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ABSTRACT 
This paper investigates how the Univariate Marginal Distribution 

Algorithm (UMDA) behaves in non-stationary environments when 

engaging in sampling and selection strategies designed to correct 

diversity loss. Although their performance when solving Dynamic 

Optimization Problems (DOP) is less studied than population-

based Evolutionary Algorithms, UMDA and other Estimation of 

Distribution Algorithms may follow similar schemes when 

tracking moving optima: genetic diversity maintenance, memory 

schemes, niching methods, and even reinicialization of the 

probability vectors. This study is focused on diversity 

maintenance schemes. A new update strategy for UMDA’s 

probability model, based on Ant Colony Optimization transition 

probability equations, is presented and empirically compared with 

other strategies recently published that aim to correct diversity 

loss in UMDA. Results demonstrate that loss correction strategies 

delay or avoid full convergence, thus increasing UMDA’s 

adaptability to changing environments. However, the strategy 

proposed in this paper achieves a higher performance on the DOP 

test set when compared with other methods. In addition, the new 

strategy incorporates two parameters that control the diversity of 

the probability model. 

Categories and Subject Descriptors 
I.2.8 [Artificial Intelligence]: Problem Solving, Control Methods 

and Search. 

General Terms 
Algorithms, Experimentation. 

Keywords 
UMDA, Dynamic Optimization Problems. 

1. INTRODUCTION 
The crucial and delicate equilibrium needed between exploration 

and exploitation in static environments and the premature 

convergence issue becomes even more important and complex 

when dealing with Dynamic Optimization Problems (DOPs). In 

DOPs, the fitness function and problem constraints are not steady. 

When changes occur, solutions already found may be no longer 

valuable  and  the  process  must  engage  in  a new  search  effort 
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(check [6] for enhanced analysis). Traditional Evolutionary 

Algorithms (EAs) [3], for instance, may encounter difficulties 

while solving dynamic problems if the first convergence stage 

reduces population diversity, thus decreasing its capability to react 

to sudden changes. When solving a DOP, an EA must not only 

maintain diversity through the first convergence stage, but also be 

able to escape the old solution when the fitness function changes. 

Estimation of Distribution Algorithms (EDAs) [18, 23] is a class 

of EAs that replaces the standard crossover and mutation 

operators by building a probabilistic model of promising solutions 

and sampling from the corresponding probability distribution. 

During the optimization process, an EDA makes use of these 

models to build possible solutions to the problem (sampling). The 

probability model is then updated in a way that reflects the quality 

of those solutions (selection). Different strategies may be used at 

sampling and selection steps and the diversity of the model (and 

resulting algorithm’s convergence) is strongly dependent on the 

chosen schemes. Traditional EDAs, like the Univariate Marginal 

Distribution Algorithm (UMDA) [21], have no means to restore 

diversity once it is lost. Since the variance loss occurs at sampling 

and selection steps, it is crucial to devise methods to slow down or 

avoid full convergence of the probability model. Dynamic 

problems, due to its traits, are particularly demanding, requiring 

constant diversity maintenance to avoid full convergence.  

Although EDAs build probabilistic models of the genotype and 

ACO [10] build probabilistic models for construction paths on the 

phenotype, there are attempts to unify the two paradigms into a 

single framework [33], together with stochastic gradient ascent 

[25] and cross-entropy [26]. ACO and EDAs are closely related 

and the strategy proposed in this paper explores the similarities 

between the two classes of metaheuristics: a new update strategy 

for UMDA’s probability model, based on ACO equations. The 

strategy is compared with the loss correction techniques presented 

in [8] in a DOP test set. 

The present work is organized as follows. Next section provides 

an overview of UMDA and describes previously proposed update 

strategies later included in the test set. Section 3 deals with DOPs 

topic and describes previous work on EAs and DOPs. This paper’s 

proposal is described in section 4. Section 5 presents and 

discusses the results. Finally, Section 6 concludes the paper and 

outlines future research.    

2. UMDA 

2.1 Simple UMDA 
The UMDA [21] is a discrete EDA with independent variables. It 

starts by initializing the probability model, assigning 0.5 to each 

parameter 𝛾𝑖  of the model, meaning that the first population is 

randomly generated. Parameters 𝛾𝑖  are defined as the probability 

that each component takes the value 1: 
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𝛾𝑖 ≡ 𝑃 𝑥𝑖 = 1  (1) 

where i = 1,…L, and L is the string length (this work considers 

binary strings). After initializing the model, UMDA generates N 

strings according to equation 2, which defines the probability of 

generating a string 𝑥
𝜇

: 

𝑃 𝑥𝑖
𝜇
 =    𝛾𝑖𝑥𝑖

𝜇
+  1 − 𝛾𝑖 (1 − 𝑥𝑖

𝜇
  

𝐿

𝑖=1

 (2) 

where 𝑥𝑖
𝜇

 is the ith component of string 𝑥
𝜇

. The f×N fittest strings 

are then selected by truncation or any other method. The chosen 

solutions update the model in the following manner: 

𝛾
𝑖
 

1

 𝑓 × 𝑁 
 𝑥𝑖

𝜇

𝜇∈𝐷𝑆

 (3) 

where Ds is the selected population. The algorithm repeats these 

procedures until a stop criterion is met. 

Figure 1 shows UMDA’s pseudo-code. Please note that once a 

parameter of the model loses diversity, that is, 𝛾𝑖  = 0 or 𝛾𝑖  = 1, 

UMDA has no means to regain it. For that reason, it is of extreme 

importance to avoid diversity loss, or at least to delay it, especially 

when dealing with DOPs. Since the loss occurs at two steps of the 

algorithm - sampling and selection - those are the components that 

must be addressed in order to build UMDAs capable of dealing 

with dynamic landscapes. A number of strategies have already 

been proposed in the past to deal with EDAs diversity issue ([19], 

[29] and [32], for instance). The present study is focused on those 

presented in [8] (and described in the next subsection). 

2.2 Reducing Diversity Loss 
The permutation sampling aims at reducing the diversity loss due 

to sampling. It works by simply ensuring that the generated 

population has exactly N×𝛾𝑖  solutions with bit i equal to 1. 

Permutation sampling does not bias the algorithm in any way and 

it should be always beneficial, although it is more useful when 

using small populations. Following recommendations in [8], 

permutation sampling was used in all UMDAs tested for the 

present study.  

Diversity loss due to selection may be reduced by changing the 

way the probability model is updated. In [8], the authors present 

four methods to correct or replace equation 3. 

1)  Loss correction (LC) intends to bias the model in order to 

generate a larger variance. For that purpose, probability 𝛾𝑖  is 

corrected by the following equation: 

𝛾𝑖
´ =

 
 
 

 
 1 −  1 − 4 1 − 𝛾𝑖 𝛾𝑖/ℒ𝑆

2

1 +  1 − 4 1 − 𝛾𝑖 𝛾𝑖/ℒ𝑆

2
0.5

  

: 𝛾𝑖 ≤
1

2
 1 −  1 − ℒ𝑆  

(4) : 𝛾𝑖 >
1

2
 1 −  1 − ℒ𝑆  

: otherwise 

where  

ℒ𝑆 =
𝑓 × 𝑁 − 1

𝑓 × 𝑁 − 𝑓
 (5) 

is the variance loss due to sampling in a flat landscape. Figure 2a 

shows how loss correction changes the shape of 𝛾𝑖curve. LC 

increases exploration in the early stage of search by setting 𝛾𝑖 ′ = 

0.5 when 𝛾𝑖  is close to 0.5, but allows the model to converge: see 

how the correction diminishes when 𝛾𝑖  approaches 0 and 1. 

Simple UMDA  

Set γi ← 1/2 for all i = 1 . . .L; 

repeat 

      Sample N strings according to Eq. 2 to make a population D. 

      Generate a new population Ds from D by selecting the 
      f×N fittest strings. 

      for i = 1 to L do 

             update model: 

𝛾𝑖  
1

 𝑓𝑁 
 𝑥𝑖

𝜇

𝜇∈𝐷𝑆

 

     end for 

until stop criterion  

Figure 1. UMDA’s pseudo-code. 

2) Laplace correction is a Bayesian method of updating the 

probability model that takes into account a non-informative prior 

distribution: in this case, a beta distribution. Equation 3 is 

replaced by equation 6: 

𝛾𝑖 =
 𝑥𝑖

𝜇
𝑥𝜇 ∈𝐷𝑆

𝑓𝑁 + 2𝛼
 (6) 

where α determines the strength of prior’s influence. Figure 2b 

shows the effect of Laplace correction on 𝛾𝑖 . Unlike loss 

correction, Laplace prevents UMDA from converging. As it is 

shown in section 5, this attribute is very important when solving 

DOPs, because, if all parameters 𝛾𝑖  converge, then the algorithm 

is no longer able to react to a change. On the other hand, Laplace 

correction may delay the algorithm. However, when solving 

DOPs, EAs speed of convergence is often sacrificed on behalf of 

exploration abilities; a slow algorithm is not necessarily a 

drawback in non-stationary environments.  

3) Incremental Laplace (iLaplace) correction uses a beta 

distribution peaked at 𝛾𝑖(t-1) as the prior distribution instead of 

assuming a prior peaked at 0.5, like Laplace correction. Equation 

3 is replaced by: 

𝛾𝑖(𝑡) =
 𝑥𝑖

𝜇
𝑥𝜇 ∈𝐷𝑆

+ 2𝛼𝛾𝑖 𝑡 − 1 

𝑓𝑁 + 2𝛼
 (7) 

Figure 2c shows the effect of iLaplace correction on  𝛾𝑖 . The 

graph exemplifies the correction by setting 𝛾𝑖(𝑡 − 1) = 0.25 and 

𝛾𝑖(𝑡 − 1) = 0.05. Please note that when 𝛾𝑖(𝑡 − 1) = 0.05, the 

parameter is very close to 𝛾𝑖  without correction when 𝛾𝑖 → 0, that 

is, iLaplace does not prevent the model to converge. 

4) Finally, boundary correction (BC) prevents UMDA from 

converging but it does not change the probability distribution 

except when the parameters are close to 0 or 1. This method 

corrects 𝛾𝑖  in the following manner: 

𝛾𝑖
´ =  

𝛽
1 − 𝛽
𝛾𝑖

  

: 𝛾𝑖 ≤ 𝛽 

(8) : 𝛾𝑖 > 𝛽 

: otherwise 

Parameter β is suggested to be set to 1/L, where L is the string 

length. This scheme avoids convergence by setting minimal and 

maximal values for 𝛾𝑖 . Boundary correction effect on 𝛾𝑖  is 

represented in figure 2d. (This strategy may be combined with 

other loss correction methods.) Like Laplace correction, which 

also prevents full converge, BC is very effective on DOPs – see 

section 5. Experiments made for this paper suggest that UMDA’s 

full convergence must be avoided when solving DOPs. 
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a) b) 

  

c) d) 

  

Figure 2. LC, Laplace, iLaplace (α = 2) and BC (β = 0.05) effect 

on γi. N = 10. 

3. EVOLUTIONARY ALGORITHMS IN 

DYNAMIC ENVIRONMENTS 

3.1 Dynamic Optimization Problems 
Optimization problems are said to be dynamic when there is a 

change in the fitness function, problem instance or restrictions, 

thus making the optimum change as well. Due to its adaptive 

characteristics, EAs seem to be a suitable candidate for solving 

DOPs, but they typically converge to an optimum and thereby lose 

the diversity necessary to adapt to a change in the environment 

when such a change occurs. Over the past two decades, a number 

of authors have addressed the problem of convergence and 

subsequent loss of adaptability in many different ways. However, 

most of these approaches may be grouped into one of the 

following three categories [6].  

React on Changes. The EA is run in standard fashion, but as soon 

as a change in the environment has been detected, explicit actions 

are taken to increase diversity and thus facilitating the shift to the 

new optimum. Techniques such as Hypermutation [9] pursue the 

first category, keeping the whole population after a change but 

increasing population diversity by drastically increasing the 

mutation rate for some number of generations. 

Maintaining diversity. Convergence is avoided all the time and it 

is hoped that a spread-out population can adapt to changes more 

easily. The Random Immigrants GA (RIGA) [13] is an example of 

a strategy belonging to this category. Every generation, RIGA 

replaces part of the population by randomly generated individuals. 

This guarantees the introduction of new genetic material in every 

time step and avoids the convergence of the whole population to a 

narrow region of the search space. Other examples of diversity 

oriented EAs for DOPs may be found [17] and [22].  

Memory schemes. The EA is supplied with a memory to recall 

useful information from past generations. Memory may be 

provided in two general ways: implicitly [12] by using redundant 

representations, or explicitly by introducing an extra memory and 

formulating strategies to deposit and retrieve solutions later [7]. 

Some recent proposals have been made using a Swarm 

Intelligence [5] approach to attempt to solve dynamic problems. 

Examples of Swarm Intelligence applied to dynamic environments 

may be found in [15] and [24]. In [11], Fernandes et al., 

developed the Binary Ant Algorithm (BAA), based on ACO [10], 

to take advantage of ACO’s ability to solve combinatorial DOPs 

and generalize it to binary DOPs. However, this method may be 

also regarded as a type of EDA, because BAA creates the possible 

solutions to a problem via transition probability vectors. 

3.2 EDAs on DOPs 
Although DOPs have been a subject of EAs research for the last 

two decades, only recently the DOP issue has started to raise a 

strong interest on EDAs’ researchers. 

The Population Based Incremental Learning (PBIL) [4] − one of 

the first EDAs − was used in [31] to solve DOPs created by a 

problem generator proposed by the same authors. A comparison 

of several versions of PBIL with simple GAs and RIGAs is 

provided. In [30], Yang proposes the UMDA with enhanced 

memory and the results of the experiments show that memory is 

efficient in dynamic environments. In addition, a combination of 

memory and Random Immigrants [13] for the UMDA is studied. 

Abbass et al. [1] were the first to introduce the Extended Compact 

Genetic Algorithm (ECGA) [16] to solve problems in dynamic 

environments. Their approach is based on random restarts of the 

population at each change so that diversity in the population can 

be increased at the beginning of each new environment. 

Additionally, Abbass et al. proposed a slightly different approach 

that used the probabilistic model from the previous generation 

when the population was to be restarted. The ECGA with random 

restart was later extended [27] to include substructural niching 

[28]. In [14], Ghosh and Muehlenbein apply the UMDA to 

dynamic environments by introducing mutation whenever the 

fitness changes. This approach (like [1]) assumes that it is possible 

to detect environmental changes. Our proposal maintains diversity 

through the run so that UMDA is able to respond to a change 

without additional methods to detect changes in the environment. 

4. NEW PROPOSAL 
Recently, there have been attempts to unify ACO [10] and EDAs 

into the same framework [33]. These theoretical efforts are 

fundamental to fully understand and eventually bring together 

some features shared by the two classes of metaheuristics, but 

obvious similarities between the two paradigms arise from a close 

observation of some algorithms. For instance, PBIL [4] holds an 

update   scheme   very   similar  to   the   pheromone   update  and 

RE UMDA 

Set γi ← 1/2 for all i = 1 . . .L; Set 𝜏𝑖
0,1

← 0 for all i = 1 . . .L; Set α and 𝛽 

repeat 

    sample N strings according to Eq. 2 to make a population D. 
    generate new population Ds by selecting the  f×N fittest strings. 

    update pheromone (equations 9 and 10) 

    evaporate (equation 12) 
    for i = 1 to L do 

          update model (equation 11) 

    end for 
until stop criterion met 

Figure 3. Reinforcement-Evaporation (RE) UMDA. 
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evaporation of ant algorithms. BAA [11], as referred in previous 

section, was inspired by ACO but it is clearly a kind of EDA. (For 

an exhaustive analysis of the similarities between ant algorithms 

and EDAs please refer to [33].) This paper introduces a new 

technique to reduce UMDA’s variance loss due to selection, based 

on ACO [10] pheromone update and transition probability 

equations: the Reinforcement-Evaporation loss correction (figure 

2), or RE correction as it will be designated in the remaining of 

this work. 

Consider two vectors 𝜏𝑖
0 and 𝜏𝑖

1 that are updated in each time step 

as defined by equations 9 and 10: 

𝜏𝑖
1 (t)   𝜏𝑖

1 (t)+ 
1

 𝑓𝑁 
 𝑥𝑖

𝜇
𝜇∈𝐷𝑆

 (9) 

𝜏𝑖
0 (t)   𝜏𝑖

0 (t)+(1 −  
1

 𝑓𝑁 
 𝑥𝑖

𝜇
)𝜇∈𝐷𝑆
 (10) 

with 

𝜏𝑖
0 (0) = 0 and 𝜏𝑖

1 (0) = 0 
 

where i = 1,…L, and 𝜏𝑖
0 0 = 0 and 𝜏𝑖

1 0 = 0. These vectors 

emulate ACO’s pheromone maps and act as kind of memory, 

allowing UMDA to incorporate information from prior 

distributions into the current parameters. The parameters  𝛾𝑖  are 

then updated in the following manner: 
 

𝛾𝑖  
 𝜏𝑖

1 𝛼

 𝜏𝑖
0 + 𝜏𝑖

1 𝛼
 (11) 

 

where α is a parameter that controls the relative weights of 𝜏𝑖
0 and 

𝜏𝑖
1 on the probability  𝛾𝑖 . Before the update stage, vectors 𝜏𝑖

0,1
 are 

“evaporated” according to equation 12: 
 

 𝜏𝑖
0,1 𝑡 = 𝜏𝑖

0,1 𝑡 − 1 × (1 − 𝛽) (12) 
 

where 𝛽 is the evaporation rate. Please note that setting 𝛽 = 1 

implies that the vectors 𝜏𝑖
0,1

 are set to 0 at the beginning of each 

time step, thus meaning that the previous equations are reduced to 

equation 13: 

𝛾𝑖  
  𝑥𝑖

𝜇
𝜇∈𝐷𝑆

 
𝛼

 𝑓 × 𝑁 𝛼
 (13) 

 

Figure 4 shows RE correction with different α values (𝛽 is set to 

1). With low α values, the method approaches random search, 

since  𝛾𝑖  is kept close to 0.5 (with α = 0, UMDA performs random 

 

Figure 4. RE correction effect with different α values (β = 1). 

 

search:  𝛾𝑖  is always 0.5).  Increasing α cause the model to relax 

its exploration efforts and the diversity is reduced. When α 

approaches 1, the model becomes very close to the standard 

update strategy (equation 3). Parameter 𝛽 also controls diversity: 

with 𝛽 < 1, UMDA incorporates prior distributions in the 

probability model. Please note that setting α = 1 and 𝛽 = 1 will 

result in the simple UMDA depicted in figure 1. 

RE correction does not prevent UMDA’s complete convergence. 

However, this method may be combined with BC without 

changing its general behavior except when the parameters  𝛾𝑖  

become closer to 0 or 1. Results will show that the UMDA 

combining RE and BC correction outperforms not only BC alone, 

but also other strategies and combinations – see next section. 

5. EXPERIMENTS 

5.1 Experimental Setup 
The test environment proposed in [31] was chosen to test the 

efficiency of the different diversity correction techniques on 

DOPs. Given a stationary problem 𝑓 𝒙   𝒙 ∈  0,1 𝑙  where l is 

the chromosome length, dynamic environments may be 

constructed by applying a binary mask 𝐌 ∈   0,1 𝑙  to each 

solution before its evaluation in the following manner: 
 

𝑓 𝒙, 𝑡 = 𝑓 𝒙  XOR M 𝑘   (14) 
 

where t is the generation index, 𝑘 = 𝑡/𝜏  is the period index and 

𝑓 𝒙, 𝑡  is the fitness of solution 𝒙. M  𝑘  can be incrementally 

generated as follows: 
 

M  𝑘 =  M 𝑘 − 1  XOR T(𝑘) (15) 
 

where T(𝑘) is an intermediate binary mask for every period k. 

This mask T(𝑘) has 𝜌 × 𝑙 ones, where 𝜌 is a value between 0 and 

1.0 which controls the intensity or severity of change. Notice that 

𝜌 = 0 corresponds to a stationary problem since T vectors will 

carry only 0’s and no change will occur in the environment. On 

the other hand, 𝜌 = 1 guarantees the highest degree of change: for 

instance, if a solution to a problem is a string of 1’s, then the 

dynamic solution oscillates between a string of 1’s and a string of 

0’s. Therefore, by changing 𝜌 and 𝜏 in the previous set of 

equations it is possible to control two of the most important 

features when testing algorithms on DOPs: severity (𝜌) and speed 

(𝜏) of change [2]. Onemax and Royal Road R1 were chosen to test 

UMDA’s correction strategies. 

The function Onemax counts the number of 1’s in a string and it 

may be formalized by the following equation: 
 

𝑓 𝒙 = 𝑢(𝒙) (14) 
 

where u(x) is the unitation function. 

Royal Road functions [20] were specifically designed to study 

GAs’ performance on the level of building blocks interactions, 

and are widely used in GAs test and analysis. From the set of 

Royal Road functions, function R1 was selected. This Royal Road 

problem is defined as: 

𝑓 𝒙 =  𝑐𝑠𝛿𝑠 𝒙 

𝑞

𝑖=1

 (15) 

where q is the number of schemata S = {s1,…, sq} and, for the 

function used in this study, 𝛿 s(x) is set as 1 if x is an instance of S 

0

0,25
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0,75

1

0 0,25 0,5 0,75 1

γi

γi

α = 0.1

α = 0.3

α = 0.5
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α = 0.9
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and 0 otherwise, and cs = 8 for all s; a 64-bit string was used and 

each schema is composed of 8 contiguous bits. 

5.2 Diversity on Flat Landscapes 
Before proceeding into an investigation of UMDAs on DOPs, a 

brief analysis of RE diversity on a flat landscape is provided. The 

flat landscape exemplifies UMDA’s diversity loss. Since all 

strings have the same fitness, there is no bias in the landscape 

leading the population towards a particular direction. However, 

after a certain number of generations, the model fully converges, 

generating identical solutions. Figure 5 shows how standard 

UMDA converges on a flat landscape (α = 1). When reducing α, 

diversity increases and convergence is delayed, as expected.  

Plotting RE diversity with α = 1 and different evaporation rates β 

results in the graphic depicted in figure 6. As parameter α, β value 

influences the diversity of the model. However, it is of much 

importance how the diversity is generated, and not only the 

diversity itself. Decreasing α and β has the same general effect on 

the model’s variance, but may cause rather distinct effects when 

optimizing a function. While α increases diversity by “pulling”  𝛾𝑖  

towards 0.5, β act as a kind of memory, moving the model 

towards diversity or convergence, depending on previous states. 

Nevertheless, the general idea to retain at this point is that both α 

and β may be tuned in order to control UMDA’s variance loss. 

5.3 Dynamic Optimization Problems 
For each DOP several degrees of severity (𝜏) and speed (𝜌) were 

set: 𝜏 = 10 and 𝜏 = 100; 𝜌 = 0.05, 𝜌 = 0.6 𝑎𝑛𝑑 𝜌 = 0.95. Each 

algorithm was executed for 10 periods of environmental changes 

and 30 runs were performed for each configuration of (𝜏, 𝜌) and 

each algorithm. The fitness was measured and averaged over the 

30 runs. Population size was set to N = 120 and parameter f = 0.1 

in all the experiments. String length is L = 300 (Onemax) and L = 

64 (Royal Road). Optimal values are f(x) = 300 (Onemax) and f(x) 

= 64 (Royal Road).  

As stated before, RE correction holds no means to avoid full 

convergence. For that reason, the first study investigates RE 

behavior with different α and β values and compares the proposed 

strategy with LC and iLaplace, which are loss correction 

techniques that allow UMDA to converge. Parameter α of 

iLaplace correction is suggested in [8] to be set α = 2. However, 

since this study deals with DOPs, the optimal parameter may be 

different and other values were tested. As matter of fact, 

increasing α leads to a better performance and a general analysis 

of the results suggest α = 10 to be used in dynamic Onemax and 

Royal Road functions.  

 

Figure 5. Diversity loss in a flat landscape. Comparing RE 

correction with different α values and β = 1 (meaning total 

evaporation). Parameters: N = 20, f = 0.5 and L = 100. 
 

 

Figure 6. Diversity loss in flat landscape. Comparing RE with 

different β values (α = 1). Parameters: N = 20, f = 0.5, L = 100. 

EDAs (and other EAs) performance analysis on DOPs must be 

addressed in a distinct manner from static environments’ usual 

procedure. Dynamic behavior throughout the run must be 

examined, rather than the final convergence. For that purpose, the 

evaluation of UMDA’s performance is done by measuring the 

mean best-of-generation values (this is the standard procedure for 

DOPs). In addition, the progression of best-of-generation values 

may be plotted in a graph, thus helping to understand how the 

algorithm reacts to changes in the environment.  

Figure 7 shows RE performance on Royal Road and indicates that 

introducing RE and varying α and β may improve standard 

UMDA performance (remember that RE correction is equivalent 

to the standard UMDA update strategy if α = 1 and β = 1). In 

addition, decreasing evaporation (β) appears to result in a higher 

optimal α value – compare both graphics. Please note also that the 

effect varies with DOP conditions (𝜏, ρ values), which is an 

expected behavior since varying the speed and severity of change 

results in rather distinct problem conditions. 

The results (mean best_of_generation) attained by iLaplace, LC 

and RE UMDAs are shown in table 1. Two configurations of RE 

were tested: RE1, with no evaporation (β = 1) and α = 0.6; and 

RE2,  with   α = 0.8  and  β = 0.5.  A  statistical   comparison  was 

β =1 

 

β=0.5 

 

Figure 7. RE performance on Royal Road. Comparison of RE 

strategy with different α and β values. 
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Table 1. Comparison of iLaplace (α = 10), LC, RE1 (α = 0.6, β 

= 1) and RE2 (α = 0.8, β =0.5). Best results in bold. 

τ 

ρ 

Onemax Royal Road 

iLap. LC RE1 RE2 iLap. LC RE1 RE2 

10 

0.05 

249.32 

±2.08 

239.28 

±2.91 

235.26 

±3.32 

240.37 

±1.81 

21.86 

±4.97 

11.71 

±5.49 

19.07 

±4.89 

24.42 

±3.52 

10 

0.60 

176.05 

±1.52 

159.93 

±2.23 

179.30 

±1.89 

186.86 

±1.00 

6.52 

±0.87 

3.60 

±0.79 

7.26 

±1.35 

10.07 

±0.60 

10 

0.95 

166.47 

±0.55 

154.42 

±0.71 

173.54 

±0.90 

175.26 

±0.47 

11.81 

±2.10 

6.96 

±2.42 

11.08 

±1.99 

12.91 

±1.58 

100 

0.05 

246.98 

±3.18  

244.91 

±3.10 

242.90 

±3.75 

245.67 

±2.65 

16.56 

±4.17 

13.23 

±3.62 

16.20 

±3.50 

19.90 

±3.19 

100 

0.60 

160.40 

±1.85 

161.57 

±2.24 

158.53 

±2.01 

160.88 

±1.78 

4.66 

±0.82 

3.67 

±0.95 

4.86 

±0.74 

4.63 

±0.42 

100 

0.95 

153.40 

±0.52 

153.73 

±0.59 

151.02 

±0.70 

154.59 

±1.24 

10.97 

±2.30 

6.60 

±2.55 

10.56 

±1.92 

10.38 

±1.80 
 

carried out by t-tests with 58 degrees of freedom at a 0.05 level of 

significance and the result is depicted on table 2. Symbols +, − 

and ~ were used to illustrate t-test results: + means that strategy 1 

is significantly better than strategy 2, ~ means that performance is 

statistically equivalent and – means that strategy 1 is significantly 

worse. The results demonstrate that, in general, RE strategies are 

more efficient than iLaplace and LC when solving dynamic 

Onemax and Royal Road functions, especially with medium and 

high severity (𝜌 = 0.6 𝑎𝑛𝑑 𝜌 = 0.95). It is also clear that iLaplace 

outperforms LC which means that the latter strategy may be 

converging to quickly after leaving the 𝛾𝑖  = 0.5 plateau. The 

difference between iLaplace and RE performance is larger when 

evaporation is introduced (RE2). Please note that iLaplace also 

holds a memory scheme, since the model incorporates the 

information from the previous distribution. However, RE appears 

to be more effective in generating diversity by keeping memory in 

a kind of pheromone field.  

When testing strategies that avoid full convergence (Laplace and 

BC), UMDA’s performance on dynamic Onemax and Royal Road 

is greatly improved when compared to iLaplace, LC and even RE. 

In order to make fairly comparisons it is necessary to supply all 

the strategies with abilities to avoid convergence: BC provides 

such tool. Tables 3 show the results of iLaplace, LC and RE 

combined with BC. BC alone and Laplace were also tested 

(Laplace was tested in combination with BC, but the results were 

statistically similar; adding BC to Laplace appears redundant, at 

least in this test set.)  

A general analysis of the results presented in table 3 (and the 

statistically tests in table 4) concludes that both RE 1 and 2 

improve  other strategies’  performance in a significant  number of 

(𝜏, ρ) configurations, especially RE1, which appears to outperform 

Table 2. Statistical analysis of the results in table 1.  

 Onemax Royal Road 

τ 

ρ 
10 

0.05 

10 

0.6 

10 

0.95 

100 

0.05 

100 

0.6 

100 

0.95 

10 

0.05 

10 

0.6 

10 

0.95 

100 

0.05 

100 

0.6 

100 

0.95 

1 2   

RE1 iLap − + + − − − − + ~ ~ ~ ~ 

RE1 LC + + + − − − + + + + + + 

RE2  iLap − + + ~ ~ + + + + + ~ ~ 

RE2 LC ~ + + ~ ~ + + + + + + + 

iLap  LC + + + ~ ~ ~ + + + + + + 

RE2 in these tests. It seems that evaporation is not so useful when 

adding BC to RE correction. Please note that α was increased in 

both RE, because BC already guarantees diversity. Another aspect 

worth notice is that the difference between RE and other strategies 

is more obvious when speed is lower and severity is higher. For 

Onemax and (𝜏, ρ) = (10, 0.05), for instance, RE1 and RE2 are 

outperformed by other strategies; but when ρ increases both RE 

are statistically better than all other strategies – see table 4. Since 

low severity rates do not require as much diversity as higher ρ 

values, RE is not as useful as when the functions experience 

dramatic changes. Furthermore, lower speed means that the 

algorithm is given more time to converge to regions near the 

optimal solution, and, if that happens, it will require stronger 

diversity mechanisms to escape previous optimal regions of the 

landscape. RE strategy, if correctly tuned, provides the means to 

escape those regions.  

Although different parameter values have been tested, a fine-

tuning of the RE strategy was not performed. Further research is 

needed in order to understand how α and β affect UMDAs with 

RE. In addition, a wider range of problems is required in the test 

bench if the aim is investigating optimal α and β values. However, 

a few hints are given by the experiments performed for this 

section. Apparently, a strong diversity maintenance by drastically 

reducing α and β values from those corresponding to standard 

strategy (α = 1; β = 1) is not required for DOPs when adding BC 

to RE. RE seems to perform well when decreasing α to values 

around 0.8, maintaining β close to 1 (as a matter of fact, best 

results were achieved with β = 1 but, as already stated, no fine-

tuning was performed and β values between 0.5 and 1 may 
provide better performance). 

Table 3. Results on Onemax and Royal Road. iLaplace (α = 2). 

RE1(α = 0.8; β = 1) RE 2(α = 0.9; β = 0.5). Best results in bold. 

τ 

ρ 
Onemax  

iLap+BC Laplace LC+BC BC RE1+BC RE2+BC 

10  

0.05 

275.55 

±1.11 

278.96 

±1.09 

275.14 

±0.97 

279.22 

±0.95 

274.81 

±0.88 

265.71 

±1.22 

10  

0.60 

176.80 

±1.38 

177.77 

±1.87 

179.50 

±1.99 

178.81 

±1.64 

184.53 

±1.70 

184.38 

±1.28 

10  

0.95 

161.05 

±0.81 

160.05 

±0.65 

162.72 

±0.63 

159.85 

±0.65 

168.79 

±0.80 

170.89 

±0.59 

100  

0.05 

297.88 

±0.07 

298.13 

±0.04 

297.75 

±0.06 

298.15 

±0.08 

297.67 

±0.07 

296.93 

±0.08 

100  

0.60 

260.90 

±0.36 

267.89 

±0.41 

267.82 

±0.33 

267.42 

±0.34 

269.32 

±0.38 

254.24 

±0.39 

100  

0.95 

224.56 

±0.69 

238.87 

±0.55 

239.37 

±0.54 

237.78 

±0.42 

244.27 

±0.48 

214.68 

±0.77 

τ 

ρ 
Royal Road 

iLap+BC Laplace LC+BC BC RE1+BC RE2+BC 

10 

0.05 

36.78 

±5.90 

39.36 

±6.86 

40.20 

±5.28 

35.58 

±6.20 

45.19 

±4.00 

40.31 

±3.39 

10 

0.60 

8.72 

1.26 

10.26 

±1.88 

10.70 

±1.32 

8.78 

±1.38 

13.27 

±1.24 

11.06 

±1.07 

10 

0.95 

17.37 

±2.44 

18.67 

±2.08 

18.84 

±2.40 

17.01 

3.87 

19.12 

±1.55 

18.27 

±2.00 

100 

0.05 

56.64 

±3.30 

59.30 

±1.95 

60.43 

±1.50 

57.50 

±2.66 

61.68 

±0.79 

60.70 

±1.24 

100 

0.60 

18.98 

±2.19 

26.49 

±2.33 

30.89 

±1.49 

22.14 

±2.26 

39.90 

±1.08 

28.61 

±1.30 

100 

0.95 

21.75 

±1.80 

23.05 

±1.38 

26.08 

±1.27 

20.53 

±1.96 

34.87 

±1.11 

25.66 

±1.14 
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Table 4. Statistical analysis of the results in table 3.  

 Onemax Royal Road 

τ 

ρ 
10 

0.05 

10 

0.6 

10 

0.95 

100 

0.05 

100 

0.6 

100 

0.95 

10 

0.05 

10 

0.6 

10 

0.95 

100 

0.05 

100 

0.6 

100 

0.95 

1 2   

RE1+BC  iLap+BC ~ + + ~ + + + + + + + + 

RE1+BC Laplace − + + − + + + + ~ + + + 

RE1+BC LC+BC − + + ~ + + + + ~ + + + 

RE1+BC  BC − + + ~ + + + + + + + + 

RE2+BC iLap+BC − + + − − − + + ~ + + + 

RE2+BC Laplace − + + − − − ~ + ~ + + + 

RE2+BC LC+BC − + + − − − ~ ~ ~ ~ − ~ 

RE2+BC   BC − + + − − − + + ~ + + + 

Figure 8 shows the effect of α on the dynamics of UMDA (β = 1) 

when solving the DOP Royal Road with different severity rates 

and 𝜏 = 100. Starting with α = 1 (standard UMDA), it is clear that 

reducing α leads to an improved adaptation to changing 

environments. When α = 0.8, the system is more able to approach 

Royal Road’s optimal value and, for ρ = 0.6 and ρ = 0.95, the 

curves generated at each period are very similar. When ρ = 0.05, 

RE with α = 0.8 is faster at tracking and acquiring the optimum.  

Figure 9 compares RE and Laplace dynamic behavior. RE 

correction is faster than Laplace at tracking the optimum when ρ = 

0.05. With higher severity, RE behaves similarly in all the 

environments, while Laplace clearly looses diversity during the 

first environment, and the following performance is affected. 

6. SUMMARY AND CONCLUSIONS 
This paper presents a new diversity loss correction for UMDA to 

tackle Dynamic Optimization Problems (DOP). The new method 

is based on the ACO equations and thus it was named 

Reinforcement-Evaporation (RE) correction. The strategy has 

been tested and compared to other methods on two DOPs with 

different speed and severity settings. Results show that RE 

correction outperforms standard UMDA on the proposed test set. 

In addition, RE was compared with loss correction and 

incremental Laplace correction, outperforming both in the 

majority of speed/severity configurations. RE was also combined 

with boundary correction in order to avoid the full convergence of 

the model. Again, comparisons of different correct strategies show 

that RE behaves better in the majority of the test set. Further 

research will be focused on the parameters in order to determine 

potential optimal regions of the parameter space. It is important to 

understand if the diversity generated by α and β has different 

characteristics, and if that difference affects performance and 

dynamic behavior.  Tests on deceptive and dynamic functions will 

also be performed in order to investigate how the model behaves 

in such a test environment. Finally, possible extensions of RE to 

other EDAs will be considered. 
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