
A No-Free-Lunch Framework for Coevolution

Travis C. Service
Missouri University of Science and Technology

325 Computer Science Building
500 West 15th Street

Rolla, Missouri 65409-0350, USA
tservice@acm.org

Daniel R. Tauritz
Missouri University of Science and Technology

324 Computer Science Building
500 West 15th Street

Rolla, Missouri 65409-0350, USA
dtauritz@acm.org

ABSTRACT
The No-Free-Lunch theorem is a fundamental result in the
field of black-box function optimization. Recent work has
shown that coevolution can exhibit free lunches. The ques-
tion as to which classes of coevolution exhibit free lunches
is still open. In this paper we present a novel framework for
analyzing No-Free-Lunch like results for classes of coevolu-
tionary algorithms. Our framework has the advantage of
analyzing No-Free-Lunch like inquiries in terms of solution
concepts and isomorphisms on the weak preference relation
on solution configurations. This allows coevolutionary algo-
rithms to be naturally classified by the type of solution they
seek. Using the weak preference relation also permits us to
present a simpler definition of performance metrics than that
used in previous coevolutionary No-Free-Lunch work, more
akin to the definition used in the original No-Free-Lunch
theorem.

The framework presented in this paper can be viewed as
the combination of the ideas and definitions from two sepa-
rate theoretical frameworks for analyzing search algorithms
and coevolution consistent with the terminology of both.

We also present a new instance of free lunches in coevolu-
tion which demonstrates the applicability of our framework
to analyzing coevolutionary algorithms based upon the so-
lution concept which they implement.

Categories and Subject Descriptors
G.1.6 [Numerical Analysis]: Optimization; F.2 [Analysis
of Algorithms and Problem Complexity]; I.2.8 [Problem
Solving, Control Methods, and Search]

General Terms
Theory

Keywords
No Free Lunch, Coevolution, Solution Concept

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO’08, July 12–16, 2008, Atlanta, Georgia, USA.
Copyright 2008 ACM 978-1-60558-130-9/08/07...$5.00.

1. INTRODUCTION
The No-Free-Lunch (NFL) theorem is a fundemental re-

sult in the field of function optimization [11]. In its most
basic, and informal, form it states that all search algorithms
perform equally well when averaged over all functions to be
optimized. Such results provide a fascinating view into the
underlying nature of black-box function optimization.

The original NFL theorem is applicable only to the class
of iterative, data driven search algorithms which optimize an
objective function. Due to the nature of fitness evaluation
in coevolution, coevolutionary algorithms (CoEAs) are not,
in general, a member of this class [12].

Recent work has shown that coevolution can exhibit free
lunches [12]. That is, there are CoEAs which perform better
than others when averaged over all interaction functions,
with respect to some measure of performance. However,
the question as to which classes of coevolution exhibit free
lunches is still open.

The primary contribution of this paper is a novel frame-
work for analyzing NFL like results for coevolution. While
it has been shown that, in general, there are free lunches in
coevolution, our framework allows NFL like inquiries to be
phrased in terms of the type of solution desired. Our frame-
work also has the advantage that it presents a standard and
uniform view of CoEA performance comparison in terms of
isomorphisms on labeled graphs induced by the search al-
gorithms and the weak preference relation suggested in [4,
5]. This allows us to present a simpler definition of a perfor-
mance metric for CoEAs than the one used in the proof of
free lunches in coevolution [12], more akin to the definition
used in the original NFL theorem [11].

The framework presented in this paper can be viewed as
the combination of the ideas and definitions from two sep-
arate theoretical frameworks, one for analyzing search algo-
rithms and the other for analyzing CoEAs, in a manner con-
sistent with both. The framework we present is also capable
of handling standard, non-coevolutionary, optimization.

The remainder of this paper is structured as follows. In
Section 2 we provide a background of previous NFL frame-
works for both traditional and coevolutionary optimization.
Section 3 and Section 4 introduce solution concepts and the
weak preference relation respectively, which we employ in
our framework. In Section 5 we introduce our novel frame-
work for analyzing NFL like results for coevolution. Sec-
tion 6 shows how our framework may be employed in so-
lution concept specific algorithm analysis. Conclusions and
future lines of inquiry of this work are presented in Section 7.

371

2. NO-FREE-LUNCH BACKGROUND
In this section we provide an overview of previous NFL

related work for both traditional function optimization as
well as for coevolution. We also introduce the two models
of search algorithms used in NFL work as well as in our
framework.

2.1 Traditional Optimization
Here we present an overview of the framework used to

prove the original NFL theorem [11].

Let F = YX be the set of |Y||X| cost functions from a
finite search space, X , to the set of possible cost values, Y.

A sequence of m distinct cost function evaluations is de-
noted as:

dm ≡ {(dx
m(1), dy

m(1)), · · · , (dx
m(m), dy

m(m))}

where dx
m(i) is the i-th search space point visited and dy

m(i)
is the value of the cost function evaluated at that point. Let
dx

m and dy
m be the set of all the m search points visited and

their accompanying cost values, respectively. Also let D∗

denote the set of all such finite sequences, dm, including the
empty sequence, ∅.

Informally, a search algorithm, such as an evolutionary
algorithm, simulated annealing, and gradient descent, sam-
ples elements from the search space, evaluates the fitness of
the sampled points and then selects new search space points
based upon the previously seen points [11].

Formally, a search algorithm or a search heuristic, is de-
fined as a function which takes as an argument a sequence
of data points, pairs of search space points and their cor-
responding cost values, and outputs a new, unique, search
space point [11]:

a : dm ∈ D∗ → {x|x 6∈ dx
m} (1)

where x is an element of the search space, X , which has not
previously been visited. This is the first search algorithm
model employed in our framework and we refer to it as the
traditional model.

For simplicity we consider in this paper a search algorithm
to be completely deterministic1. We refer the reader to [11,
12] for details on how to extend this to conditional prob-
ability distributions over the search space, where the next
chosen point is a random variable in a probability distribu-
tion conditional upon the observed sequence.

2.1.1 Theorem Statement
The NFL theorem says that the probability of seeing any

sequence of cost values is constant when averaged uniformly
over all optimization functions, independent of the algorithm
used2.

Theorem 2.1 (No Free Lunch). For any two search
algorithms a and b, any positive integer m and any sequence
of m cost values dy

m:∑
f∈F

P (dy
m|f, m, a) =

∑
f∈F

P (dy
m|f, m, b)

1Instances of stochastic algorithms may be viewed as deter-
ministic when used with a specific pseudo-random number
generator with a given seed [11].
2We leave the statement of the original NFL theorem in
terms of probabilities even though we consider only deter-
ministic search algorithms in our analysis.

This result has been generalized to subsets of F which are
closed under permutation, rather than F as a whole [7].

A search algorithm’s performance is based upon the se-
quence of cost values it observes. Formally, a performance
metric is a function mapping a sequence of costs values to
a real number indicating how well an algorithm, which ob-
served that sequence of cost values, performed:

Φ : dy
m ∈ D∗ → <

For example, a performance metric might be the last ob-
served cost value, or the greatest cost value seen so far.

Since every sequence of cost values occurs the same num-
ber of times over all cost functions, regardless of the search
algorithm, if follows that all search algorithms perform iden-
tically when averaged over all cost functions under any per-
formance measure.

Corollary 2.2 (No Free Lunch). For any search
algorithms a and b, any positive integer m, any sequence of
m cost values dy

m and any performance metric Φ:∑
f∈F

P (Φ(dy
m)|f, m, a) =

∑
f∈F

P (Φ(dy
m)|f, m, b)

2.2 Coevolutionary Free Lunches
Free lunches exist in general in coevolution [12]. The set-

ting in which coevolution was shown to exhibit free lunches
was that of training an individual to compete in a mul-
tiplayer game, where the individual which maximized its
worst case performance against all opponents was searched
for. Under such conditions it was shown that there exist
two algorithms with different performance when averaged
over all interaction functions.

To do such an analysis, the framework used in the proof of
the original NFL theorem was extended to the generalized
optimization (GO) framework. This extension took place in
three places.

First, the search space was expanded to include the set of
individuals from all populations: X = P1 × · · · × Pn. In the
example used to show free lunches there were two distinct
players (X = P1 × P2).

The model of a search algorithm was expanded to include
both a search heuristic (Equation 1), which explores the in-
teraction function, and a champion selection function, which
selects a champion individual based upon the data points
visited by the search heuristic.

Thus the search heuristic served the role of providing in-
formation about iteractions between players from all popula-
tions to the champion selection function, which then selected
a champion from the population of interest believed to have
the best worst case performance. The performance of the
search algorithm as a whole was then based upon the qual-
ity of the selected champion after m iterations of the search
heuristic.

The search heuristic was identical to the search algorithm
model used in the original NFL proof. The additional cham-
pion selection function was defined by:

A : D∗ → P1 (2)

where P1 is the set of individuals, or strategies, for the player
which the algorithm is designed to train. A generalization of
the champion selection function (Equation 2) is the second
search algorithm model employed in our framework and is
referred to as the candidate selection model.

372

Also the notion of a performance metric was expanded.
To determine the performance of a given search algorithm,
the worst case value of the selected champion must be con-
sidered, which requires dependence upon the cost, or inter-
action function, used. Thus to incorporate coevolution, the
definition of a performance metric was expanded to allow
the use of functions which depend on the interaction func-
tion. Formally the performance metric used in [12] to show
free lunches in CoEAs was:

Φ(C) = min
O∈P2

g(C, O)

where C is the champion individual from population P1 se-
lected by the algorithm, and O ranges over the set of all op-
ponents to C. This metric may be generalized to arbitrary n
player games by taking the minimum over all combinations
of opponents.

Under such conditions it was shown that there is a pair
of search algorithms with different performance, when av-
eraged over all interaction functions. The reason for this
was stated to be because a sum over all possible interaction
functions g : P1×P2 → O, where O is an ordered set, is not
equivalent to a sum over all functions minO∈P2 g(C, O) [12].

Before introducing our novel framework for analyzing NFL
like results for coevolution, we describe the notion of a solu-
tion concept and the weak preference relation [4] which we
employ in our framework.

3. SOLUTION CONCEPTS
Solutions in coevolution take on various forms. For exam-

ple, they may be probability distributions over sets of be-
haviors (as in the Nash equilibrium [4]) or may simply be an
n-tuple of individuals (as in cooperative coevolution). Since
the form of the solution in coevolution is dependent upon the
problem at hand, in general CoEAs search for configurations
over individuals from the evolving populations [1]. Both the
form of these solution configurations as well as which such
configurations are to be considered solutions is dependent
upon the type of problem the CoEA is designed to solve,
or the solution concept which it implements [4]. Thus so-
lution concepts define the problem at hand and serve two
purposes: they define the set of solution configurations as
well as partition that set into a set of solutions and a set of
non-solutions.

For discussing solution concepts we will adopt much of the
notation from [1]. For a given solution concept and popu-
lations P1 · · ·Pn the set of possible solution configurations
is denoted as C(P1 + · · · + Pn). The actual form of the
members of C(P1 + · · ·+Pn) is dependent upon the solution
concept used. The goal of a CoEA is then to find a solution
configuration which is considered a solution, as defined by
the solution concept which it implements.

Recent theoretical work has focused on analyzing CoEAs
in terms of the solution concept which they implement [4,
5]. The importantance of understanding and correctly im-
plementing the desired solution concept has been shown, and
pathologies often seen in CoEAs have been suggested to be
a result of incorrect implementation of the desired solution
concept [4]. However, the solution concepts themselves were
the objects of interest, not the algorithms designed to im-
plement, or at least approximate, them. In our work we
approach this from the opposite direction and compare the
performance of algorithms which implement the same solu-

tion concept. The framework we propose allows discussions
of NFL like results for particular solution concepts. This
allows the question of which classes of coevolution exhibit
free lunches to be answered in terms of solution concepts,
where the solution concepts take on the roles of the classes
of coevolution.

Several different solution concepts have been used in co-
evolution, and much recent work has focused on designing
CoEAs for specific solution concepts [9, 3]. Here we describe
a few of them in order to illustrate the variety of forms which
solution configurations may take.

3.1 Cooperative Coevolution
In many instances an optimization problem can naturally

be decomposed into n separate subproblems, P1, · · · , Pn,
where candidate solutions to each subproblem are evolved
simultaneously. In such cases the combination of candidate
solutions which performs best with respect to some metric,
g, is desired. Thus C(P1 + · · ·+ Pn) = P1 × · · · × Pn.

Formally, under this solution concept the set of solutions,
from P1 × · · · × Pn, is defined by:

S = {C : ∀C′ g(C) ≥ g(C′)}

This solution concept most closely resembles traditional
function optimization in that the combination of subproblem
candidate solutions which maximizes some objective func-
tion is desired.

3.2 Maximization Over All Test Cases
In many cases, coevolution is used to evolve candidate

solutions which are best able to defeat, or solve, a set of test
cases. As an example, consider evolving sorting networks
and the accompanying sequences of numbers to sort [6].

The solution concept of maximization over all test cases
requires a solution to maximize the outcome over all possible
test cases. Formally there is a set of candidate solutions, C,
and a set of test cases, T . Given an interaction function,
g : C × T → O, where O is an ordered set which determines
the outcome of candidate solution C on test T , the solution
concept is defined by:

S = {C ∈ C : ∀C′ ∈ C ∀T ∈ T g(C, T) ≥ g(C′, T)}

Thus, C(C + T) = C.
Theoretical aspects of this solution concept were discussed

in [10]; however, in many real-world problems there are no
candidate solutions which perform best over all possible test
cases. That is, there is often a trade-off between perfor-
mance on test cases. In such situations the candidate solu-
tions which are expected to perform best against a random
test case might be desired as described in the next solution
concept.

3.3 Maximization of Expected Utility
In this solution concept there is also a set of candidate

solutions, C, and a set of test cases, T . An element of C is a
solution if and only if it maximizes the expected outcome of
a uniform randomly selected test case. Formally the solution
set in this solution concept is defined by:

S = {C ∈ C : ∀C′ ∈ C E(g(C, T)) ≥ E(g(C′, T))}

where E is the expectation operator. In the simple case
where a candidate solution either passes or fails the tests,

373

this is equivalent to maximizing the number of tests the
candidate solution passes.

This solution concept, or a derivative with a non-uniform
distribution of test cases, is one of the most commonly used
in coevolution literature, and is often stated as the canon-
ical example of competitive coevolution, where test cases
are evolved to challenge the current candidate solutions and
thus force them to improve in quality.

3.4 Nash Equilibrium
Game theory provides the concept of the Nash equilibrium

solution concept [4]. A Nash equilibrium in an n player game
is a specification of a strategy for each player such that no
single player can profit by a change in that player’s strategy
alone. Thus for any player to profit, two or more players
must cooperate.

Formally, given n players, where each player has a corre-
sponding set of possible pure strategies or behaviors Bi, a
Nash equilbrium is a mixed strategy for each player, where a
mixed strategy for player i is a probability distribution over
the set of behaviors in Bi. Let ∆Bi denote the set of proba-
bility distributions over the set of behaviors Bi. A member,
α = (α1, · · · , αn), of the set ∆B1 × · · · × ∆Bn is a Nash
equilbrium if and only if for all players i and all βi ∈ ∆Bi

E(gi(α)) ≥ E(gi(α1, · · · , αi−1, βi, αi+1, · · · , αn)), where gi

denotes the payoff for player i.
Thus the solution set for this solution concept is given by:

S = {α ∈ ∆B1 × · · · ×∆Bn : ∀i ∀βi ∈ ∆Bi

E(gi(α)) ≥ E(gi(α1, · · · , αi−1, βi, αi+1, · · · , αn))}

and the set of solution configurations is ∆B1 × · · · ×∆Bn.

3.5 Maximin
This solution concept also has a set of candidate solutions

(solution configurations), C, and test cases, T . The solu-
tions are those solution configurations which maximize the
minimum outcome over all test cases. This is the solution
concept which was shown to exhibit free lunches under the
GO framework [12].

The solution set is given by:

S = {C ∈ C : ∀C′ ∈ C min
T∈T

(g(C, T)) ≥ min
T∈T

(g(C′, T))}

4. COEVOLUTIONARY PROGRESS
Assessing CoEA progress is a difficult problem and re-

quires consideration of the solution concept being employed
[2, 8, 5]. A generic, solution concept independent, weak pref-
erence relation was suggested and used in [5] to analyze the
theoretical performance of CoEAs with unbounded memory
under various solution concepts.

We employ this weak preference relation in our framework
to compare the performance of particular instances of Co-
EAs.

4.1 Weak Preference
The solution set defined by a particular solution concept

depends upon the interaction function under consideration
and the context in which individuals are evaluated, that is
the set of other individuals under consideration [5]. Con-
sider the maximization of expected utility solution concept
with candidate solution set C and test case set T . A given
candidate solution may appear in the solution set when com-
pared against a subset of the other candidate solutions and

test cases. That is, it may appear in the solution set defined
on C ⊂ C, T ⊂ T , but may not be a member of the solution
set defined on the problem instance as a whole, for example
by judging it against only those tests on which it performs
optimally. A solution set context, which for brevity’s sake
we will further refer to simply as a context, is defined to
be the subset of each population which is currently under
consideration. Given a set X = p1 + · · ·+ pn where pi ⊆ Pi,
the solution set defined by that context is denoted δX.

The weak preference relation is a binary relation on solu-
tion configurations [5]. Formally, a candidate solution con-
figuration, α, is weakly preferred to a candidate solution
configuration, β, written α � β, if every context in which β
appears as a solution is a strict subset of a context in which
α is a solution.

Definition 4.1 (Weak Preference). A solution con-
figuration α is weakly preferred to a solution configuration
β, written α � β, iff for every context Xβ with β ∈ δXβ

there is a context Xα such that Xβ ⊂ Xα and α ∈ δXα.

Thus any solution is preferred to any non-solution, as de-
sired.

The weak preference relation has been shown to be ir-
reflexive, asymmetric and transitive [5], and can be viewed
as a type of order on the set of configurations3.

5. FRAMEWORK
We approach the question of the existence of free lunches

in CoEAs from the point of view of solution concepts and
the weak preference relation. Informally, we say that a given
solution concept exhibits no free lunches if for every pair of
algorithms, a and b, and every interaction function g, there is
a corresponding interaction function g′ such that the labeled
graph induced by the weak preference relation and algorithm
a on g is isomorphic to the labeled graph induced by b on g′.
That is, there is no way to distinguish the performance of
algorithm a on g, under the weak preference relation, from
the performance of b on g′, up to isomorphism.

We begin the formalization of our framework by defin-
ing how a solution concept and the weak preference relation
induce a directed acyclic graph (DAG) on the set of possi-
ble solution configurations. We then show how search al-
gorithms may be viewed in terms of labeling nodes in the
preference DAG.

5.1 Preference DAG
The weak preference relation induces a directed graph on

the space of solution configurations, C(P1 + · · · + Pn). We
define an edge to be from configuration β to configuration
α when α � β. That is, edges point in the direction of in-
creased preference and may be thought of as routes through
configuration space to the global solutions. We desire algo-
rithms which are capable of quickly climbing the preference
graph. As the weak preference relation is irreflexive, asym-
metric and transitive, it follows that the preference directed
graph is always acyclic (i.e., a DAG).

Given a solution concept, each interaction function in-
duces a different preference DAG. If functions g and g′ in-
duce an isomorphic preference DAG we will say that g and
g′ are isomorphic.
3If we were to define α � α for all solution configurations α
(the reflexive closure of �) then the weak preference relation
would be a partial order on the set of configurations.

374

5.2 Algorithm Models
We show how both search algorithm models used in NFL

literature are utilized in our framework, as well as how they
both relate to the preference DAGs.

5.2.1 Traditional Model
Depending on the solution concept of interest, the solution

configurations (nodes in the preference DAG) may them-
selves be the objects used as arguments to the interaction
function, but in general this need not be the case. That is,
in general a candidate solution configuration need not be a
member of P1 × · · · × Pn, see for example the Nash equi-
librium; or in other words C(P1 + · · ·+ Pn) need not equal
P1 × · · · × Pn.

In the simplest case, where C(P1+· · ·+Pn) = P1×· · ·×Pn,
the search algorithm model used in the original NFL proof
(see Equation 1), can be used. In such cases the points
visited by the algorithm can be viewed as a direct traversal
of the nodes in the preference DAG.

Formally, say a given algorithm explores the sequence of m
data points (x1, y1), · · · , (xm, ym) (by exploration we mean
examination under the interaction function, i.e., fitness eval-
uations). We can view the visiting of the point xi as labeling
that configuration in the preference DAG with the label i.
Thus after m iterations of some search algorithm, m nodes in
the preference DAG have been labeled, indicating at which
point during the search they were examined, or visited.

5.2.2 Candidate Selection Model
In the most general case where the solution configurations

are not simply n-tuples of members from each population, a
search algorithm model similar to the one presented in [12]
must be used, where a search heuristic explores the inter-
action function and a candidate selection function maps a
set of previously visited data points explored by the search
heuristic to a solution configuration.

Formally, a candidate selection function is of the form:

A : D∗ → C(P1 + · · ·+ Pn) (3)

This is a generalization of the champion selection function,
Equation 2 [12]. We further assume that the candidate
selection function does not depend upon the order of the
data points in the sequence dm, and does not depend upon
the “names” of the individuals. That is, if dm and d′m
are two permutations of the same set of data points, then
A(dm) = A(d′m) for all candidate selection functions A.
Also, given any sequence dm (on populations P1 · · ·Pn), if
all occurrences of the individuals p1, p2 ∈ Pi in dx

m were
swapped to form a new sequence d′m, but the observed cost
values remained the same, then the solution configuration
returned by A(d′m) would be identical to that of A(dm) ex-
cept the roles of p1 and p2 would be swapped.

The candidate selection function can also be viewed as a
memory mechanism, or archive, in a sense similar to that
used in [4], in that the memory mechanism, or candidate
selection function, has the role of representing the solution,
relieving the search heuristic of that responsibility. In such
cases the search heuristic’s sole responsibility is to provide
relevant information to the candidate selection function.

While we can imagine comparing the performance of ar-
bitrary combinations of search heuristics and candidate se-
lection functions, we restrict our attention to a fixed, but
arbitrary, candidate selection function. We do this because

allowing arbitrary combinations, or even a fixed, but arbi-
trary, search heurisitic combined with different candidate
selection functions will always exhibit free lunches. To see
this consider an arbitrary solution set, S, and one candidate
selection function which when presented with all possible
data points never selects a member of the solution set and
a second selection function which always does. When we
let the number of data points, m, be the total number of
combinations of behaviors from each population, then, for
all interaction functions, the second selection function will
always outperform the first, regardless of the search heuris-
tic.

Before presenting definitions of when No-Free-Lunches oc-
cur in our framework, we first define the notion of a perfor-
mance metric for our framework.

5.3 Performance Metrics
The weak preference relation (Definition 4.1) provides a

means by which to measure performance in coevolution.
Algorithms which consistently find more preferred solution
configurations than other algorithms are desired. Perfor-
mance is thus a measure of how desirable a returned solu-
tion configuration is, with respect to the weak preference
relation.

Formally, a performance metric, in our framework, is de-
fined to be a function Φ from the set of labeled DAGs to the
real numbers, where each node’s label is a natural number
such that no natural numbers are skipped. That is, if the
number m appears in the graph as a label, then so do all pos-
itive integers n < m. Thus the performance of an arbitrary
algorithm depends only upon the shape and labeling of the
preference DAG. It follows that for any performance met-
ric, Φ, if two labeled graphs g and g′ are isomorphic, then
Φ(g) = Φ(g′). We exploit this fact in the No-Free-Lunch
definitions given next.

An example of a performance metric might be the num-
ber of solution configurations which the last labeled node is
weakly preferred to.

Intuitively this definition makes sense as we care only
about the relative locations of the solution configurations
selected (or visited) by the search algorithm in the pref-
erence DAG and not about the “names” of the particular
configurations.

The possible dependence upon the interaction function
is removed from the performance metric in our framework,
thus allowing a simpler definition, more akin to that of the
definition in the original NFL framework. This dependence
is instead hidden in the notion of a solution concept and the
weak preference relation.

5.4 No-Free-Lunch Definitions
In this section we present our definitions of when no free

lunches occur in our framework for both search algorithm
models, that is with and without a candidate selection func-
tion. Informally, the NFL theorem applies to a solution con-
cept only when for all search algorithm pairs a and b, any
performance metric value, V , and any performance metric
Φ, Φ takes on the value V under search algorithm a for the
same number of interaction functions as it does under algo-
rithm b. As noted, this occurs when for every labeled graph
induced by algorithm a on an interaction function g there is
an isomorphic labeled graph induced by b on a corresponding
interaction function g′.

375

5.4.1 Traditional Model
If given a solution concept of interest, two search algo-

rithms a and b on interaction functions g and g′, respec-
tively, produce labeled graphs which are isomorphic to one
another, then the performance of a on g and b on g′ are
indistinguishable under any performance metric.

Definition 5.1 (Traditional Model - NFL). A so-
lution concept is said to not exhibit free lunches if for any
pair of algorithms a and b and any positive integer m, there
is a bijection F : G → G, where G denotes the set of all
interaction functions from the search space to the space of
possible outcomes, such that:

∀g ∈ G am
g (∅) ' bm

F(g)(∅)

where am
g (∅) denotes the labeled graph induced by algorithm

a after m iterations on interaction function g, and ' is the
isomorphism relation4.

For the remainder of this paper we use the name of an al-
gorithm a to denote both the function mapping data points
to a new search space point (as in Equation 1) as well as
the graph induced by such a mapping. The intended usage
should be clear from the context.

In other words, Definition 5.1 says that F is a one-to-one
correspondence such that the graph induced by a under g is
isomorphic to the graph induced by b under F(g). Thus for
any performance metric, Φ, it follows that:

∀g ∈ GΦ(am
g (∅)) = Φ(bm

F(g)(∅))

So, every possible performance value occurs the same num-
ber of times for any pair of algorithms when ranged over all
possible interaction functions.

5.4.2 Candidate Selection Model
For the more general search algorithm, we consider just

the solution configuration produced after m iterations of the
search heuristic, line was done in [12]. As with the tra-
ditional model, we consider the solution configuration re-
turned by the candidate selection function to be equivalent
to labeling the corresponding node in the preference DAG.
Again, two algorithms run on two interaction functions are
then considered to have indistinguishable performance after
m iterations if and only if the labeled graphs produced by
both are isomorphic.

For the candidate selection algorithm model we provide
two versions of our NFL theorem. The weak version con-
siders only a single candidate selection function, while the
strong version considers every possible selection function.

Definition 5.2 (Candidate Model - Weak NFL).
A solution concept and candidate selection function, A, com-
bination is said to not exhibit free lunches if for any pair of
search heuristics a and b, and any positive integer m, there
is a bijection F : G → G such that:

∀g ∈ G A(am
g (∅)) ' A(bm

F(g)(∅)) (4)

where A(am
g (∅)) denotes the graph induced by the interaction

function g with the single node selected by candidate selection
function, A, labeled as being selected.

4In reality this depends also upon the solution concept used;
however, we will largely leave this relationship implicit.

As with the traditional model, we will use A(dm) to repre-
sent both the particular solution configuration returned by
the candidate selection function, as well as the labeled graph
induced by the algorithm.

Unlike the traditional optimization algorithm case, the la-
beled graphs will always consist of a single label regardless of
the number of iterations performed by the search heuristic.

Definition 5.3 (Candidate Model - Strong NFL).
A solution concept is said to not exhibit free lunches if for
any candidate selection function, A, any pair of search heuris-
tics a and b, and any positive integer m, there is a bijection
F : G → G such that Equation 4 is satisfied.

Thus the Strong NFL holds for a solution concept only when
the Weak NFL holds for that solution concept and any can-
didate selection function.

Note that we do not require that the bijection F , for all
values of m, produces interaction functions on which algo-
rithm b produces an isomorphic graph to that of a. F may
be a function of m, thus different values of m may very well
produce different bijections.

As in the case of the traditional model, given such a bi-
jection F it follows that:

∀g ∈ GΦ(A(am
g (∅))) = Φ(A(bm

F(g)(∅)))

for any performance metric Φ.
The NFL definitions for the candidate selection model deal

with the informativeness of search heuristics. That is, if
a solution concept and candidate selection function satisfy
Definition 5.2, then all search heuristics provide equally rel-
evant information to the candidate selection function, when
averaged over all interaction functions. In other words, no
particular search heuristic consistently provides more rele-
vant information to the candidate selection function than
any other heuristic.

6. ANALYSIS
We now show that the maximization over all test cases

solution concept exhibits free lunches under the weak pref-
erence relation.

Theorem 6.1 (Maximization Over All Test Cases).
The solution concept of maximization over all test cases
along with the Bayes optimal rule candidate selection func-
tion, which always selects the candidate solution with the
greatest expected value, averaged over all interaction func-
tions consistent with the observed sample, exhibits free lunches
under the weak preference relation. That is, there is a pair
of algorithms a and b and positive integer m such that there
is no bijection F which satisfies:

∀g ∈ G A(am
g (∅)) ' A(bm

F(g)(∅))

where A is the Bayes optimal rule candidate selection func-
tion, and G is the set of all interaction functions.

Proof. Let C be a finite set of candidate solutions, T be a
finite set of test cases and Y be a finite set of cost values. For
simplicity assume that |C| = |T | = m and Y = {1, 2}. An
assignment of 1 to the candidate solution c, test case t pair
can be thought of as c failing the test t and an assignment
of 2 can be thought of as c passing t.

As was done in [12], algorithm a explores the candidate
selection/test case combinations (c1, t1), (c2, t1), · · · , (cm, t1)

376

and algorithm b explores the candidate selection/test case
combinations (c1, t1), (c1, t2), · · · , (c1, tm). We will show that
algorithm a returns a member of the solution set (i.e., a
candidate solution which performs no worse than any other
candidate solution on any test case) on a greater number of
interaction functions then does b, which will imply that no
bijection F exists which satisfies

∀g ∈ G A(am
g (∅)) ' A(bm

F(g)(∅))

as the existence of such an F implies that both algorithms
return the same number of members of the solution set, over
all interaction functions.

First consider randomly selecting a candidate solution c.
c is a member of the solution set, under an interaction func-
tion g, if and only if for all test cases t and all candidate
solutions c′ g(c, t) ≥ g(c′, t). Thus, if c receives a value of
1 on a test case t (i.e., fails t) then so must all other candi-
date solutions c′, for c to appear in the solution set. Assume
that c passes the first k test cases (receives 2’s on the first
k test cases) and fails the other m− k test cases. There are

then 2(m−1)m functions consistent with the observed sample
where c passes the first k test cases and fails the remaining
m− k (all possible assignments of outcomes to the remain-
ing (m − 1)m candidate solution/test case pairs). Of those
functions, c appears in the solution set only in those where
all candidate solutions fail the last m−k test cases. In func-
tions in which c is a solution, there are (m− 1)k candidate
solution/test case pairs for which there are two possible out-
comes and (m − 1)(m − k) remaining pairs for which there
is only one possible outcome. Thus, c is a member of the
solution set under 2(m−1)k interaction functions whenever c
passes exactly k tests. There are

(
m
k

)
ways in which c can

pass exactly k test cases. Summing over the number of test
cases which c passes yields

m∑
k=0

(
m

k

)
2(m−1)k

many interaction functions in which c is a member of the
solution set. Which by the binomial theorem is

(2m−1 + 1)m

Thus, every candidate solution appears in the solution set
in exactly (2m−1 + 1)m interaction functions.

Now consider algorithm a which explores the sequence of
candidate selection/test case combinations (c1, t1), · · · , (cm, t1).
The Bayes optimal rule candidate selection function selects
a candidate solution which performs best against t1. As-
sume, without loss of generality, that c1 performs no worse
than any other candidate solution on test t1, and algorithm
a selects c1. Since no other candidate solution outperforms
c1 on t1, c1 is a member of the solution set only when no
other candidate solution passes one of the tests t2, · · · , tm

when c1 does not. Thus, the analysis used above for a ran-
domly selected candidate solution may be applied here as
well, except there are now m − 1 test cases instead of m.
The selected candidate solution then appears in the solution
set of (2m−1 + 1)m−1 of the interaction functions consistent
with the observed sample (i.e., (c1, t1), (c2, t1), · · · , (cm, t1)).
This is true for all possible observed samples, and there are
2m possible samples resulting in

2m · (2m−1 + 1)m−1

interaction functions under which algorithm a returns a mem-
ber of the solution set.

Algorithm b explores the sequence, (c1, t1), · · · , (c1, tm),
of candidate solution/test case combinations. The Bayes
optimal rule candidate selection function selects either c1 or
another randomly selected candidate solution, ci, depending
on which one is expected to appear in the solution set un-
der more interaction functions consistent with the observed
sample.

Let k be the number of test cases which c1 passes. c1 is
then a member of the solution set in 2(m−1)k of the inter-
action functions consistent with the observed sample. Now
consider in how many interaction functions consistent with
the observed sample the randomly selected candidate solu-
tion, ci, will appear as a solution. ci will appear in the so-
lution set only when it passes all tests which c1 does. Since
c1 passes k tests, ci must also pass those same k tests and
may either pass or fail the remaining m − k tests. Let j
be the number of additional tests that ci passes, then ci is
a member of the solution set whenever the other remaining
candidate solutions fail the remaining m − k − j tests and
either pass or fail the k+ j tests. Summing over the number
of additional test cases which ci solves yields

m−k∑
j=0

(
m− k

j

)
2(m−2)(k+j)

interaction functions consistent with the observed sample
under which ci is a member of the solution set. Which by
the binomial theorem is equal to

2(m−2)k · (2m−2 + 1)m−k

Algorithm b then selects either c1 or ci, depending on
which is a member of the solution set in more interaction
functions consistent with the observed sample. Summing
over the number of test cases which c1 passes yields

m∑
k=0

(
m

k

)
max

(
2(m−1)k, 2(m−2)k · (2m−2 + 1)m−k

)
Which is equal to

m∑
k=0

(
m

k

)
2(m−2)k ·max

(
2k, (2m−2 + 1)m−k

)
By inspection it is easy to see that 2k is greater than

(2m−2 + 1)m−k (i.e., algorithm b selects c1) only when k is
m or m− 1. Thus, the above sum may be rewritten as

m∑
k=0

((
m

k

)
2(m−2)k · (2m−2 + 1)m−k

)
+(

m

m

)
2m(m−2)(2m − 1) +(

m

m− 1

)
2(m−1)(m−2)(2m−1 − 2m−2 − 1)

Which may be simplified to

(2m−1 + 1)m + 2m(m−2)(2m − 1) +

m · 2(m−1)(m−2) · (2m−1 − 2m−2 − 1)

Figure 1 shows the percentage of interaction functions in
which algorithms a and b select members of the solution

377

Figure 1: Algorithm Performance.

set, for small values of m. As can be seen, the number of
interaction functions under which a and b select members of
the solution set is different, and therefore no such bijection
F exists.

7. CONCLUSIONS & FUTURE WORK
The primary contribution of this paper is a novel frame-

work for analyzing NFL like results for coevolution. Our
framework combines the ideas from the framework used to
prove the original NFL theorem and the framework used to
analyze the theoretical performance of CoEAs in terms of
the solution concept they implement presented in [4].

Our framework employs the weak preference relation to
measure and compare the performance of different algorithms,
and the question of the existence of free lunches is phrased
in terms of isomorphisms on this relation. This allows us
to present a simpler definition of a performance metric than
used in previous coevolutionary NFL work, more akin to
the definition used in the original NFL framework. This
is possible because the dependence on the interaction func-
tion, often found in coevolution, is hidden in the notion of
a solution concept and the weak preference relation.

The use of the weak preference relation also easily allows
our framework to be used to discuss NFL like results in
terms of the solution concept of interest. As it has been
shown that in general coevolution does have free lunches,
the natural next question is what classes of CoEAs possess
free lunches. Our framework allows such questions to be
addressed in terms of solution concepts.

We formalize both search algorithm models used in re-
lated NFL literature, for both traditional and coevolution-
ary optimization, in our framework. We also present a new
instance of free lunches in coevolution which demonstrates
the applicability of our framework to analyzing coevolution-
ary algorithms based upon the solution concept which they
implement.

As there are many different solution concepts used through-
out CoEA literature, the next step for the use of this frame-
work is to apply it to analyzing a variety of different solu-
tion concepts. This work also raises the question as to what
properties a solution concept must possess in order to ex-
hibit (or not exhibit) free lunches. For example, the two
different coevolutionary solution concepts shown to exhibit

free lunches, one given in [12] and one in this paper, both
are examples of candidate solution/test case coevolution;
however, it is unknown whether or not all classes of candi-
date solution/test case coevolution exhibit free lunches. Our
framework’s ability to frame such NFL questions in terms of
solution concepts provides a means by which to investigate
such inquiries.

8. ACKNOWLEDGEMENTS
We would like to thank Kate Holdener for her valuable

reviews of this paper.

9. REFERENCES
[1] Anthony Bucci and Jordan B. Pollack. Thoughts on

Solution Concepts. In Proceedings of the 9th annual
Genetic and Evolutionary Computation Conference,
pages 434–439, New York, NY, USA, 2007. ACM.

[2] John Peter Cartlidge. Rules of Engagement:
Competitive Coevolutionary Dynamics in
Computational Systems. PhD thesis, University of
Leeds, 2004.

[3] Edwin de Jong. The Maxsolve Algorithm for
Coevolution. In Proceedings of the 7th annual Genetic
and Evolutionary Computation Conference, pages
483–489, New York, NY, USA, 2005. ACM.

[4] Sevan G. Ficici. Solution Concepts in Coevolutionary
Algorithms. PhD thesis, Brandeis University, 2004.

[5] Sevan G. Ficici. Monotonic Solution Concepts in
Coevolution. In Proceedings of the 7th annual Genetic
and Evolutionary Computation Conference, pages
499–506, New York, NY, USA, 2005. ACM.

[6] Daniel Hillis. Co-evolving parasites improve simulated
evolution as an optimization procedure. Physica D
Nonlinear Phenomena, 42:228–234, June 1990.

[7] Christian Igel and Marc Toussaint. No-Free-Lunch
Theorem for Non-Uniform Distributions of Target
Functions. Journal of Mathematical Modelling and
Algorithms, 3(4):1570–1166, Dec 2004.

[8] Edwin D. De Jong. Objective Fitness Correlation. In
Proceedings of the 9th annual Genetic and
Evolutionary Computation Conference, pages 440–447,
New York, NY, USA, 2007. ACM.

[9] Frans A. Oliehoek, Edwin D. de Jong, and Nikos
Vlassis. The Parallel Nash Memory for Asymmetric
Games. In Proceedings of the 8th annual Genetic and
Evolutionary Computation Conference, pages 337–344,
New York, NY, USA, 2006. ACM.

[10] Christopher Darrell Rosin. Coevolutionary Search
Among Adversaries. PhD thesis, University of
California - San Diego, 1997.

[11] David Wolpert and William Macready. No Free Lunch
Theorems for Optimization. IEEE Transactions on
Evolutionary Computation, 1(1):67–82, Apr 1997.

[12] David Wolpert and William Macready. Coevolutionary
Free Lunches. IEEE Transactions on Evolutionary
Computation, 9(6):721–735, Dec 2005.

378

