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ABSTRACT
One of the key points in Estimation of Distribution Algo-
rithms (EDAs) is the learning of the probabilistic graphi-
cal model used to guide the search: the richer the model
the more complex the learning task. Dependency networks-
based EDAs have been recently introduced. On the contrary
of Bayesian networks, dependency networks allow the pres-
ence of directed cycles in their structure. In a previous work
the authors proposed EDNA, an EDA algorithm in which a
multivariate dependency network is used but approximating
its structure learning by considering only bivariate statis-
tics. EDNA was compared with other models from the lit-
erature with the same computational complexity (e.g., uni-
variate and bivariate models). In this work we propose a
modified version of EDNA in which not only the structural
learning phase is limited to bivariate statistics, but also the
simulation and the parameter learning task. Now, we ex-
tend the comparison employing multivariate models based
on Bayesian networks (EBNA and hBOA). Our experiments
show that the modified EDNA is more accurate than the
original one, being its accuracy comparable to EBNA and
hBOA, but with the advantage of being faster specially in
the more complex cases.

Categories and Subject Descriptors
G.1.6 [Numerical Analysis]: Optimization—Global Opti-
mization; I.2.8 [Artificial Intelligence]: Problem Solving,
Control Methods, and Search

General Terms
Algorithms, Design.
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Estimation of Distribution Algorithms, Dependency Net-
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works, Probability Combining Function, Combinatorial Op-
timization, Scalability

1. INTRODUCTION
Estimation of Distribution Algorithms (EDAs) [20] were

proposed as an extension of genetic algorithms (GA) [14].
The key difference is that instead of using crossover and mu-
tation operators, EDAs carry out the evolution by learning a
probability distribution (PD) from the population which en-
codes the relationships between the individual components
and sampling new individuals from that learned distribu-
tion. In the literature can be found different models which
are used for learning such PD. They are grouped by its com-
plexity or the order of dependencies allowed: univariate (e.g.
UMDA [18] and cGA [10]); bivariate (e.g. MIMIC [2] and
COMIT [1]); or multivariate.

Among multivariate models there are also several approaches.
EcGA [8] is based on clustering components (genes or vari-
ables) in independent groups and learning a joint PD for
each group. FDA [19] sets the dependencies at the beginning
and in each iteration it only learns the conditional probabil-
ities distributions (CPD). Other models use Bayesian net-
works (BNs) [24] in order to represent the dependencies in
the population, so they use typical BNs learning algorithms
[3, 11] to identify those dependencies. Two representative
examples are EBNA [16] and hBOA [25]. Basically, the dif-
ference between these two models is that hBOA introduce
the use of niching through the use of the Restricted Tour-
nament Replacer (RTR) [9].

As in FDA the dependencies are established beforehand
and in a specific way for each problem it loses generality with
respect to BNs-based EDAs. On the other hand, EcGA as-
sume that all variables in the same cluster are dependent
among themselves what can lead to a very complex joint
PD, meanwhile if in fact there are some conditional inde-
pendencies between those variables, modeling them with a
BN will be more efficient in terms of space needed to repre-
sent the PD and we can reduce overfitting if these PD are
smaller.

Given that the use of BN has succeeded in this field, is fair
thinking about using other kind of probabilistic graphical
models like dependency networks (DN) [12]. That was the
reason why EDNA [5] was developed claiming that, taking
benefit from the properties of DN, the structure of this mul-
tivariate model can be approximated by using only statistics
of order two.

407



This paper describes a modification to EDNA which im-
proves notably its accuracy. This modification is based on
reducing overfitting in parameter estimation due to the large
conditional probability tables needed to learn in the origi-
nal EDNA. Now, the model approximation is extended to
the probabilistic graphical model parameter component, and
instead of estimating n-dimensional conditional probability
tables, we combine all conditional probability table for every
single dependent variable by means of the mean gate.

This work starts by describing previously presented EDNA
with the definition of dependency networks in Section 2.
Section 3 is devoted to explain the concept of combining
functions (gates) and our choice which is the mean function.
The experiments carried out are presented and discussed in
Section 4. Finally, in Section 5 the conclusions of this work
are exposed.

2. EDNA
In this Section we are going to present the probabilistic

graphical model we use as base for our proposal EDNA, but
before it is necessary to introduce some material about DN.

2.1 Dependency Networks
Dependency networks (DNs) were proposed by Hecker-

man et al. [12] as an alternative to BNs. They can be
defined as a tuple (G,P) over a domain X where G is a
directed graph (not necessarily acyclic) and P is a set of
CPDs, one for each variable in X. Every P ∈ P must be
such that

P (Xi|Pai) = P (Xi|X \ Xi).

This means that the set of parents Pa(Xi) for every variable
Xi is its Markov blanket MB(Xi).

This definition requires consistency in the sense that the
joint PD for X can be exactly recovered from P. This is a
very restrictive condition when learning from data, so in [12]
the authors defined general dependency networks in order to
relax the factorization: P (X) ≈

Q
P (Xi|Pai).

It can be observed that a DN can be learned from data
by independently learning the parent set for each variable,
which quickly lead to the design of parallel learning algo-
rithms. The fact of allowing directed cycles, although en-
larges the representation issue has the disadvantage of avoid-
ing the use of traditional BNs exact inference algorithms. In
this case, Heckerman et al. [12] propose to use approximate
inference carried out by using Gibbs sampling [6], instead of
probabilistic logic sampling which is typically used in EDAs.

DNs have some advantages and disadvantages with re-
spect BNs. For instance a DN is not usefull for encoding
causal relationships and is dificult to build with a knowledge-
based approach. Nonetheless in a scenario in which this
model is built with automatic learning algorithms DNs present
a great advantage because is easy and straightforward to
make computationally efficient learning algorithms. In [12],
authors propose some tasks in which DNs can be very suit-
able like collaborative filtering or probabilistic inference. We
can find in the literature some examples of the use of DNs
in different fields [21, 28, 4].

2.2 Multivariate relationship by Pairwise Com-
putations

From the previous definition and with the idea of using
a low complex algorithm when inducing the structure of

the probabilistic graphical model, authors introduced EDNA
([5]). EDNA takes benefit from the lack of restrictions about
acyclicity and carries out the structural learning for discov-
ering the dependencies between variables1 by using the fol-
lowing mutual information-based approximation:

Merit(Xi; Xj) = I(Xi; Xj) −

P
Xp∈Pai

I(Xp; Xj)

|Pai| + 1
,

which evaluates the goodness of adding Xj as a new parent
of Xi taking into account the current set of parents of Xi

(Pai), where I(·; ·) is mutual information function (see [5]
for details).

This function is not symmetrical, that is to say, at the end
of the learning process Xj can be parent of Xi but not the
opposite. Nonetheless is a heuristic way to approximate a
multivariate computation by bivariate ones, reducing in this
way the computational complexity specially when there are
many dependencies.

Once we got the graphical structure of the DN, we learn
the n-dimensional CPDs, getting in this way a fully spec-
ified multivariate probabilistic graphical model. However,
later we have detected that there is a problem with this way
of proceed: even if we assume that we have correctly recov-
ered the dependencies in the population, the set of parents
for every variable will be greater (or at least equal) than
the equivalent BN model. That implies that because of the
(usually) small considered training set (i.e. the best indi-
viduals in the population) the CPD for every variable will
be more difficult to be properly estimated and can be in
fact overestimated. This fact leads to a deterioration in the
performance.

3. COMBINING FUNCTIONS
In order to solve the problem commented above and to

improve EDNA we propose to extend the use of bivariate
statistics from only structural learning to the whole process,
including parameter learning and simulation. Thus, instead
of learning a full CPD for every variable, we propose to
estimate an independent CPD for each variable and each
parent. Later, when the probability value of a variable given
all their parents is required, we compute this value from the
set of estimated bivariate CPDs (notice that we compute the
value only for required configurations, not the whole CPD).

This approach is largely used in practice when construct-
ing BNs [23], mostly because efficiency reasons, number of
parameters to be elicited from experts, and/or in order to
introduce a better way of designing the interaction between
the variables involved. We can found examples in the lit-
erature applied to medical domains [22] or in the field of
Relational Bayesian Networks [15]. The combination of the
effect of each single parent to obtain the whole effect is car-
ried out by means of a gate or combining function:

Definition 1. A combining function is a function that
maps a finite set of probabilities distributions into a proba-
bility distribution.

Perhaps the most known example of combining function
is noisy-OR. This function is used to describe the interac-
tion between an observable effect E and its n possible causes

1with variable we refer to every component/gene of the in-
dividual
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{C1, C2, · · · , Cn}. It is used for instance to model the rela-
tionship between an illness and the conditions that can cause
that illness. It is supposed that each cause alone is sufficient
to make true the effect in absence of other causes and its
ability to do it is assumed independent of the presence of
other causes.

If we consider the simplest case in which both causes and
effects are binary, it is possible to define the entire CPD
P (E|{C1, C2, · · · , Cn}) with only n parameters {p1, p2, · · · , pn},
where pi represents the probability E being true when cause
Ci is also true and all the other causes are false. That is:

pi = P (E|C1, C2, · · · , Ci, · · · , Cn−1, Cn). (1)

Then the probability of E given that a subset of causes Cs

are simultaneously true is given by the following expression:

P (E|Cs) = 1 −
Y

i:Ci∈Cs

(1 − pi).

This combining function has a well defined semantic and a
solid theoretical root, as well as other combining functions,
nonetheless given our purpose we have two concerns about
it. First one is that it is only worthwhile when the variables
have the logical interaction explained above, but we can-
not expect that because this relationship will depend on the
optimization problem to be solved and we want a general
model for different kind of problems.

The second one is that, in spite of we can avoid computing
a full CPD for all variables, causes and effects, we still need
to use such a joint configurations during parameter learning,
e.g., P (C = 1|Xi = 1) must be estimated as P (E = 1|C1 =
0, . . . , Ci−1 = 0, Ci = 1, Ci+1 = 0, . . . , Cn = 0). Thus, bear-
ing in mind that EDNA learns the structural part of the
model with statistics with only one conditioning variable,
we also aim to estimate CPDs with only one conditioning
variable.

Therefore, if we have a variable Xi and its parent set
Pai = {Pai1 , Pai2 , · · · , Paik

}, we propose to estimate the
CPD of every variable in the problem given its parents using
just the set of bivariate CPDs Pij

= P (Xi|Paij
). Besides,

instead of using the semantic of the noisy-OR combining
function a more general function such as the mean. So we
will compute the CPD for every variable with the following
formula:

bP (Xi|Pai) =
1

k

kX

j=1

Pij
. (2)

Notice that in this way (1) the estimation will be more
accurate from small training sets, and (2) we considerably
reduce the storage space.

Because of the presence of cycles, new individuals are gen-
erated by Gibbs sampling instead of probabilistic logic sam-
pling (PLS). Although PLS is the standard simulation pro-
cess in the most EDAs, Gibbs sampling has also been used
in other non BNs-based EDAs [26]. Anyway, as the sam-
pling process is based on configurations of values, there is
no need of recovering the whole CPDs (given all the par-
ents) but only to compute the probability of the required
configuration by using eq. 2.

4. EXPERIMENTS
This section collects all the information about experiments

carried out in order to validate our proposal. First we in-

dicate the set of test functions used, which correspond with
four functions with a high number of dependencies, and
three of them with a high grade of deceptiveness (all but
HIFF). Next we explain the procedure and framework that
we employ to perform these experiments. Finally we present
the results and we analyse them.

4.1 Test Functions
We have selected these four functions: TRAP [7], MMDP

[19], HIFF [29], and HTRAP [25]. Due to space restrictions
and given that these functions are well known we skip to give
their definition, only we show the configuration of parameter
we use in these experiments.

For function TRAP we have two parameters: order k and
number of building blocks b. We have chosen 6 configura-
tions labelled as k × b with k = 5, 6 and b = 5, 7, 9.

For function MMDP the only parameter is number of
building blocks and we have b = 3, 5, 7, 9

For function HIFF the parameter is the level l. We have
selected 4 configurations l = 4, 5, 6, 7.

For function HTRAP we have two parameters as well:
order k and level l. In our experiments we have picked 4
configurations by combining k = 3 and k = 4 with l = 3 and
l = 4, labelled as k × l.

4.2 Description of Experiments
We want to compare our modified EDNA model, we called

it EDNA-mean, with the previously proposed EDNA, one
bivariate model from the literature (same computational
complexity) as COMIT, and two other multivariate mod-
els (same representation ability), EBNA and hBOA. These
two models employ typically a learning process based on the
score+search approach. The search method uses to be the
hill climbing search algorithm, and the score function can
be BDe [13] or BIC [27]. In our experiments we use the BIC
score, however we have tested previously EBNA and hBOA
with both functions and we obtain the same performance.
For EBNA and hBOA we use the structure learned in the
previous iteration as starting point for the local search pro-
cess, in the first iteration we use an empty graph. The local
operator considered are addition, deletion and reversal. This
procedure has been tested previously with good results [16].

For each test function we have selected several configura-
tions in order to check the models under different dimensions
in the same problem. We have tested the influence of the
population size, so we have run all the experiments with a
population size of 2048, 1024 and 512 individuals. The stop-
ping criterion is set to population size ∗ 100 evaluations at
maximum.

All the models have been tested in the same conditions.
They have to learn from the half of the population with the
best individuals. The old population is replaced by the best
individuals taken from the old population and the last sam-
pled individuals, truncated selection, as usual, except, of
course, in the case of hBOA where is used the Restricted
Tournament Replacer (RTR). For every configuration 30
runs have been made and in each single run all the mod-
els start from the same initial population in order to avoid
the results get biased by that fact.

For DNs model we use a simple implementation of the
Gibbs sampler and we set the number of burn-in samples
to two times the number of variables in the problem and a
latency of two.
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The algorithms tested and the problems used have been
implemented in library of optimization LiO [17]. The hard-
ware platform is the same for all runs to make time measures
reliable and consists of a server with Pentium IV 3Ghz pro-
cessor with 2Gb of RAM memory.

4.3 Results
Once we have run all the experiments we can gather the

results. We want to analyse the performance of our pro-
posal in two ways. First we want to compare these models
about convergence. In this topic we take into account how
many runs out of 30 the model can reach the optimum. We
will compare this amount between the models for the same
configuration.

Second, we want to check model speed and we will com-
pare the average time spent by each model to perform the
30 executions. The run time reported is relative to the run
time of our model EDNA-mean.

4.3.1 Convergence
In Table 1 are shown the results for TRAP function. In

bold face we indicate those cases in which the given model
can solve at least 66% of the runs.

It can be seen easily that EDNA-mean is the best one
in all configurations, no matter the size of the problem or
the population size. Neither EDNA nor EBNA can get the
optimum in any case.

As it expected, the smaller the population size is the worse
results are obtain, but this is the same for every model.

Table 1: Number of runs in which optimum is
reached for TRAP function with a population of
2048 (a), 1024 (b) and 512 (c) individuals.

5x5 5x7 5x9 6x5 6x7 6x9

COMIT 0 0 0 0 0 0
EDNA 0 0 0 0 0 0
EDNA-mean 28 29 26 29 29 30
EBNA 0 0 0 0 0 0
hBOA 30 30 27 15 1 0

(a)
COMIT 0 0 0 0 0 0
EDNA 0 0 0 0 0 0
EDNA-mean 29 30 29 24 25 21
EBNA 0 0 0 0 0 0
hBOA 29 18 8 0 0 0

(b)
COMIT 0 0 0 0 0 0
EDNA 0 0 0 0 0 0
EDNA-mean 29 18 14 28 15 1
EBNA 0 0 0 0 0 0
hBOA 23 7 0 0 0 0

(c)

In Table 2 we show the results for MMDP problem. In
that case is hBOA which is the best model without a doubt.
Nonetheless, EDNA-mean is still better that EDNA and
EBNA.

Table 3 shows the results for HIFF function. Here hBOA
is still the best model, EBNA is now better than EDNA-
mean, however the later is always better than EDNA but in
one case.

Table 2: Number of runs in which optimum is
reached for MMDP function with a population of
2048 (a), 1024 (b) and 512 (c) individuals.

3 5 7 9

COMIT 2 0 0 0
EDNA 3 0 0 0
EDNA-mean 24 7 1 0
EBNA 5 0 0 0
hBOA 30 30 28 24

(a)
COMIT 0 0 0 0
EDNA 0 0 0 0
EDNA-mean 9 4 2 0
EBNA 0 0 0 0
hBOA 30 30 26 16

(b)
COMIT 1 0 0 0
EDNA 0 0 0 0
EDNA-mean 9 7 0 0
EBNA 2 0 0 0
hBOA 30 28 21 4

(c)

Table 3: Number of runs in which optimum is
reached for HIFF function with a population of 2048
(a), 1024 (b) and 512 (c) individuals.

4 5 6 7

COMIT 30 30 30 7
EDNA 30 16 1 0
EDNA-mean 30 24 10 0
EBNA 30 30 30 7
hBOA 30 30 30 30

(a)
COMIT 30 30 24 0
EDNA 30 7 0 0
EDNA-mean 30 22 3 0
EBNA 30 30 23 0
hBOA 30 30 30 29

(b)
COMIT 30 30 4 0
EDNA 30 12 0 0
EDNA-mean 30 19 2 0
EBNA 30 30 3 0
hBOA 30 30 29 2

(c)

Finally, in Table 4 we can see the results for HTRAP
function. This function is probably the more difficult to
solve for the models taken into account. In this case again
hBOA has the best performance and, like for MMDP func-
tion, EDNA-mean is the second one, ahead of EBNA and
EDNA. Is important to point out that hBOA behaves better
with a smaller order (i.e the size of the trap) but EDNA-
mean behaves better with smaller level.

In short, we can say, according to our experiments, that
EDNA-mean outperforms EDNA without a doubt in terms
of convergence, what, in fact, is our purpose. EDNA-mean
also is better in general than EBNA and COMIT, but in

410



Table 4: Number of runs in which optimum is
reached for HTRAP function with a population of
2048 (a), 1024 (b) and 512 (c) individuals.

3x3 3x4 4x3 4x4

COMIT 0 0 0 0
EDNA 0 0 0 0
EDNA-mean 29 5 30 0
EBNA 20 0 0 0
hBOA 30 30 19 0

(a)
COMIT 0 0 0 0
EDNA 0 0 0 0
EDNA-mean 25 0 10 0
EBNA 3 0 0 0
hBOA 30 20 3 0

(b)
COMIT 0 0 0 0
EDNA 0 0 0 0
EDNA-mean 23 0 0 0
EBNA 0 0 0 0
hBOA 30 0 0 0

(c)

HIFF problem, what does not happend with hBOA. Nonethe-
less EDNA-mean is the best one for TRAP function, spe-
cially with higher problem dimension.

4.3.2 Model Speed
This section is devoted to analyse the computational cost

of the models, that is we want to check how fast are them and
if there is some relation with the dimension of the problem.
We focus on run time in order to asset how efficient are the
models we have in our comparison. We report, in the form
of table, the run time for every model relative to the run
time of EDNA-mean, so a figure greater than 1 means that
this model is slower and a figure lower than 1 means that
this model is faster than EDNA-mean.

In Table 5 we report the results for TRAP function. It
can be seen that EDNA-mean is always faster than hBOA,
EBNA and EDNA, but the later is a bit faster in one case.
It is noticeable that EDNA-mean can be more that 40 times
faster than hBOA.

In Table 6 are shown the results for MMDP function.
Here we can take almost the same conclusion than with
the TRAP function, EDNA-mean is faster than EBNA and
hBOA. Meanwhile EDNA and EDNA-mean have a quite sta-
ble relation in their run times, EBNA and hBOA are slower
and slower as the problem dimension increase so that means
that our model is more scalable than the other two, however
hBOA is faster in the smaller problem dimension. Again
COMIT is faster than EDNA-mean.

In Table 7 we have the results for HIFF function. This ta-
ble shows different information. Now EDNA-mean is slower
that the other models in most of the cases. Nonetheless we
can see as EBNA and hBOA are much slower than EDNA-
mean with the lagerst problem dimensions.

For function HTRAP we can see its results in Table 8.
Again EBNA and hBOA are slower and with worse scala-
bility, COMIT is in average faster, and EDNA is not faster
than EDNA-mean.

Table 5: Running time for TRAP function with a
population of 2048 (a), 1024 (b) and 512 (c) individ-
uals.

5x5 5x7 5x9 6x5 6x7 6x9

COMIT 1.16 1.41 0.89 1.59 1.28 1.58
EDNA 4.71 5.66 3.62 6.43 5.22 6.3
EBNA 7.65 10.65 7.67 10.62 10.12 14.07
hBOA 2.13 4.49 5.76 15.54 26.46 43.94

(a)
COMIT 1.53 1.7 1.17 0.76 0.73 0.54
EDNA 5.96 6.66 4.63 2.99 2.89 2.15
EBNA 9.29 12.39 9.68 5 5.68 4.91
hBOA 3.79 15.34 17.19 10.75 15.48 16.81

(b)
COMIT 1.07 0.47 0.34 1.05 0.38 0.25
EDNA 4.05 1.75 1.29 3.94 1.44 0.95
EBNA 6.48 3.39 2.86 6.8 3.01 2.31
hBOA 5.17 5.56 5.19 12.98 6.6 6.25

(c)

Table 6: Running time for MMDP function with a
population of 2048 (a), 1024 (b) and 512 (c) individ-
uals.

3 5 7 9

COMIT 0.68 0.34 0.33 0.35
EDNA 2.56 1.17 1.09 1.08
EBNA 9.59 5.89 6.27 6.84
hBOA 0.69 1.38 3.64 7.25

(a)
COMIT 0.38 0.34 0.34 0.34
EDNA 1.43 1.2 1.14 1.11
EBNA 4.38 4.87 5.57 6.51
hBOA 0.42 1.66 4.51 8.55

(b)
COMIT 0.35 0.32 0.32 0.33
EDNA 1.41 1.18 1.13 1.12
EBNA 3.41 4.31 5.22 6.29
hBOA 0.52 2.23 6.09 9.11

(c)

This analysis about running time can be a bit tricky be-
cause not all models yield the same results, i.e. normally
some of the models can find the optimum in many of the
runs but the others in a few or none of them. However we
can compare running time for EDNA-mean with other mod-
els in the case where all of them can achieve a reasonable
number times the optimum fitness. For instance, for HIFF
function with 2048 population and in the smaller configura-
tion we can make a more fair comparison and in this case all
the models a faster than EDNA-mean, our model has not
good results with this function. In the other hand we can
compare EDNA-mean with hBOA in TRAP function with
2048 population in the three first configurations and here
our model if faster and more scalable.

Evaluation Cost.
Apart of the running time is common the analysis of the

number of evaluations, which is a very good way to assess
the speed, efficiency and scalability of a model when the
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Table 7: Running time for HIFF function with a
population of 2048 (a), 1024 (b) and 512 (c) individ-
uals.

4 5 6 7

COMIT 0.08 0.04 0.06 0.21
EDNA 0.36 0.95 1.03 0.96
EBNA 0.62 0.56 1.17 4.72
hBOA 0.68 0.61 1.24 3.62

(a)
COMIT 0.08 0.05 0.11 0.26
EDNA 0.33 1.32 1 0.97
EBNA 0.59 0.64 1.9 6.62
hBOA 0.58 0.62 1.51 6.6

(b)
COMIT 0.08 0.05 0.24 0.26
EDNA 0.34 0.91 0.98 0.98
EBNA 0.66 0.74 3.58 8.78
hBOA 0.63 0.69 2.49 14.03

(c)

Table 8: Running time for HTRAP function with a
population of 2048 (a), 1024 (b) and 512 (c) individ-
uals.

3x3 3x4 4x3 4x4

COMIT 1.35 0.28 1.31 0.24
EDNA 5.34 1.08 5.18 0.98
EBNA 4.77 3.69 14.11 0
hBOA 2.09 2.72 20.83 17.88

(a)
COMIT 0.74 0.25 0.32 0.23
EDNA 2.87 0.95 1.25 0.98
EBNA 4.93 3.45 3.42 9.8
hBOA 1.35 4.67 6.71 20.96

(b)
COMIT 0.55 0.26 0.25 0.24
EDNA 2.05 0.96 0.94 1.01
EBNA 3.77 4.06 2.79 23.85
hBOA 1.42 6.6 5.11 37.19

(c)

cost of every evaluation is constant or at least is the same
for all the models. However, in this comparison is evident
that this is not true, the cost per evaluation dependends
on the complexity of the model and the problem dimension.
Normally when the problem dimension increases there is a
higher number of dependencies that the model have to man-
age and thus a multivariate model should need more time
per evaluation, although if it can deal properly with these
dependencies should need less evaluations than a simpler
model in total. That is the reason why we report next the
time that each model spend for one evaluation. As this rate
is almost constant among the different population sizes we
only show the figures for 2048 individuals experiments.

In Table 9 are shown the results for TRAP problem.COMIT
has in all cases the least computational cost per evaluation,
what is expected, meanwhile EDNA and EDNA-mean have
a similar cost. Also is noticeable that hBOA has the biggest
increase with the problem dimension, so it exhibits the worst
scalability apart that it has the greater cost always.

Table 9: Time per evaluation rate for TRAP func-
tion.

5x5 5x7 5x9 6x5 5x7 5x9

COMIT 0.01 0.01 0.02 0.01 0.02 0.03
EDNA 0.03 0.05 0.08 0.04 0.07 0.11
EDNA-mean 0.04 0.06 0.09 0.05 0.08 0.11
EBNA 0.05 0.10 0.17 0.07 0.14 0.24
hBOA 0.25 0.47 0.60 0.18 0.38 0.74

With function MMDP, as we can see in Table 10, COMIT
is again cheaper per evaluation and EDNA-mean is a bit bet-
ter than EDNA. hBOA is the worst and with bad scalability
like before but EBNA shows worse scalability according with
problem dimension.

Table 10: Time per evaluation rate for MMDP func-
tion.

3 5 7 9

COMIT 0.01 0.02 0.03 0.04
EDNA 0.03 0.06 0.09 0.13
EDNA-mean 0.02 0.05 0.08 0.12
EBNA 0.11 0.28 0.51 0.82
hBOA 0.09 0.32 0.69 1.17

From Table 11 we can take the same conclusions from
HIFF problem like with MMDP.

Table 11: Time per evaluation rate for HIFF func-
tion.

4 5 6 7

COMIT 0.01 0.02 0.06 0.14
EDNA 0.03 0.05 0.15 0.55
EDNA-mean 0.02 0.05 0.15 0.57
EBNA 0.05 0.23 1.13 3.22
hBOA 0.05 0.25 1.21 7.36

Finally, in Table 12 we have the results for HTRAP func-
tion, in which models show the same behabiour. In the last
two tables we can see that the problem dimension affects
more the cost per evaluation than with the first two prob-
lems.

Table 12: Time per evaluation rate for HTRAP
function.

3x3 3x4 4x3 4x4

COMIT 0.01 0.06 0.04 0.55
EDNA 0.04 0.21 0.14 2.30
EDNA-mean 0.04 0.22 0.15 2.34
EBNA 0.09 0.73 0.38 14.48
hBOA 0.20 2.14 0.99 41.86

Time Distribution.
In this last point we want to analyse how the models dis-

tribute the running time between structural and parametri-
cal learning and sampling. In Table 13 we show the percent-
age of the total time devoted to each one of these tasks. We
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show the range of these values, maximum and minimum per-
centage, for all the executions. As is expected, DNs models
spend most of the time in the sampling stage. To this task
these two models dedicate approximately 4 times more time
than to structural learning, however the rest of the models
spend much less time sampling new individuals. If we com-
pare only the distribution between EDNA and EDNA-mean
we can realize that the parametrical learning in EDNA-mean
is less expensive, so learning bivariate probability distribu-
tions is better computationally.

Table 13: Percentage of runtime divided into struc-
tural and parametrical learning and sampling.

structural parametrical sampling

max min max min max min

COMIT 92.34 42.88 12 0.83 52.1 6.83

EDNA 18.99 7.87 8.4 1.23 84.1 77.77

EDNA-mean 22.47 10.36 1.8 0.22 88.45 77.12

EBNA 98.56 70.48 3.83 0.06 25.69 1.38

hBOA 98.95 78.27 3.6 0.06 18.13 0.99

5. CONCLUSIONS
In this paper we have presented an approach whose aim

is to improve a model for EDAs based on DNs. This model
tries to learn a multivariate probabilistic representation from
the population but using only bivariate statistics in a very
simple way thanks to the facilities provided by DNs.

This approach is based on the concept of combining func-
tion in the way that we want to be able to obtain the condi-
tional probability distribution for every variable in the model
by only computing and storing a CPD for the given variable
given each one of its parent, i.e. a CPD with only one con-
ditioning variable.

The reason of doing that is two fold. First, we think that
estimating simpler CPD and combining them can help us to
overcome the potential overfitting problem of the full CPD
with all parents, and the second reason is to spread the idea
of EDNA, learning the structural part by using only 2-order
statistics, to the parametrical part of the learning.

Besides, we want to compare our proposal with other mul-
tivariate models from the literature, which have the same
representation ability, and a bivariate model which has the
same computational complexity. We have chosen EBNA and
hBOA as multivariate models, because of their generality
and good results, and COMIT as the representative for bi-
variate models. We have selected too a set of test func-
tions with different characteristics but all of them with a
great complexity in order to get a good assessment about
the goodness of the models.

From the results presented we can clearly conclude that
our proposal improve EDNA in all the problems tested about
the ability to solve them and it does not have more compu-
tational cost. Concerning EBNA and hBOA, our model is
faster than them in most of the cases tested and behaves bet-
ter when the problem dimension increases. About COMIT
we have seen that is always faster and shows better results
than EDNA-mean for HIFF problem

EDNA-mean is the best one for the TRAP function with-
out a doubt, in which only hBOA shows a performance wor-
thy to be compared to EDNA-mean. For the other functions
hBOA is better than EDNA-mean, in some case with a great

difference, however EBNA only win our model in HIFF prob-
lem but it loses in the rest of them. Taking into account that
HIFF problem is the only non deceptive problem we can say
that EDNA-mean model shows very good results for decep-
tive functions, is better than EBNA and COMIT and can be
considered as good as hBOA in average, although is much
better in TRAP function.

From the distribution of time that each model dedicates
to each task we see that most of the time that EDNA and
EDNA-mean spend is for sampling, so improving the sam-
pling algorithm, in terms of computational complexity, for
these models can get us a global improvement.

We have to take into account that in our version of EDNA
we are using restricted information, bivariate estimation,
against a much more complex estimation as the EDAs based
on BNs are using. As final remark we think that we have
achieved successfully our initial objective of presenting an
improvement of the EDNA model.

As future works, we plan to test our proposal in a more
systematic way, and to improve the EDNA with other com-
bining functions and also using other kind of replacer as the
used by hBOA. Also, we plant to scale up the algorithm
by reusing the later model learned in the previous stages
as hBOA and EBNA do. Also, as it has been pointed, can
be interesting to try other way to make the sampling, with
other parameters for Gibbs sampling or even try other sam-
pling algorithms.
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