size.

Figure 2: Curve of diversity structure of the al-
gorithm versions applied to D1 with dlim(r) for all
r = i/R with i = 1, . . . , 100 and R = 100 (average values
from 5 runs each).

6. CONCLUSIONS
This article demonstrates that the hybrid approach of the

ACO Meta-heuristic and Dynamic Programming with the
help of the Look-Ahead Heuristic information values can
lead to significant improvements of the results.

The usability is based on the fact that the single-objective
version of the optimization problem is solvable in an appro-
priate time.

The discussed concept can not only be applied to shortest
path problems but also to any other problem with a simi-
lar structure. The only important requirement is that the
solution is possibly using Ant Colony Optimization and the
objective functions of the criteria fulfill the terms of Dy-
namic Programming.
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