
Managing Team-Based Problem Solving with Symbiotic
Bid-Based Genetic Programming

Peter Lichodzijewski
piotr@cs.dal.ca

Malcolm I. Heywood
mheywood@cs.dal.ca

Faculty of Computer Science
Dalhousie University

Halifax, NS, B3H 1W5, Canada

ABSTRACT
Bid-based Genetic Programming (GP) provides an elegant
mechanism for facilitating cooperative problem decompo-
sition without an a priori specification of the number of
team members. This is in contrast to existing teaming ap-
proaches where individuals learn a direct input-output map
(e.g., from exemplars to class labels), allowing the approach
to scale to problems with multiple outcomes (classes), while
at the same time providing a mechanism for choosing an
outcome from those suggested by team members. This pa-
per proposes a symbiotic relationship that continues to sup-
port the cooperative bid-based process for problem decom-
position while making the credit assignment process much
clearer. Specifically, team membership is defined by a team
population indexing combinations of GP individuals in a
separate team member population. A Pareto-based com-
petitive coevolutionary component enables the approach to
scale to large problems by evolving informative test points in
a third population. The ensuing Symbiotic Bid-Based (SBB)
model is evaluated on three large classification problems and
compared to the XCS learning classifier system (LCS) for-
mulation and to the support vector machine (SVM) imple-
mentation LIBSVM. On two of the three problems investi-
gated the overall accuracy of the SBB classifiers was found to
be competitive with the XCS and SVM results. At the same
time, on all problems, the SBB classifiers were able to detect
instances of all classes whereas the XCS and SVM models
often ignored exemplars of minor classes. Moreover, this was
achieved with a level of model complexity significantly lower
than that identified by the SVM and XCS solutions.

Categories and Subject Descriptors
I.2.6 [Artificial Intelligence]: Learning—Parameter learn-
ing ; I.5.2 [Pattern Recognition]: Design Methodology—
Classifier design and evaluation

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO’08, July 12–16, 2008, Atlanta, Georgia, USA.
Copyright 2008 ACM 978-1-60558-130-9/08/07...$5.00.

General Terms
Algorithms, Experimentation, Performance

Keywords
Genetic Programming, supervised learning, classification,
coevolution, active learning, efficiency, problem decompo-
sition, teaming

1. INTRODUCTION
The team-based metaphor for problem decomposition un-

der GP is a cooperative coevolutionary model in which the
goal is to evolve a set of individuals that learn to interact
without any additional feedback from the fitness function.
That is to say, the fitness function is limited to providing
an overall measure of solution quality but does not actively
guide the process of team building or problem decomposi-
tion. The team-based approach naturally inherits the bene-
fits typically associated with a divide-and-conquer approach.
Thus, one can expect simpler or more transparent solutions
from team-based models than from monolithic models in
which solutions take the form of a single super-individual.

Early team-based approaches assumed that the individu-
als in a given team were specified a priori and that a team’s
composition remained fixed during evolution [1]. The popu-
lation was therefore comprised of a fixed number of individu-
als each with the same number of team members. The result-
ing solutions were found to represent sets of weak learners
making post-training evaluation of team member roles diffi-
cult [22, 23]. Other approaches evolved ensembles of learn-
ers using an island approach [10, 20] in which mechanisms
for diversity maintenance (and thus cooperation) were not
as direct as they are in an explicitly coevolutionary model.
Moreover, these approaches do not scale to producing large
teams or training on large datasets since they require one
run to generate each individual in the final solution.

More recently, Orthogonal Evolution of Teams (OET) was
proposed to combine the island and earlier team approaches
by defining appropriate selection and variation operators
[23]. OET, however, still pre-specifies the number of team
members as a single population-wide property as opposed to
letting this characteristic emerge though evolution.

Also of relevance to GP teaming is a negative correlation
model that utilizes a multi-objective fitness function (error
minimization and negative correlation) to maintain diversity
within a single population [3]. Such a framework produces
multiple individuals that learn to respond to different parts

363

of the problem without explicitly specifying team member-
ship. However, natural drawbacks still persist, such as the
cost of evaluating the diversity maintenance metric (pairwise
correlation) and the need to define a suitable post-training
voting heuristic.

One final example of cooperative GP teaming is based
on an activation function that is explicitly local (as in a
Gaussian) rather than global (as in a Sigmoid) [14]. When
used in combination with a multi-objective fitness function
and competitive coevolution the model proves effective at
problem decomposition from a single population under both
binary and multi-class classification domains [15]. The prin-
ciple drawback in this case is the cost of a clustering step
in the inner fitness evaluation loop required to parameterize
the local membership function (e.g., the Gaussian).

In this work we build on the bid-based model of coevo-
lution [12, 13] which re-casts the role of GP individuals by
using them to evolve a bidding strategy. The scalar actions
in this model are selected from a possibly infinite set and
assigned at initialization, making the approach most appro-
priate for domains with discrete action spaces such as clas-
sification and reinforcement learning. Earlier examples of
bid-based GP considered the influence of different auction
models for credit assignment [12] and the effect of using com-
petitive coevolution to scale the approach to large datasets
or problem spaces [13]. In both cases, in order to estab-
lish the ‘winner’ on any bidding round all members of the
population had to be evaluated. This meant that particu-
lar attention had to be placed on the design of appropriate
credit assignment mechanisms to avoid degenerate or para-
sitic behaviors. For example, individuals might concentrate
on outbidding others on exemplars already correctly classi-
fied instead of focusing on exemplars as yet not correctly
classified. It is this problem that is of particular relevance
to the SBB model presented in this work.

Symbiotic models of coevolution are explicitly serial in
nature as individuals form a meta population defining so-
lutions in terms of individuals indexed from a second pop-
ulation [19]. This is in contrast to parallel models such as
island approaches where the populations are isolated. We
propose to let the first population define the composition of
a team and the second population the GP-based individuals.
Individuals in the first population are a variable-length rep-
resentation and thus are not constrained to specifying the
same number of individuals as in OET [23] or the original
GP team models [1]. The competitive coevolutionary con-
text is retained resulting in a third point population defining
the exemplars over which fitness is competitively evolved un-
der Pareto-coevolution. Moreover, a fitness sharing metric
is used to encourage diversity is the point and team popu-
lations under finite population limits.

In summary, the SBB model introduced in this work coop-
eratively coevolves the content of teams under a symbiotic
relation. Simultaneously, it utilizes a Pareto-competitive
mechanism for coevolving the most useful exemplars sup-
porting the development of the teams as specified by a third
population. This model is developed by first reviewing the
most pertinent related works in Section 2. Section 3 de-
tails the SBB framework for team-based problem decompo-
sition under GP. Evaluation is conducted under large unbal-
anced binary and multi-class classification problems where
the SBB approach is benchmarked with respect to classifi-
cation performance and model simplicity against the LCS

formulation XCS as well as SVM classifiers, Section 4. Fi-
nally, recommendations and concluding comments are made
in Section 5.

2. BACKGROUND
The proposed SBB model builds on several research themes

from evolutionary computation, in particular, Pareto-based
competitive coevolution, coevolution through teams, symbi-
otic coevolution, and bid-based learning. In the following,
we summarize how these related works have motivated the
model developed here.

2.1 Competitive Coevolution
The interaction between the point and team populations

in the SBB training algorithm follows Pareto-based compet-
itive coevolution [7, 18]. A key concept in this framework is
the Pareto-dominance relation which is defined as

dom(�v1, �v2) ⇔ ∀q : �v1[q] ≥ �v2[q] ∧ ∃q : �v1[q] > �v[q] (1)

where �v1 and �v2 are two objective vectors, q indexes vector
dimensions (objectives), and dom(�v1, �v2) indicates that �v1

dominates �v2. If an individual is not dominated by any other
individual, it is said to be part of the Pareto front. Thus, the
Pareto front consists of individuals such that favouring one
individual over another requires a tradeoff in objective val-
ues. This relation, and the idea of the Pareto front, is used
by the SBB training algorithm to determine which points
and teams are selected into the next generation.

Given the ith team mi and the kth point pk the interaction
function G(mi, pk) returns the outcome of applying team mi

to point pk. Higher outcomes are assumed to be favoured.
The kth objective for a team mi is then defined as G(mi, pk).
Given Msize teams, objective Msize · i + j of point pk is
defined as j

1 if G(mi, pk) > G(mj , pk)
0 otherwise

(2)

for 1 ≤ i, j ≤ Msize. If this objective is equal to 1, then point
pk is said to distinguish between teams mi and mj . Pareto-
coevolution therefore searches for teams that achieve high
outcomes and points that serve as informative evaluators1.

Using a Pareto-based competitive coevolutionary frame-
work, guarantees of monotonic progress have been shown to
exist [5]. These proofs, however, assume an infinite memory
mechanism (e.g., population or archive). In this work, since
one of the goals is to train with a reduced computational
overhead, a finite memory mechanism is assumed. Further-
more, instead of using a multi-layer approach as is done in
LAPCA [5], the SBB algorithm separates the population
into two layers only. This places more emphasis on selection
within a layer (be it the Pareto front or the set of domi-
nated members) with competitive fitness sharing [21] used
to explicitly enforce a bias in favour of unique behaviours.

Such a dual mechanism for rewarding diversity – Pareto
dominance and competitive fitness sharing – is utilized on
account of the comparatively weak overlapping behaviours of
individuals that may legitimately populate the Pareto front
[15]. Conversely, introducing an explicitly cooperative mech-
anism in conjunction with the competitive Pareto method

1For consistency with the rest of the paper, the term ‘team’
is used for what is typically referred to as a ‘learner’ in
Pareto-coevolutionary literature.

364

is meant to provide a more effective mechanism for evolving
teams of individuals with non-overlapping objective values.

2.2 Teaming using Genetic Programming
GP ensembles combine multiple individuals, each designed

to fulfill the same role, with the aim of improving over-
all performance. If evolved independently, as in the case
of N-version GP [10], fit individuals that do not cooperate
well are generated (i.e., their behaviours overlap). Evolv-
ing teams of classifiers explicitly as a unit [1, 22], on the
other hand, produces team members that cooperate well
but have poor fitness in isolation, raising the question of
how the team would improve if the individuals were also fit.
OET [23] applies pressure on the team level and on the in-
dividual level separately in order to produce fit individuals
that cooperate well. Typically, in these cases, performance
gains are achieved when errors made by a few team members
are ‘masked’ by the correct decisions of the remaining team
members. These approaches therefore do not rely so much
on a division of labour as they do on redundancy.

In contrast to traditional voting or weighted combination
schemes, bid-based mechanisms have been proposed to co-
ordinate the actions of team members designed to fulfill or-
thogonal roles [12, 13]. Since only the ‘winning’ individual
acts at any one time, the problem faced by ensemble meth-
ods of combining the outputs of team members is a non-
issue. These approaches use GP to evolve the bidding be-
haviour and not to act as the classification model itself and
can therefore be naturally applied to multi-class (as opposed
to binary) classification problems [13].

2.3 Symbiotic Adaptive Neuroevolution
The interaction between teams and learners in the SBB

approach resembles the interaction between blueprints and
neurons in the symbiotic adaptive neuroevolution (SANE)
architecture [16]. Each SANE blueprint specifies which hid-
den layer neurons are to be combined into a neural net-
work (the input and output layers are fixed), while the neu-
rons specify the connections that are to be formed and their
weights. The neurons are said to form a symbiotic relation-
ship because a single neuron specialization cannot form a
successful neural network.

Two advantages of this type of symbiotic evolution are
suggested. First, since a successful solution requires multi-
ple neuron specializations, diversity is encouraged. Second,
a neuron that participates in multiple networks will be eval-
uated multiple times leading to better estimates of the neu-
ron’s fitness. Whereas SANE defines the fitness of a neuron
as the aggregate over the top five networks that the neuron
participates in, the SBB model does not explicitly specify
the teams to be used in learner fitness calculation. Instead,
a learner is removed from the population when it is no longer
found to be useful, i.e., when no team references it.

2.4 Learning Classifier Systems
LCSs typically fall into one of two categories. In Michi-

gan-style classifier systems such as XCS [24], the entire pop-
ulation forms the solution so that each individual represents
only a solution sub-component. In Pittsburgh-style classifier
systems such as GAssist [8], each individual in the popula-
tion is a complete solution. A team in the SBB approach
represents a complete solution, so based on this categoriza-
tion, the SBB model is more similar to Pittsburgh-style sys-

tems. Based on the behaviour of the generated solutions,
however, the SBB approach is more like a Michigan-style
classifier system.

Specifically, the interaction between the SBB team mem-
bers when applied to a test case resembles more closely the
interaction between Michigan-style individuals. The mech-
anism for selecting an action in Michigan-style classifiers is
analogous to the mechanism for selecting an action in the
proposed approach. In the former, the action associated
with the highest prediction is selected, and in the latter, the
action associated with the highest bid is chosen. Thus, the
bid component in the SBB approach plays the same role as
the condition and prediction components in Michigan-style
classifier systems.

3. MODEL DESCRIPTION
The SBB algorithm coevolves a point population, a team

population, and a learner population. The teams represent
‘useful’ combinations of learners, while the points corre-
spond to ‘informative’ tests that are used to evaluate the
teams (and indirectly, the learners). Each learner associates
a GP-based bidding behaviour with an action (e.g., a class
prediction).

The output of the training algorithm takes the form of a
single team. To classify a test exemplar, each member of the
team submits a bid by applying its associated bid program
to the input feature vector. The highest bidder is selected
as the winner and the action of this learner returned as the
predicted label for the test exemplar.

At each generation, Pgap new points and Mgap new teams
are generated. The points are generated by sampling the
training data while the teams are generated as offspring of
existing teams. In the latter case, learners present in both
parent teams are viewed as representing a useful combina-
tion and copied into the offspring.

Following evaluation of all the teams on all the points, all
but Pgap points and Mgap teams are selected to appear in
the next generation thus making way for new members in
the next generation. Pareto-based selection is used to se-
lect teams with respect to their outcomes and points with
respect to the distinctions they make [7, 18]. The primary
criterion for selection is whether a point/team is part of the
dominated set or whether it is part of the non-dominated set
(the Pareto front). If a ranking of points/teams within these
subsets is required, a form of competitive fitness sharing [21]
is used. This is done to introduce a bias in favour of the
points/teams that exhibit non-overlapping behaviours. In-
deed, evolving classifiers under a Pareto-competitive model
without an additional requirement for non-overlapping be-
haviours has been shown to lead to poor performance of the
resulting classifier [15].

A detailed model description is given in the following sec-
tion.

3.1 Training Algorithm: Detailed Description
The system coevolves the following types of individuals in

three separate populations:

Learners. Learners associate a bidding behaviour with an
action. The bidding behaviour is implemented as a GP
program and the action set is assumed to be discrete
and finite, e.g., corresponding to the set of class la-
bels. In problems where the actions are naturally con-

365

Table 1: SBB model algorithm parameters including
the values used in the experiments.

Description Value

Psize Point population size. 90
Msize Team population size. 90
tmax Number of generations. 30 000
pd Probability of learner deletion. 0.1
pa Probability of learner addition. 0.1
μa Probability of action mutation. 0.1
ω Maximum team size. 10

Pgap Point generation gap. 30
Mgap Team generation gap. 60

tinuous, the action set can be generated through dis-
cretization. A learner cannot solve the problem alone
but must be combined with other learners.

Teams. Teams combine learners to form a complete solu-
tion. They represent sets of pointers that reference
individuals in the learner population. A team must
contain at least 2 references but no more than ω refer-
ences. Learners of at least two different actions must
be present in a team.

Points. Points represent the tests used to evaluate the teams
of learners. In classification, these correspond to a sub-
set of the training exemplars.

The SBB training algorithm is summarized in Algorithm
1. Lines 3 and 4 initialize the point, learner, and team pop-
ulations P t, Lt, and M t respectively. In the main loop, line
5, reproduction steps are applied to the populations, lines 6
and 7. Evaluation of the teams on the points in the point
population is done in line 10 which then enables selection
of points, teams, and learners, lines 13 and 14. The best
team is returned in line 17. Specific functions used are de-
tailed below and the algorithm parameters are summarized
in Table 1.

InitPoints(Psize) A set of Psize − Pgap points is created
by generating each point as follows. First, a label is selected
with uniform probability from the set of all possible class
labels. Once this label is selected, a point is selected with
uniform probability from the set of all points matching that
class label. If all points of a given class have already been
selected into the population, the label is re-selected.

InitTeams(Msize) This function recognizes that a team
is composed of at least two learners whose actions should be
different. It generates Msize −Mgap teams of size two where
each team is generated as follows. First, two different actions
are selected with uniform probability. For each action, a
learner of that action is arbitrarily generated. The two new
learners are then used to form a new team. The teams that
are created in this way are added to M t and the learners
that are generated are added to Lt.

GenPoints(Pt) The model described assumes a classifi-
cation domain. As the point population corresponds to a set
of indexes it contains no implicit structure. This suggests
the need for a suitable point generation heuristic. To this
end, Pgap points are added to the point population P t where
each point is generated as follows. First, a label is selected

from the set of all possible labels with uniform probability.
A point is then selected with uniform probability from the
set of all points matching the chosen label. If all points
of a given label are already present in P t, another label is
selected. Furthermore, all points in P t are required to be
unique so that if a duplicate is chosen it is discarded and
another point selected. The basic goal of this two stage
point generation process – label then point – is to provide
a mechanism that is robust to the distribution of class la-
bels. Without such a precaution, degenerate behaviour that
labels all points with the major class is likely to result.

GenTeams(Mt,Lt) Two at a time, Mgap teams are gen-
erated and added to the team population M t as follows.
Two parents mi and mj are selected from Mpop with uni-
form probability and are used to form two offspring m′

i and
m′

j in two steps. First step, the learners from the parents
are reallocated in the offspring but do not change. In the
second step, mutation is applied to the learners in the off-
spring potentially generating new learners. If a new learner
does happen to be generated, it will only be referenced in the
offspring teams (i.e., the parent teams remain unaltered).

In the first step, references to learners present in both mi

and mj are included in both m′
i and m′

j . This ‘common’
genetic material is assumed to represent a useful combina-
tion of learners. Each of the references not shared by mi

and mj is then selected with uniform probability without
replacement and added to either m′

i or m′
j respecting the

minimum team size two and the maximum team size ω.
The second step is applied to each offspring team sepa-

rately. Here, the ‘original’ learners in an offspring refers to
the learners present at the beginning of this step, and the
order in which they are considered is always shuffled. First,
each of the original learners is considered and with prob-
ability pd removed so long as the teams size is more than
two. Next, for each original learner l a learner offspring l′ is
generated with probability pa so long as the team size is less
than ω. Initially, l′ is an exact copy of l. The program com-
ponent of l′ is then mutated in an implementation specific
manner. With probability μa, the action of l′ is changed to a
value selected with uniform probability. If the program and
bid mutation steps result in no changes to l′, it is discarded,
otherwise, it is included in the offspring team. The second
step is repeated if the offspring duplicate a parent.

After the new teams and learners are generated their re-
spective populations are updated accordingly.

Evaluate(mi, pk) This function determines the outcome
of applying team mi to point pk, G(mi, pk). Without loss of
generality, it is assumed that the outcomes are non-negative
and that higher values correspond to better outcomes. In the
current context, the outcome is set to 1 if the team correctly
labels an instance and 0 otherwise.

SelPoints(Pt) The outcomes G(mi, pk) calculated in line
10 are used to calculate a distinction vector of dimension
Msize ×Msize for each point as in [7, 18]. These distinction
vectors are used to calculate the non-dominated Pareto front
members in P t, denoted F(P t), and the set of dominated
points in P t, denoted D(P t).

Psize − Pgap points are then selected into the next gener-
ation. If F(P t) contains exactly Psize − Pgap points, then
the entire Pareto front it selected into the next generation
and all the points in D(P t) are discarded.

If F(P t) contains more points than are allowed to survive,
then points are selected from F(P t) only by first ranking

366

them by their competitive fitness sharing score [21] and then
selecting the required number of highest-ranking points. All
the points in D(P t) are discarded. The sharing score for a
point pk is calculated as

X
i

dk[i]

1 + Ni
(3)

where i iterates over all entries in the distinction vector,
dk[i] is the ith entry in pk’s distinction vector, and Ni is the
sum of the ith entries over the distinction vectors of all the
points in F(P t) (i.e., the number of points that make this
distinction). Points in D(P t) are not used in the calculation
of Ni since these points are eliminated from consideration
as far as point selection goes.

If F(P t) contains fewer than Psize − Pgap points then all
points from F(P t) are selected as well as some points form
D(P t). In this case, the points in D(P t) are ranked us-
ing their competitive fitness sharing score and the necessary
number of top ranking points selected. In this case, however,
the sum Ni accounts for all the points in P t.

SelTeams(Mt, Lt) Msize −Mgap teams are selected into
the next generation. Team selection follows the same process
as point selection except that here the outcome vectors are
used to find F(M t) and D(M t) and to calculate the sharing
score. Outcomes against the point population before selec-
tion, P t, are used in selecting teams because compared to
P t+1 this is seen as being more informative.

Given the selected population of teams M t+1, any learners
that are not referenced by a team are removed from Lt to
form Lt+1.

Best(Mt) Since training produces a population of teams,
this step is required to select one of the teams as the final
output. In the case of classification problems, a score metric
is defined for each team mi with respect to the training data
as

scoremi =
1

|C|
X
c∈C

DRc(mi) (4)

where C is the set of class labels and DRc(mi) returns the
detection rate on class c of team mi. The team with the
highest score on the training data is returned.

Algorithm 1 Overview of the SBB training algorithm.

1: procedure Train
2: t = 0 � Initialization.
3: P t = InitPoints(Psize)
4: (M t, Lt) = InitTeams(Msize)
5: while t ≤ tmax do � Main loop.
6: P t = GenPoints(P t)
7: (M t, Lt) = GenTeams(M t, Lt)
8: for all mi ∈ M t do
9: for all pk ∈ P t do

10: Evaluate(mi, pk)
11: end for
12: end for
13: P t+1 = SelPoints(P t)
14: (M t+1, Lt+1) = SelTeams(M t, Lt)
15: t = t + 1
16: end while
17: return Best(M t)
18: end procedure

3.2 Linear Genetic Programming
The learners’ bidding procedures were evolved using linear

GP [2]. To obtain bids between zero and one and to impose
a smooth transition between these two asymptotic values,
the Sigmoid f(y) = (1 + e−y)−1 was applied to each real-
valued program output y. Individuals therefore had to focus
on one of three regions – zero, transition, and one – without
having to implicitly identify these regions.

At initialization (Algorithm 1 line 4), bid program sizes
were selected from a predefined range with uniform proba-
bility. Four stochastic search operators were then used to
obtain program offspring: add, delete, swap, and mutate.
Instruction add and delete operators inserted and removed
an arbitrary instruction (to allow programs of varying com-
plexity). The swap operator exchanged the location of two
arbitrary instructions (in cases instructions were correct but
in the wrong order), while the mutate operator flipped an
arbitrary bit in the program. These operators were applied
with independently specified probabilities, and in all cases, a
uniform distribution was used in selecting program elements.
This scheme follows the GP implementation of [13].

4. EVALUATION
The SBB model was compared with two alternative mod-

els of classification. The first is the Michigan-style learning
classifier system XCS [24] which is similar to the SBB ap-
proach in that it provides solutions in the form of a cooper-
ating team of production rules evolved through a strength-
based bidding methodology. The specific XCS implemen-
tation used here, denoted XCSR, was augmented to handle
real-valued inputs and has previously been evaluated on sev-
eral classification problems [11]. The proposed approach was
also compared against the SVM implementation LIBSVM
(version 2.85) [4] on the basis that SVM models represent
an established performance baseline2. LIBSVM is an effi-
cient implementation of a second-order model for quadratic
optimization, as well as the now widespread Sequential Min-
imal Optimization decomposition methodology [6].

4.1 Methodology
The datasets used in the evaluation are summarized in

Table 2. The Census Income (CEN) dataset was obtained
from the UCI KDD Archive [9] while the ANN Thyroid Dis-
ease (THY) and Statlog Shuttle (SHU) datasets came from
UCI Machine Learning Repository [17]. This choice of prob-
lems was made to include large training partitions, multiple
classes, and unbalanced class distributions. Preprocessing
involved enumerating nominal features, and for XCSR and
SVM, performing a linear normalization.

The SBB model parameter values used in all the exper-
iments are detailed in Table 1. Parameters specific to the
GP implementation [13] were as follows: minimum program
size 1, maximum program size 48, add/delete/swap/mutate
probability 0.5, number of program registers 8, function
set {cos, exp, log, +,×,−,÷, %}. With the exception of the
population sizes and gaps, no fine tuning of parameters was
performed. Some fine tuning of the XCSR parameters was
performed and the details are available in [11]. Values for the
SVM cost parameter C of 1, 10, and 100 were investigated
under both the radial basis function (RBF) and Sigmoid

2Whereas the SVM experiments were part of this work, the
reported XCSR results were obtained form [11].

367

Table 2: Summary of the datasets used in the evaluation. Shown are the class distributions on the training
and test partitions. The value in parentheses following each dataset label indicates the number of features.
A ‘-’ denotes the class is not present in a dataset.

Pattern counts
Class 0 Class 1 Class 2 Class 3 Class 4 Class 5 Class 6 All

THY (21)
Train 93 191 3488 - - - - 3772
Test 73 177 3178 - - - - 3428

CEN (41)
Train 187141 12382 - - - - - 199523
Test 93576 6186 - - - - - 99762

SHU (9)
Train 34108 37 132 6748 2458 6 11 43500
Test 11478 13 39 2155 809 4 2 14500

kernels. In all cases, the Sigmoid kernel resulted in inferior
classification performance and solutions that were of simi-
lar or higher complexity (on SHU, the Sigmoid kernel runs
using C values of 10 and 100 did not finish after 210 hours
of training due to numerical difficulties), so only the RBF
kernel is considered hereafter.

Performance was evaluated from two perspectives: classi-
fication on the test partition and model complexity. Classifi-
cation performance was measured both in terms of the score
metric (Def. 4) and the overall accuracy (defined as the frac-
tion of all instances that were labeled correctly). The lat-
ter is more widely utilized but sensitive to unbalanced class
distributions and is employed here as a means of detecting
degenerate classifier behaviours. The score metric weighs
each class equally while providing a single scalar summary
irrespective of the number of classes involved.

For each dataset, thirty runs of the SBB algorithm were
performed using different initializations. This is the same
number of runs used in the XCSR evaluation [11]. The
SVM results do not depend on the choice of initial conditions
therefore only three runs, one for each setting of C, were per-
formed. From these three runs the model with the highest
score on the training data was selected for comparison since
this was the same criterion used to select the SBB model,
line 17 of Algorithm 1. Thus, both SVM and SBB models
use the score metric for post-training model selection.

This setup results in a single performance point under the
SVM model which is to be compared against thirty points
under each of the SBB and XCSR models. We perform
this comparison by first normalizing the distribution of the
SBB and XCSR points by the single SVM point, i.e., divid-
ing each of the thirty raw points by the single SVM point.
The XCSR and SBB results are then characterized in terms
of a distribution of results, one for each of the thirty ini-
tializations. Relative to the SVM baseline on each dataset,
normalized values greater (less) than one representing per-
formance levels above (below) the SVM baseline.

4.2 Results
As the SVM results provide a baseline for comparison

these are first detailed in Table 3. A comparison of the
SBB, XCSR, and SVM score results is then shown in Fig-
ure 1, and a similar comparison of the accuracy results in
provided in Figure 2. With respect to score, Figure 1, the
SBB approach outperforms both XCSR and SVM. On CEN
and SHU, SBB is shown to clearly dominate the other two
approaches. On THY, while the distribution of the SBB and
XCSR values is similar, both outperform the SVM baseline.

With respect to accuracy, Figure 2, SBB remains compet-

Table 3: SVM accuracy (acc.) and score (sc.) test
results for different settings of the cost parameter C
under the RBF kernel. Values in bold, correspond-
ing to the solutions with the highest score value on
the training data, were used in all comparisons.

THY CEN SHU
C acc. sc. acc. sc. acc. sc.

1 0.967 0.825 0.948 0.643 0.977 0.564
10 0.966 0.809 0.949 0.658 0.975 0.572

100 0.966 0.800 0.950 0.655 0.993 0.624

itive under THY and SHU, but its relative performance on
CEN decreases. On THY and SHU respectively about half
and four-fifths of the SBB runs outperform the SVM base-
line. Compared to XCSR, the best SBB accuracies on THY
and SHU are about the same and in some cases better. On
CEN, the SVM baseline provides the best results while the
SBB approach shows the lowest accuracies and the greatest
amount of variation.

Since the SBB and XCSR modes of training return the
same number of points, statistical significance tests on the
means of the two distributions can be applied to the re-
sults, Table 4. These tests support the qualitative observa-
tions made on Figure 1 regarding the score values for the
two approaches. The test accuracy results are also consis-
tent with the qualitative observations with the exception of
THY where the SBB values are shown to be significantly
lower than the XCSR values. This may be attributed to
the higher variation in the SBB accuracy values with the
most extreme outliers corresponding to very poor perfor-
mance points. Even though the mean/median accuracies us-
ing the SBB approach are lower, the maximum accuracy ob-
tained using SBB (raw value of 0.992) is actually higher than
the maximum accuracy obtained using XCSR (raw value of
0.984). At the same time, as shown in Figure 2, some of
the SBB points fall well below the minimum XCSR points.
Thus, on THY, the SBB approach can better XCSR but it
is not able to do so on a consistent basis.

On CEN, where the accuracy difference between the SBB
approach and XCSR appears to be the greatest, the maxi-
mum raw accuracies obtained using the SBB approach and
XCSR are 0.868 and 0.938 respectively – based on these two
values alone XCSR appears superior. However, the fact that
the fraction of class 0 instances in the CEN test partition
is 0.938 combined with the low score values of XCSR on
CEN (raw values close to 0.500) suggests that the XCSR
behaviour on CEN is degenerate. Indeed, the median raw

368

SBB XCSR SBB XCSR SBB XCSR

0.6

0.8

1

1.2

1.4

1.6

1.8

no
rm

al
iz

ed
 s

co
re

THY CEN SHU

Figure 1: Comparison of the normalized SBB,
XCSR, and SVM score values. The bottom/top
of each box represents the first/third quartile value
across the thirty SBB/XCSR initializations, the hor-
izontal line across each box represents the median.
Whiskers extend to the farthest point within 1.5
times the interquartile range from the first/third
quartile, and a ’+’ marks all other outliers. The
baseline SVM score is represented by the horizontal
line at y = 1; an SBB/XCSR point above this thresh-
old represents a values exceeding the SVM baseline.

SBB XCSR SBB XCSR SBB XCSR

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

no
rm

al
iz

ed
 r

at
e

THY CEN SHU

Figure 2: Comparison of the normalized SBB,
XCSR, and SVM accuracy values using boxplots as
in Figure 1.

Table 4: Results of a one-tailed student t-test ap-
plied over thirty initializations, assuming unequal
variances, and a significance level of 0.01. Shown
are the raw mean accuracy and score values on the
test data for XCSR and SBB. For each dataset, if
the measure of performance for one approach is sig-
nificantly better than for the other, the better value
is shown in bold.

accuracy score

THY
SBB 0.960 0.935

XCSR 0.976 0.924

CEN
SBB 0.773 0.787

XCSR 0.933 0.504

SHU
SBB 0.967 0.953

XCSR 0.982 0.416

Table 5: Summary of the solution complexities.
Mean (and in parentheses, standard deviation) val-
ues over thirty initializations are given for the SBB
approach and XCSR while for SVM only a single
value is available. The complexities are in terms of
the number of learners in a team for the SBB ap-
proach, the number of macro-classifiers for XCSR,
and the number of support vectors for SVM.

THY CEN SHU

SBB 9.5 (0.9) 5.8 (1.8) 10.0 (0)
XCSR 881.2 (14.3) 965.5 (6.0) 644.8 (39.4)
SVM 479 23857 5318

detection rate on the CEN minority class is 0.006 indicat-
ing that XCSR is indiscriminatingly labeling all instances as
belonging to class 0. This behaviour is unacceptable given
that there are only two classes and that the fraction of class
0 instances (0.062) is not negligible.

On SHU, XCSR achieves high accuracy values despite
showing very low score values. This suggests that in this
case as with CEN it is not detecting instances of certain
classes. In fact, the median raw test detection rates on in-
stances of classes 1, 2, 5, and 6 are all 0.000. These results
(high accuracy, low score) are possible because these classes
account for less than one percent of the training and test
data. The SBB approach, on the other hand, yields both
high accuracies and high scores on SHU so it is able to iden-
tify instances of even the rare classes.

As with XCSR, compared to the SBB results, the higher
SVM accuracies on CEN are not without a cost. As indi-
cated by the relatively low SVM score value (raw score close
to 0.650) most of the CEN minority class instances are not
detected by the SVM model.

The solution complexities for all three approaches are sum-
marized in Table 5. Direct comparison between the ap-
proaches is difficult since the underlying ‘units of measure-
ment’ (learners, macro-classifiers, support vectors) are dif-
ferent. However, even if learners are viewed as the most
complex with their associated bid programs at most 48 in-
structions long (including introns), the teams generated by
the SBB approach intuitively appear to be the most simple
of the three models. It is interesting that on CEN the team
sizes are well below the upper limit of 10 despite there being
no pressure to evolve small teams. On SHU, all models out-
put by the algorithm contain the maximum number of team
members and therefore this may be a function of the num-
ber of classes in the problem. Incidentally, support vector
counts using the Sigmoid kernel were typically higher while
returning worse classification performance.

Finally, the median SBB running times over the thirty
initializations on THY, CEN, and SHU were 4.0, 2.6, and
4.1 hours respectively. The median XCSR training times
were smaller at 0.2 hours on all datasets. However, the ad-
vantage in training speed that XCSR holds is not likely to
carry over in deployment given the large number of rules
that have to be matched. SVM training times are not avail-
able but the aggregate duration is expected to be smaller
given that evolutionary methods require multiple initializa-
tions. In contrast, the benefit of the SBB approach is that it
incurs a constant memory footprint and is likely to be much
faster when deployed due to the simplicity of its solutions.

369

5. CONCLUSIONS
This paper introduced the SBB approach, a bid-based

model for cooperative problem decomposition using teams
in which GP is used to evolve the bidding behaviour of each
individual. The key contribution over previous bid-based
approaches was the introduction of a symbiotic relationship
between a team population and a team member population.
Such a symbiotic relation simplifies credit assignment while
allowing team memberships, including team sizes, to evolve
naturally. A Pareto-competitive component was retained for
scalability, while a fitness sharing mechanism was included
to help maintain population diversity.

The SBB approach was benchmarked under the classi-
fication domain. It was found to outperform the XCSR
and SVM models with respect to score and with one ex-
ception remained competitive with respect to accuracy. On
the dataset where the SBB accuracies were observed to be
lower, the XCSR and SVM models were producing degener-
ate results due to a high class imbalance. The XCSR results
were more consistent, however, and we hope that the consis-
tency of the SBB approach can be improved, e.g., through
proper parameterization.

One could argue that because the final step of the SBB al-
gorithm selects the best model based on score values, whereas
in XCSR no such bias is present, it is only natural that the
approach performs well with respect to score. However, a
single XCSR run produces a single model thus precluding
any such selection in the first place. In addition, the SVM
models were selected to optimize score but still resulted in
lower test score values.

All SBB teams that were generated contained no more
than ten members in contrast to hundreds of classifiers in
the XCSR solutions and thousands of support vectors in the
SVM solutions. As such, the SBB solutions were found to be
much simpler resulting in increased model transparency and
efficiency. Although the maximum team size was set at ten
by design, the limit did not always have to be enforced (e.g.,
on CEN) despite the lack of explicit parsimony pressure.

Future work will apply the SBB model to domains with
structure in the point population. If, instead of requiring a
balanced random sampling heuristic, the current population
can be used to guide the search, improvements in efficiency
and solution quality are expected. It is also anticipated that
the approach will be useful in reinforcement learning do-
mains (where points represent initial environmental condi-
tions and there is a known relationship between neighbour-
ing states) because of the associated large state space com-
bined with the difficulty of establishing a learning gradient.

6. ACKNOWLEDGMENTS
This work was conducted while Peter Lichodzijewski held

a Precarn Graduate Scholarship and a Killam Postgradu-
ate Scholarship. Malcolm. I. Heywood would like to thank
NSERC, MITACS, and CFI for their financial support.

7. REFERENCES
[1] M. Brameier and W. Banzhaf. Evolving teams of predictors

with linear genetic programming. Genetic Programming and
Evolvable Machines, 2(4):381–407, 2001.

[2] M. Brameier and W. Banzhaf. Linear Genetic Programming.
Springer, Genetic and Evolutionary Computation Series, 2007.

[3] A. Chandra, H. Chen, and X. Yao. Trade-off between diversity
and accuracy in ensemble generation, volume 16 of Studies in

Computational Intelligence, chapter 19 in Multi-Objective
Machine Learning, pages 429–464. Springer-Verlag, 2006.

[4] C.-C. Chang and C.-J. Lin. LIBSVM: a library for support
vector machines, 2001. Software available at
http://www.csie.ntu.edu.tw/∼cjlin/libsvm.

[5] E. D. de Jong. A monotonic archive for Pareto-coevolution.
Evolutionary Computation, 15(1):61–93, 2007.

[6] R.-E. Fan, P.-H. Chen, and C.-J. Lin. Working set selection
using second order information for training support vector
machines. Journal of Machine Learning Research,
6:1889–1918, 2005.

[7] S. G. Ficici and J. B. Pollack. Pareto optimality in
coevolutionary learning. In Proceedings of the 6th European
Conference on Advances in Artificial Life, pages 316–325,
2001.

[8] J. B. J. M. Garrell. Bloat control and generalization pressure
using the minimum description length principle for a
Pittsburgh approach learning classifier system. Learning
Classifier Systems, 4399:59–79, 2007.

[9] S. Hettich and S. D. Bay. The UCI KDD Archive
[http://kdd/ics/uci/edu]. Irvine, CA: University of California,
Dept. of Information and Comp. Science, 1999.

[10] K. Imamura, T. Soule, R. B. Heckendorn, and J. A. Foster.
Behavioral diversity and a probabilistically optimal GP
ensemble. Genetic Programming and Evolvable Machines,
4(3):235–253, 2003.

[11] P. Lichodzijewski and M. I. Heywood. Coevolutionary
bid-based genetic programming for problem decomposition in
classification. Genetic Programming and Evolvable Machines.
Submitted.

[12] P. Lichodzijewski and M. I. Heywood. GP classifier problem
decomposition using first-price and second-price auctions. In
Proceedings of the European Conference on Genetic
Programming, pages 137–147, 2007.

[13] P. Lichodzijewski and M. I. Heywood. Pareto-coevolutionary
genetic programming for problem decomposition in multi-class
classification. In Proceedings of the Genetic and Evolutionary
Computation Conference, pages 464–471, 2007.

[14] A. R. McIntyre and M. I. Heywood. MOGE: GP classification
problem decomposition using multi-objective optimization. In
Proceedings of the Genetic and Evolutionary Computation
Conference, pages 863–870, 2006.

[15] A. R. McIntyre and M. I. Heywood. Cooperative problem
decomposition in Pareto competitive classifier models of
coevolution. In Proceedings of the European Conference on
Genetic Programming (to appear), 2008.

[16] D. E. Moriarty and R. Miikkulainen. Forming neural networks
through efficient and adaptive coevolution. Evolutionary
Computation, 5(4):373–399, 1998.

[17] D. J. Newman, S. Hettich, C. L. Blake, and C. J. Merz. UCI
Repository of Machine Learning Databases
[http://www.ics.uci.edu/∼mlearn/mlrepository.html]. Irvine,
CA: University of California, Dept. of Information and Comp.
Science, 1998.

[18] J. Noble and R. A. Watson. Pareto coevolution: Using
performance against coevolved opponents in a game as
dimensions for Pareto selection. In Proceedings of the Genetic
and Evolutionary Computation Conference, pages 493–500,
2001.

[19] J. Paredis. The symbiotic evolution of solutions and their
representations. In Proceedings of the 6th International
Conference on Genetic Algorithms, pages 359–365, 1995.

[20] G. Paris, D. Robiliard, and C. Ronlupt. Applying boosting
techniques to genetic programming. In Proceedings of the
International Conference on Artificial Evolution, pages
267–278, 2001.

[21] C. D. Rosin and R. K. Belew. New methods for competitive
coevolution. Evolutionary Compuatation, 5:1–29, 1997.

[22] T. Soule. Cooperative evolution on the intertwined spirals
problem. In Proceedings of the European Conference on
Genetic Programming, pages 434–442, 2003.

[23] R. Thomason and T. Soule. Novel ways of improving
cooperation and performance in ensemble classifiers. In
Proceedings of the Genetic and Evolutionary Computation
Conference, pages 1708–1715, 2007.

[24] S. Wilson. Classifier fitness based on accuracy. Evolutionary
Computation, 3(2):149–175, 1995.

370

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

