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ABSTRACT
Estimation of distribution algorithms (EDAs) are a class
of evolutionary algorithms that capture the likely structure
of promising solutions by explicitly building a probabilis-
tic model and utilize the built model to guide the further
search. It is presumed that EDAs can detect the structure of
the problem by recognizing the regularities of the promising
solutions. However, in certain situations, EDAs are unable
to discover the entire structure of the problem because the
set of promising solutions on which the model is built con-
tains insufficient information regrading some parts of the
problem and renders EDAs incapable of processing those
parts accurately. In this work, we firstly propose a general
concept that the estimated probabilistic models should be
inspected to reveal the effective search directions. Based
on that concept, we design a practical approach which uti-
lizes a reserved set of solutions to examine the built model
for the fragments that may be inconsistent with the actual
problem structure. Furthermore, we provide an implemen-
tation of the designed approach on the extended compact
genetic algorithm (ECGA) and conduct numerical experi-
ments. The experimental results indicate that the proposed
method can significantly assist ECGA to handle problems
comprising building blocks of disparate scalings.

Categories and Subject Descriptors
I.2.8 [Artificial Intelligence]: Problem Solving, Control
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General Terms
Algorithms, Design, Verification
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1. INTRODUCTION
Genetic algorithms (GAs) are search techniques based on

the paradigm of natural evolution, in which, species of crea-
tures tend to adapt to their living environments by muta-
tion and inheritance of useful traits. GAs mimic this mech-
anism by introducing artificial selections and operators to
discover and recombine partial solutions. By properly grow-
ing and mixing promising partial solutions, which are often
referred to as building blocks (BBs), GAs are capable of
solving many problems efficiently. The ability of implicitly
processing a large number of partial solutions has been rec-
ognized as an important source of GA’s power. According
to the Schema theorem [13], short, low-order, and highly fit
substrings increase their share to be combined, and also as
stated in the building block hypothesis [6], GAs implicitly
decompose a problem into subproblems by processing build-
ing blocks. This decompositional bias is a good strategy for
tackling many real-world problems, because many real-world
problems can be reliably solved by combining the pieces of
promising solutions in the form of problem decomposition.

However, proper growth and mixing of building blocks
are not always achieved. GA in its simplest form employing
fixed representations and problem-independent recombina-
tion operators often breaks the promising partial solutions
while performing crossovers. This can lead to the vanishing
of crucial building blocks and thus the convergence to local
optima. In order to overcome this building block disruption
problem, various techniques have been proposed. In this
study, we focus on one line of such efforts which are often
called the estimation of distribution algorithms (EDAs) [17].
These methods construct probabilistic models of promising
solutions and utilize the built models to generate new so-
lutions. Early EDAs assume no interaction between vari-
ables [1, 12]. Subsequent studies start from capturing pair-
wise interactions [4, 2, 19] to modeling multivariate inter-
actions [11, 18, 5, 16]. With the reasoning of dependencies
among variables by building probabilistic models, these ap-
proaches can capture the structure of the problem and thus
avoid the disruption of identified partial solutions.

Another topic concerning this study is the impact of dis-
parate scalings among different building blocks to the behav-
ior and performance of GAs. For real-world applications, it
is often the case that some parts of the problem are more im-
portant and contribute more to the fitness evaluation than
other parts. This situation can pose two types of difficulties.
Firstly, because the processing in the population is statisti-
cal in nature, the disparate scalings can cause inaccurate
processing of less salient building blocks [8, 10]. The second
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difficulty is the processing time delay. The lower salience
of a building block generally causes it to be processed at a
later time compared to those of higher salience. Such a de-
lay may cause that building block to converge under random
pressures, instead of properly selective ones. Some other pre-
vious studies on this topic include the explicit role of scal-
ings in a systematic experimental setting [9], a theoretical
model on convergence behavior of exponentially scaled prob-
lems [20], and an extension of that model to larger BBs [14].

Although the aforementioned scaling difficulties exist in
many problems and degrades the performance of evolution-
ary algorithms, there are few investigations concerning the
behavior of EDAs with the presence of scaling difficulties.
In this study, we make an attempt to explore how scaling
difficulties affect EDAs and propose a countermeasure to
assist EDAs on problems of different scalings. Specifically,
we propose a notion that the estimated probabilistic models
should be inspected to reveal the effective search directions
and provide an implementation of the proposed idea on the
extended compact genetic algorithm (ECGA) [11].

In next section, we will look at how scaling difficulties
shadow EDAs’ ability in recognizing building blocks and
cause inaccurate processing on parts of the solutions. After
that, a general approach will be proposed to prevent such a
problem. In section 3, an implementation of the proposed
approach on ECGA is detailed. Section 4 presents the em-
pirical results, followed by the discussion on the results in
Section 5. Finally, section 6 concludes this paper.

2. EFFECTIVE DISTRIBUTIONS
The ability of EDAs to deal with the building block dis-

ruption problem primarily comes from the explicit modeling
of promising solutions by using probabilistic models. The
model construction algorithms, though differ in their repre-
sentative power, capture the likely structures of good solu-
tions by processing the population-wise statistics collected
from the selected solutions. By reasoning the dependencies
among different parts of the problem and the possible for-
mations of good solutions, reliable mixing and growing of
building blocks can be achieved. As noted in [11], learn-
ing a good probability distribution is equivalent to learning
linkage, where linkage refers to the dependencies among vari-
ables or equivalently the decomposition of the problem.

It is presumed that EDAs can detect linkage by recogniz-
ing building blocks. However, in this study, we argue that
in some cases, accurate and complete linkage information
cannot be acquired by distribution estimation because the
selected set of solutions on which the model is built con-
tains insufficient information on the less salient parts of the
problem. For example, consider a k-bit trap function,

ftrapk(s1s2 · · · sk) = trapk(u) , where u =
kX

i=1

si

=

j
k, if u = k ,
k − 1− u, otherwise.

,

where u is the number of ones in the string s1s2 · · · sk. Sup-
pose that we are handling a 16-bit maximization problem,

f(s1s2 · · · s16) =
3X

i=0

“
103−iftrap4(s4i+1s4i+2s4i+3s4i+4)

”
,

where s1s2 · · · s16 is a solution string and we choose ECGA,

which uses a class of multivariate probabilistic models called
marginal product models (MPMs), to tackle this problem.
By observing subsequent generations of the optimization
process, a series of models built by ECGA can be obtained
and shown in Table 1. In Table 1, variables are denoted
by their index numbers. Each group of variables represents
a marginal model in which a marginal distribution resides,
and the converged variables are crossed out.

It can be observed that the models shown in Table 1 are
only partially correct. More specifically, in each generation,
only the most salient building block on which the population
has not converged is modeled correctly. It is caused by the
fact that some part of the problem contributes much more
than all others in combine. If one part of the problem is
worth essentially more than others, this part of the solution
solely determines the chance that one solution will be se-
lected or not. As a consequence, in the population, sufficient
information can be provided for only the most salient build-
ing block to be modeled correctly, since the model searching
is performed based on the selected solutions. The rest parts
of the modeling are merely the result of low salience partial
solutions “hitchhiking” on the more salient building blocks.

From the above example, we can see that not all BBs can
be detected from a given set of selected solutions by prob-
abilistic modeling. Model building algorithms cannot “see”
the entire structure of the problem from the selected set
of solutions because disparate scalings among different BBs
prevent the complete linkage information from being sup-
plied in the selected population. In this work, we will refer
this concept as linkage sensibility and those problem struc-
tures that can be properly identified using the given set of
solutions are called sensible linkage. Based on these notions,
we can re-examine EDAs on the building block disruption
problem. It is clear that the disruption problem still exists in
the insensible portion of the problem because such parts of
the problem cannot be properly modeled. Although the ex-
ample is an extreme case of scalings that each subproblem is
exponentially scaled, in real-world problems, it is oftentimes
the case that the constituting subproblems are weighted dif-
ferently, and the condition implies the linkage might just
be partially sensible. Besides the BB disruption problem,
the random drifting of the less salient parts of the problem
mentioned in the Section 1 even worsen the situation. Those
problems are usually handled by increasing population size
when EDAs are applied. However, we can deal with this sit-
uation in another way if it is possible to distinguish sensible
linkage from insensible linkage.

The idea of sensible linkage can be closely mapped to an-
other notion called effective distributions. By effective dis-
tributions, we mean that sampling these distributions can
reliably advance the quality of solutions. Thus, the essen-
tial conditions for effective distributions are the consistency
with building blocks and provision of good directions for fur-
ther search. If it is possible to extract effective distributions
from the built probabilistic model, we can perform partial
sampling using only the effective distributions and leave the
rest parts of the solutions unchanged. Thus, the diversity is
maintained and we are free from the BB disruption as well
as random drifting problems. For instance, let’s return to
the 16-bit optimization problem. If it is possible to identify
those partial models which are really built on the sensible
linkage like [1 2 3 4] in the first generation and [5 6 7 8]
in the second generation (see the third column of Table 1),

392



Generation Marginal Product Model Effective Partial Model

1 [1 2 3 4] [6 11 14] [5 8 12] [7 9 13] [10 15 16] [1 2 3 4]
2 ///[1] ///[2] ////[3] ///[4] [5 6 7 8] [9 12 13] [10 15 16] [11] [14] [5 6 7 8]
3 ///[1] ///[2] ////[3] ///[4]////[5] ////[6] ///[7]////[8] [9 10 11 12] [13 15 16] [14] [9 10 11 12]
4 ///[1] ///[2] ////[3] ///[4]////[5] ////[6] ///[7]////[8] ////[9] /////[10] /////[11] /////[12] [13 14 15 16] [13 14 15 16]

Table 1: Marginal product models built by ECGA in solving an exponentially scaled problem. The variables
are denoted by their index numbers. Each group of variables represents a marginal model in which a marginal
distribution resides. The variables with converged alleles are crossed out.

then we can sample only the corresponding marginal distri-
butions which are, in this case, effective. That is, in the
first generation, for each solution string, we re-sample only
s1s2s3s4 according to the marginal distribution and keep the
alleles of s5s6 · · · s16 unchanged. In the second generation,
we re-sample only s5s6s7s8 according to the marginal distri-
bution and keep s9s10 · · · s16 unchanged (note that s1s2s3s4

are already converged). In this way, we do not have to resort
to increasing population sizes to deal with the problems that
are caused by the disparate BB scalings.

The aforementioned thoughts leave us one complication:
the identification of effective distributions. However, direct
identification of effective distributions might not be an easy
task if not impossible. Hence, it may be wise to adopt a com-
plementary approach—to identify those distributions that
are not likely to be effective. If there is a way to identify
the ineffective distributions, we can bypass them and sample
only the rest distributions, thus, to approximate the result
of knowing effective distributions. Our basic idea is that
if we split the entire population into two sub-populations
and use only one sub-population for building probabilistic
model, we can utilize the other sub-population to collect the
statistics for possible indications of ineffectiveness of partial
distributions in the probabilistic model built on the first sub-
population. That is, with certain appropriate design, we can
prune the likely ineffective portions of the model.

In the next section, our implementation of the above idea
on ECGA will be detailed. More specifically, a judging crite-
rion will be proposed to detect the likely ineffective marginal
distributions of a given marginal product model.

3. ECGA WITH MODEL PRUNING
This section starts by briefly reviewing ECGA. Based on

the idea of detecting the inconsistency of statistics gathered
from two sub-populations, a mechanism is devised to identify
the possibly ineffective parts of a probabilistic model. Fi-
nally, an optimization algorithm incorporating the proposed
technique is described in detail.

3.1 Extended Compact Genetic Algorithm
ECGA [11] uses a product of marginal distributions on a

partition of the variables. This kind of probability distri-
bution belongs to a class of probabilistic models known as
marginal product models (MPMs). In this kind of model,
subsets of variables can be modeled jointly, and each subset
is considered independent of other subsets. In ECGA, both
the structure and the parameters of the model are searched
and optimized using a greedy approach to fit the statistics
of the selected set of promising solutions. The measure of
a good MPM is quantified based on the minimum descrip-
tion length (MDL) principle, which assumes that given all
things are equal, simpler distributions are better than com-
plex ones. The MDL principle thus penalizes both inaccu-
rate and complex models, thereby, leading to a near-optimal

distribution. Specifically, the search measure is the com-
plexity of the MPM which is quantified as the sum of model
complexity, Cm, and compressed population complexity, Cp.

The model complexity, Cm, quantifies the model represen-
tation in terms of the number of bits required to store all the
marginal distributions. Suppose that the given problem is
of length � with binary encoding, and the variables are par-
titioned into m subsets with each of size ki, i = 1 . . . m, such
that � =

Pm
i=1 ki. The marginal distribution corresponding

to the ith variable subset requires 2ki − 1 frequency counts
to be completely specified. Taking into account that each
frequency count is of length log2(n + 1) bits, where n is the
population size, Cm can be defined as

Cm = log2(n + 1)

mX
i=1

“
2ki − 1

”
.

The compressed population complexity, Cp, quantifies the
suitability of the model in terms of the number of bits re-
quired to store the entire selected population (the set of
promising solutions picked by selection) with an ideal com-
pression scheme applied. The compression scheme is based
on the partition of the variables. Each subset of the variables
specifies an independent “compression block” on which the
corresponding partial solutions are optimally compressed.
Theoretically, the optimal compression method encodes a
message of probability pi using − log2 pi bits. Thus, taking
into account all possible messages, the expected length of
a compressed message is

P
i−pi log2 pi bits, which is opti-

mal. In the information theory [3], the quantity − log2 pi is
called the information of that message and

P
i−pi log2 pi is

called the entropy of the corresponding distribution. With
the knowledge, Cp can be derived as

Cp = n
mX

i=1

2kiX
j=1

−pij log2 pij ,

where pij is the frequency of the jth possible partial solution
to the ith variable subset observed in selected population.

Note that in the calculation of Cp, it is assumed that the
jth possible partial solution to the ith variable subset is en-
coded using − log2 pij bits. This assumption is fundamental
to our technique to identify the likely ineffective marginal
distributions. More precisely, the information of the partial
solutions, − log2 pij , is a good indicator of inconsistency of
statistics gathered from two sub-populations.

3.2 Model Pruning
The proposed technique to identify the possibly ineffec-

tive parts of an MPM is based on the notion that ECGA
uses the compression performance to quantify the suitabil-
ity of a probabilistic model to the given set of solutions. The
degree of compression is a representative metric to the fit-
ness of modeling, because all good compression methods are
based on capturing and utilizing the relationships among
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data. Thus, if the compression scheme of the MPM built
on one set of solutions is incapable of compressing another
set of solutions produced in the same condition, then it is
likely that the MPM is, at least, partially incorrect. Using
this property, we can perform a systematical checking on the
given MPM for the likely ineffective portions.

Suppose that the population of solutions, P , is split into
two sub-populations S and T . The model searching is per-
formed on S′, the set of promising solutions selected from S.
Then we can use the statistics collected from T ′, the set of
solutions selected from T , to examine the built probabilistic
model, M . Since each marginal model functions indepen-
dently, they can be inspected separately. Recalling the de-
scription that a variable subset, which specifies a marginal
model, is viewed as a “compression block” that encodes each
possible partial solution according to the marginal distribu-
tion. That is, the jth possible partial solution to the ith
variable subset is encoded using − log2 pij bits, where pij

is the frequency of the jth possible partial solution to the
ith variable subset observed in S′. Assume that the given
problem is of length � with binary encoding, and there are
m variable subsets with each of size ki, i = 1 . . . m, in the
built model M . For the ith marginal model, i = 1 . . . m, we
can check whether or not

2kiX
j=1

qij(− log2 pij) > ki ,

where qij is the frequency of the jth possible partial solu-
tion to the ith variable subset collected from T ′. If the above
inequality holds, then the compression scheme employed in
the ith marginal model is not a good one for compressing the
corresponding partial solutions in T ′, because it encodes a
ki-bit partial solution to a bit string of expected length more
than ki bits. Using the earlier reasoning, this condition in-
dicates that the marginal model is likely ineffective because
T ′ does not agree on this part of the model. Otherwise, it
should be able to compress the partial solutions from T ′.

From a machine learning perspective [15], a good model
should generalize well to unseen instances. Otherwise, it
captures coincidental regularities among training data. If
the model building is performed on the portion where link-
age is not sensible from the given set of solutions, then it
will “overfit” to those partial solutions that are not sub-
jected to proper selection pressure. Consequently, the reg-
ularities captured by this part of model tend to be incon-
sistent with the actual problem structure. Furthermore, the
partial solutions that are not subjected to proper selection
pressure appear to be random, and such a situation causes
the phenomena of random drifting described previously. By
its nature, the drifting is random, and two different sub-
populations tend to drift in two different directions. Thus,
we can use the statistical inconsistency between S′ and T ′

to locate possible drifting portions, and identify the likely
ineffective parts of the model. Hence, we can remove those
ineffective parts to forge a partial but more effective model.

An issue in practice concerning the calculation of the above
inequality is that sometimes one or several possible partial
solutions are absent in the set of selected solutions, and leave
− log2 pij undefined because pij = 0. Currently, we handle
this problem by assigning a very small value, smaller than
1/n, to the pij ’s that are zero, and normalizing them such
that pij ’s are sum to 1.

3.3 Integration
In this subsection, the optimization process incorporat-

ing ECGA and the previously proposed technique is de-
scribed. This combination helps ECGA to achieve better
performance where disparate scalings exist among different
parts of the problem. The procedure is presented in Algo-
rithm 1. This process starts at initializing a population of
solutions. After initialization, the fitness values of solutions
are evaluated, and the entire population is randomly split
into two sub-populations. Selections are performed on two
sub-populations separately with the same selection pressure.
Model building is performed on one sub-population. The
other sub-population is used to prune the built model using
the technique proposed in the previous section. Finally, all
solutions in the population are altered by sampling the re-
maining marginal distributions in the pruned model. These
steps repeat until the stopping criteria are met.

A prominent difference between the above process and the
traditional EDAs is that the sampling may not include all
variables. As introduced in Section 2, the existing solutions
are altered by sampling only the marginal distributions sur-
viving pruning. Thus, a solution string may not be mod-
ified entirely in an iteration. This technique hence avoids
random drifting and inaccurate processing of low-salience
building blocks by postponing the processing until sufficient
sensible linkage information is available. In this way, it can
achieve better performance in terms of function evaluations
if disparate scalings exist in different parts of the problem.

4. EXPERIMENTS
The experiments are designed for observing the behav-

ior of the proposed approach on sets of problems with dif-
ferent scaling difficulties. Furthermore, different selection
pressures are also taken into considerations to make a more
thorough observation. In this study, three bounding models
of scaling [7] are considered: exponential, power-law, and
uniform. Based on different scalings, three sets of test func-
tions are constructed as listed by using ftrap4 as the ele-
mental function. For simplicity, the splitting of population
is performed in the way that two resulting sub-populations
are disjoint and of equal size. The stopping criterion is set
such that a run is terminated when all solutions in the pop-
ulation converge to the same fitness value.

Exponential:

m−1X
i=0

5iftrap4(s4i+1s4i+2 · · · s4i+4) (1)

Power-law:

m−1X
i=0

(i + 1)3ftrap4(s4i+1s4i+2 · · · s4i+4) (2)

Uniform:

m−1X
i=0

ftrap4(s4i+1s4i+2 · · · s4i+4) (3)

4.1 Impact on Population Requirements
This section describes the experimental setting and results

of the proposed method compared to that of the original
ECGA on the three problem sets. The problem sizes range
from 40 to 80 bits (m = 10 . . . 20). For each problem in-
stance, the minimum population size required such that, on
average, m−1 BBs converge to the optimum in 50 runs is de-
termined by bisection. Two selection pressures are adopted
by setting the tournament size t to 8 and 16.
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Algorithm 1 ECGA with Model Pruning

Initialize a population P with n solutions of length �.
while the stopping criteria are not met do

Evaluate the solutions in P .
Divide P into S and T at random.
S′ ← Apply t-wise tournament selection on S.
T ′ ← Apply t-wise tournament selection on T .
M ← Conduct greedy MPM search on S′.
M ′ ← Prune M based on the inconsistency with T ′.
for each remaining marginal distribution D in M ′ do

for each string s = s1s2 · · · s� in P do
Change the values in s by sampling D.

end for
end for

end while

The empirical results on exponentially scaled problems
are shown in Figure 1. The minimum population sizes re-
quired by the proposed method are lower than that needed
by the original ECGA. Furthermore, with an appropriate se-
lection pressure, the population size needed by the proposed
method grows in a relatively slow rate. The same situation
is observed in the function evaluations that the proposed
method works remarkably well when t = 16.

Figure 2 shows the results on power-law scaled problems.
The results on required population sizes are similar to the
previous set of experiments. The proposed method still uses
fewer function evaluations, but the differences are reduced.

The empirical results on uniformly scaled problems are
presented in Figure 3. As expected, the proposed method
requires larger population sizes than that needed by the orig-
inal ECGA. The function evaluations used by the proposed
method are about twice as many as that spent by the origi-
nal ECGA under the same selection pressure.

It is noted that a common phenomenon appears in all
of the above three sets of experiments that the proposed
method needs more generations before convergence than the
original ECGA under the same selection pressure. In the
next section, we will further explore this phenomenon using
sets of experiments that augment the population sizes.

4.2 Time-Space Interactions
This section describes sets of experiments that reveal the

behavior of the proposed method when the population size
is adjusted and presents the results to illustrate the interac-
tive effect between population sizes and generations for the
proposed method. In these experiments, the 60-bit problems
(m = 15) are adopted as test functions and the population
sizes are augmented proportional to the minimum popula-
tion sizes estimated in the previous sets of experiments.

As presented in Figure 4, only slight decreases in gen-
erations are achieved by increasing population sizes on the
exponentially scaled 60-bit problem. Among others, the pro-
posed method with tournament size 16 delivered the most
reduction. With no prominent reductions in the generations
and the increasing population sizes, the function evaluations
grow up as expected in all four settings.

Figure 5 shows the results on the power-law scaled 60-bit
problem. In this case, prominent reductions in generations
are observed in the proposed method. However, despite the
presence of these reductions, the function evaluations still
grow up with the increasing population size.

40 45 50 55 60 65 70 75 80
0

500

1000

1500

2000

2500

Problem Sizes (Bits)

Po
pu

la
tio

n 
Si

ze
s

 

 
Original ECGA, t=8
Original ECGA, t=16
ECGA w/ MP, t=8
ECGA w/ MP, t=16

(a) Population Sizes

40 45 50 55 60 65 70 75 80
10

15

20

25

30

35

Problem Sizes (Bits)

G
en

er
at

io
ns

 

 
Original ECGA, t=8
Original ECGA, t=16
ECGA w/ MP, t=8
ECGA w/ MP, t=16

(b) Generations

40 45 50 55 60 65 70 75 80
0

1

2

3

4

5

6

7

8
x 10

4

Problem Sizes (Bits)

Fu
nc

tio
n 

E
va

lu
at

io
ns

 

 
Original ECGA, t=8
Original ECGA, t=16
ECGA w/ MP, t=8
ECGA w/ MP, t=16

(c) Function Evaluations

Figure 1: Empirical results of the proposed method
compared to the original ECGA on exponentially
scaled problems. Two tournament sizes t = 8 and
t = 16 are adopted to observe the behavior under
different selection pressures.
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Figure 2: Empirical results of the proposed method
compared to the original ECGA on power-law scaled
problems. Two tournament sizes t = 8 and t = 16
are adopted to observe the behavior under different
selection pressures.
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Figure 3: Empirical results of the proposed method
compared to the original ECGA on uniformly scaled
problems. Two tournament sizes t = 8 and t = 16
are adopted to observe the behavior under different
selection pressures.
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The most significant decrease in generations is observed
on the uniformly scaled 60-bit problem as shown in Figure 6.
With tournament size 16, the proposed method reduced up
to 8 generations needed to converge when twice larger popu-
lation size is used. It somehow keeps the number of function
evaluations from climbing up with the population size.

5. DISCUSSION
The proposed method improves the original ECGA on

problems where disparate scalings exist among different BBs.
As illustrated in Figure 1(c) and Figure 2(c), prominent re-
ductions in fitness evaluations are achieved. Moreover, in the
uniformly scaled problems where the linkage are completely
sensible, it seems that the proposed method uses just nearly
twice as many function evaluations as the original ECGA.

An extraordinary behavior of the proposed method can
be observed that when a confined population size is given,
it tends to perform a time-space trading using more gener-
ations to overcome the problem. The most notable case is
on uniformly scaled problems shown in Figure 6 that the
proposed method with an appropriate selection pressure re-
duces the generations aggressively when a larger population
is available and thus keeps the function evaluations from
rising up. This phenomenon may be worth further investi-
gations in the hope of discovering a way to relieve the burden
of setting appropriate population sizes.

6. SUMMARY AND CONCLUSIONS
This paper started at reviewing previous studies on EDAs

and scaling difficulties. It illustrated how scaling difficulties
shadows EDAs’ ability in recognizing BBs. A notion called
linkage sensibility was described, and the term sensible link-
age was proposed to refer to those problem structures that
can be extracted by inspecting only the set of selected so-
lutions. Based on the concept, we defined the effectiveness
of distributions estimated by probabilistic model building
and proposed a general approach to achieve a more effec-
tive modeling. Finally, an implementation of the proposed
approach on ECGA was described and examined on several
test functions with different scaling difficulties.

In this study, we focused on scaling difficulties and their
influences on EDAs’ ability in recognizing BBs. However, at
a higher level, our attempt was trying to resolve an impor-
tant issue which was rarely addressed: what if the informa-
tion contained in the given population is inevitably insuffi-
cient? The approach to solve this problem was proposed and
successfully implemented for ECGA. It may be adopted and
carried over to other EDAs such that more flexible, friendly,
and robust EDAs may be developed.
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(b) Function Evaluations

Figure 4: Empirical results of increasing population size in solving the exponentially scaled 60-bit problem.
The population sizes are increased proportionally to the minimum required population sizes.
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(b) Function Evaluations

Figure 5: Empirical results of increasing population size in solving the power-law scaled 60-bit problem. The
population sizes are increased proportionally to the minimum required population sizes.
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Figure 6: Empirical results of increasing population size in solving the uniformly scaled 60-bit problem. The
population sizes are increased proportionally to the minimum required population sizes.
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