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ABSTRACT

Estimation of distribution algorithms (EDAs) are stochastic
optimization techniques that explore the space of potential
solutions by building and sampling probabilistic models of
promising candidate solutions. While the primary goal of
applying EDAs is to discover the global optimum (or an
accurate approximation), any EDA also provides us with a
sequence of probabilistic models, which hold a great deal of
information about the problem. Although using problem-
specific knowledge has been shown to significantly improve
performance of EDAs and other evolutionary algorithms,
this readily available source of information has been largely
ignored by the EDA community. This paper takes the first
step towards the use of probabilistic models obtained by
EDAs to speed up the solution of similar problems in the
future. More specifically, we propose two approaches to bi-
asing model building in the hierarchical Bayesian optimiza-
tion algorithm (hBOA) based on knowledge automatically
learned from previous runs on similar problems. We show
that the methods lead to substantial speedups and argue
that they should work well in other applications that require
solving a large number of problems with similar structure.

Categories and Subject Descriptors

I.2.8 [Artificial Intelligence]: Problem Solving, Con-
trol Methods, and Search; I.2.6 [Artificial Intelligence]:
Learning; G.1.6 [Numerical Analysis]: Optimization
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General Terms

Algorithms, Performance

1. INTRODUCTION
Estimation of distribution algorithms (EDAs) [14, 20, 21]

are among the most powerful and generally applicable ge-
netic and evolutionary algorithms. EDAs replace traditional
variation operators of genetic algorithms—such as crossover
and mutation—by building a probabilistic model of promis-
ing solutions and sampling the built model to generate new
candidate solutions. While EDAs have many advantages
over standard genetic algorithms [14, 21], one in particular
this paper will focus on is that at the end of an EDA run,
a series of probabilistic models of our solution space have
been built, which hold a great deal of information about
the problem. Although such information should be useful
for effective efficiency enhancement and it has often been
argued that using problem-specific knowledge should signif-
icantly improve EDA performance [27, 1], the use of this
readily available source of problem-specific information has
been practically ignored by the EDA community.

This paper takes the first step toward the design of auto-
mated techniques for learning from experience and exploit-
ing information included in probabilistic models learned in
the past to speed up future EDA runs. This will be done
by biasing model building using information gathered from
probabilistic models obtained on similar problems in pre-
vious runs. While the techniques discussed in this paper
are designed for the hierarchical Bayesian optimization al-
gorithm (hBOA), the proposed techniques can be adapted
to other EDAs based on multivariate probabilistic models in
a straightforward manner.

The paper is organized as follows. Section 2 outlines
hBOA. Section 3 discusses learning from experience in EDAs
and hBOA. Section 4 proposes two methods for automati-
cally biasing model building in hBOA using the probabilistic
models learned in previous hBOA runs on similar problems.
Section 5 presents experimental results. Finally, section 6
summarizes and concludes the paper.
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2. HIERARCHICAL BOA (HBOA)
The hierarchical Bayesian optimization algorithm

(hBOA) [18, 17] evolves a population of candidate solutions
represented by fixed-length strings over a finite alphabet
(for example, binary strings). The initial population is
generated at random according to the uniform distribution
over the set of all potential solutions. Each iteration
(generation) starts by selecting promising solutions from
the current population using any standard selection method
of genetic and evolutionary algorithms. In this paper we
use truncation selection with threshold τ = 50%.

After selecting the promising solutions, hBOA builds a
Bayesian network [13, 16] with local structures [4, 6] as
a model for these solutions. New solutions are generated
by sampling the built network. These are then incorpo-
rated into the original population using restricted tourna-
ment replacement (RTR) [10], which ensures effective diver-
sity maintenance. The window size w in RTR was set as
w = min{n, N/20}, where n is the number of decision vari-
ables and N is the population size, as suggested in ref. [17].
The next iteration is then executed unless some predefined
termination criteria are met.

A Bayesian network (BN) [16, 13] consists of two compo-
nents: (1) Structure, which is defined by an acyclic directed
graph with one node per variable and the edges correspond-
ing to conditional dependencies between the variables, and
(2) parameters, which consist of the conditional probabili-
ties of each variable given the variables that this variable
depends on. A BN with n nodes encodes a joint probability
distribution of n random variables X1, X2, . . . , Xn:

p(X1, X2, . . . , Xn) =

n∏

i=1

p(Xi|Πi), (1)

where Πi is the set of variables from which there exists an
edge into Xi (members of Πi are called parents of Xi).

hBOA uses the set of selected solutions to automatically
learn both the structure (edges) as well as the parameters
(conditional probabilities) of the model. Learning the struc-
ture is the most challenging task of model building [17].
In this paper, we use the greedy algorithm for learning
the structure of BNs with local structures [17]. To evalu-
ate structures, the Bayesian-Dirichlet metric with likelihood
equivalence for BNs with local structures [4] is used with an
additional penalty for model complexity [6, 17]. For more
details on learning and sampling BNs with local structures
in hBOA, see refs. [4, 18, 17].

Incorporating local search often improves efficiency of
evolutionary algorithms. Even a simple deterministic hill
climber (DHC) was shown to lead to substantial speedups
of hBOA [17]. That is why we decided to incorporate DHC
into hBOA also in this study. DHC takes a candidate solu-
tion represented by an n-bit binary string on input. Then,
it performs one-bit changes on the solution that lead to the
maximum improvement of solution quality. DHC is ter-
minated when no single-bit flip improves solution quality.
Here, DHC is used to improve every solution in the popula-
tion before the evaluation is performed.

3. LEARNING FROM EXPERIENCE
GEAs typically do not require any information about the

problem being solved except for the representation of can-
didate solutions and the fitness function. Nonetheless, if
problem-specific information is available, it may be possible

to use this information to improve performance of these al-
gorithms significantly. There are two basic approaches to
speed up EDAs by incorporating problem-specific knowl-
edge: (1) bias the procedure for generating the initial popu-
lation [27, 24, 19] and (2) bias or restrict the model building
procedure [27, 15, 1]. For both these approaches, we may ei-
ther (1) hard code the modifications based on prior problem-
specific knowledge or (2) develop automated procedures to
improve EDA performance by learning from previous EDA
runs on problems of similar type (learning from experience).

One technique used to bias the initial population towards
good solutions (and, consequently, to also improve model
quality) is called seeding. Seeding works by inserting high-
quality solutions into the initial population. These high-
quality solutions can be either obtained from previous runs
on similar problems, provided by a specialized heuristic [27,
19], or created in some way from high-quality solutions of
smaller instances of the same problem [24]. Seeding can of-
ten lead to dramatic improvements. For example, in atomic
cluster optimization—where the goal is to find an atomic ar-
rangement that minimizes energy—Sastry [24] dramatically
lowered the asymptotic complexity of ECGA by seeding the
population with atomic configurations with one fewer atom.

All prior work on biasing the model building in EDAs was
based on using prior problem-specific knowledge and an as-
sumed relation between the structure of the problem and ad-
equate probabilistic models. The first attempt to bias model
building in EDAs based on prior problem-specific knowledge
was made by Schwarz & Ocenasek [27]. In this study, BOA
application to graph bipartitioning was considered where the
task is to split the nodes of a given graph into two equally
sized partitions so that the number of connections between
the two partitions is minimized. Since it can be hypothesized
that the nodes that are connected in the underlying graph
may be more likely connected in the probabilistic model as
well, they proposed the use of a prior network to bias model
building to structures that contain edges between the pairs
of nodes connected in the underlying graph. While other
dependencies were also allowed, the dependencies between
nodes connected in the underlying graph were given higher
priority. The bias towards any given prior network or a set of
prior networks can be easily incorporated into Bayesian met-
rics used to build the Bayesian network and thus whenever
the user has information about good candidate networks, a
similar approach can be used.

Mühlenbein & Mahnig [15] also considered graph biparti-
tioning. However, instead of incorporating a prior network
that provides a soft bias towards models that closely cor-
respond to the underlying graph, here the models were re-
stricted to only allow connections between nodes connected
in the underlying graph. This can both restrict the model
complexity as well as speed up the model building.

Finally, Baluja [1] discussed how to bias EDA model build-
ing on the problem of graph coloring, in which the task is to
assign a color to each node out of the set of available colors
so that no connected nodes have the same color. Similarly
as in the study of Mühlenbein & Mahnig [15], even here the
probabilistic models were restricted to only contain edges
that were consistent with the underlying graph structure;
all dependencies between unconnected nodes were simply
disallowed. However, in this study, dependency-tree models
were used while in the study of Mühlenbein & Mahnig [15],
Bayesian networks were used.
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Most experimental results on using prior knowledge to
bias either the model building or the generation of the initial
population suggest that prior knowledge leads to significant
speedups of EDAs and allows EDAs to solve larger prob-
lems than they could solve otherwise. Nonetheless, there
are three difficulties with applying the aforementioned tech-
niques in hBOA and other EDAs. First of all, different
problem instances of most problem types are expected to
yield significantly different solutions; therefore, the utility
of seeding and other approaches to biasing the generation
of the initial population can be expected to be severely lim-
ited. Second, it may be difficult to process prior information
about the problem structure to define adequate restrictions
of model structure. Finally, even if prior information about
the problem structure is relatively straightforward to obtain
and process, it may not be clear how to use this information
to provide adequate model restrictions.

4. BIASING THE MODEL BUILDING
Clearly, when an EDA is applied to an optimization prob-

lem, the most important result of the computation is the
best solution found. However, EDAs provide us with much
more than just the best solution—EDAs create a sequence
of probabilistic models encoding populations of increasing
quality, which hold a lot of information about the problem
being solved. Despite that EDAs often provide us with this
readily available source of problem-specific information and
that problem-specific knowledge has been shown to often sig-
nificantly improve EDA performance, the EDA community
has practically ignored the potential of using probabilistic
models discovered by EDAs in this way. This paper takes
the first step toward the design of automated techniques for
exploiting probabilistic models learned by hBOA for speed-
ing up future hBOA runs on problems of similar type.

This section describes two approaches to biasing the
model building based on probabilistic models obtained in
previous runs on similar problems:

(1) Bias model building using the probability coincidence
matrix, and

(2) bias model building using the distance threshold.

Both the proposed techniques start with a number of
sequences of probabilistic models built by hBOA on one
or more instances of the considered problem class. Then,
the probabilistic models are processed to provide us with a
method to bias probabilistic models in hBOA, which can be
used to improve hBOA performance on future instances of
the same problem type.

To provide examples of the application of these two ap-
proaches, we use two optimization problems: (1) 2D Ising
spin glass with ±J couplings and periodic boundary condi-
tions, and (2) MAXSAT.

The section starts by describing the test problems. We
then describe how to bias model building using the proba-
bilistic coincidence matrix. Next, we focus on biasing the
model building using a distance threshold. Finally, the ben-
efits of restricting model structure in hBOA are discussed.

4.1 Test Problems
This section describes test problems used in this study.

4.1.1 2D Ising Spin Glass with ±J couplings and
periodic boundary conditions

Ising spin glasses are prototypical models for disordered
systems. A simple model to describe a finite-dimensional
Ising spin glass is typically arranged on a regular 2D or 3D
grid where each node i corresponds to a spin si and each edge
〈i, j〉 corresponds to a coupling between two spins si and sj .
Each edge has a real value Ji,j associated with it that de-
fines the relationship between the two connected spins. To
approximate the behavior of the large-scale system, peri-
odic boundary conditions are often used that introduce a
coupling between the first and the last elements in each row
along each dimension.

For the classical Ising model, each spin si can be in one
of two states: si = +1 or si = −1. Given a set of coupling
constants Ji,j , and a configuration of spins C, the energy
can be computed as

E(C) =
∑

〈i,j〉

siJi,jsj , (2)

where the sum runs over all couplings 〈i, j〉.
Here the task is to find a spin configuration for a given set

of coupling constants that minimizes the energy of the spin
glass. The states with minimum energy are called ground

states. The spin configurations are encoded with binary
strings where each bit specifies the value of one spin (0 for
a spin +1, 1 for a spin -1).

One generally analyzes a large set of random spin glass
instances for a given distribution of the spin-spin couplings.
For each spin glass instance, the optimization algorithm
is applied and the results are analyzed. Here we consider
the ±J spin glass, where each spin-spin coupling constant
is set randomly to either +1 or −1 with equal probabil-
ity. All instances of sizes up to 18 × 18 with ground states
were obtained from S. Sabhapandit and S. N. Coppersmith
from the University of Wisconsin who identified the ground
states using flat-histogram Markov chain Monte Carlo sim-
ulations [5]. The ground states of the remaining instances
were obtained from the Spin Glass Ground State Server at
the University of Cologne [28].

4.1.2 MAXSAT

In MAXSAT the task is to find the maximum number
of clauses which can be satisfied in a given propositional
logic formula in conjunctive normal form. MAXSAT is an
important problem in complexity theory and artificial intel-
ligence because it is NP-complete and many other important
problems can be mapped to MAXSAT in a straightforward
manner. MAXSAT has also become popular in evolution-
ary computation and a number of researchers studied per-
formance of various genetic and evolutionary algorithms on
this class of problems [23, 9, 19, 2, 3].

MAXSAT problems are often expressed with logic formu-
las in conjunctive normal form with clauses of length at
most k; formulas in this form are called k-CNF formulas.
An interpretation of propositions assigns each proposition
either true or false. The task is to find an interpretation
that maximizes the number of satisfied clauses in the for-
mula. MAXSAT for k-CNF formulas is NP-complete for
any k ≥ 2. hBOA encodes the interpretations with binary
strings where each bit specifies an assignment of one propo-
sition (0 for false, 1 for true) and the fitness is equal to the
number of satisfied clauses.
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In this paper we will consider instances of combined-
graph coloring translated into MAXSAT [7], which are espe-
cially interesting because they are often difficult for standard
MAXSAT heuristics such as WalkSAT [17] and because they
represent a class of problems where randomness is combined
with structure [7]. The graph-coloring problem instances
were created by combining regular ring lattices and random
graphs with a specified number of neighbors [7]. All tested
instances of combined-graph coloring were downloaded from
the Satisfiability Library SATLIB [12].

4.2 Biasing Models Using the Probability Co
incidence Matrix

For this method we first compute what we will call a prob-

ability coincidence matrix (PCM) of size n×n where n is the
string length. We denote the matrix by P and the elements
of this matrix by Pij where i, j ∈ {1 . . . n}. The value Pij

is defined as the proportion of probabilistic models in which
ith and jth string positions are connected (in either of the
two possible directions). The matrix P is thus symmetric.
To compute the elements of P , we parse all available prob-
abilistic models and use a counter for each position in the
matrix which is incremented by 1 for each model that con-
tains a connection between the ith and jth string positions.
The value of Pij is then set to the ratio of the resulting value
of the counter and the total number of probabilistic models
available on input. For example, if for any i 6= j, 25% of the
available probabilistic models contain a connection between
i and j, then Pij = 0.25.

Of note is that runs of longer length (with respect to the
number of iterations of the main hBOA loop) will be rep-
resented more strongly in the PCM than runs of shorter
length. While we could have implemented a method that
weighed all runs equally, it is not clear to us that this would
always be beneficial. Not all runs are equal, some similar
problems are harder than others, so it could be beneficial to
have certain runs more strongly represented. Additionally,
with this method, Pij represents the actual percentage of
models that connected i and j, whereas with other methods
the meaning of Pij would be more abstract.

Once we have computed the PCM, we can use this matrix
to bias model building in future problems of similar type by
only allowing edges between nodes that are contained in at
least some percentage pmin of the provided sample models.
For example, we can restrict the models by allowing only
edges that appear in at least 20% of the sample models,
disallowing a direct conditional dependence between any i
and j for which Pij < pmin = 0.2.

The main advantage of using PCM to restrict model struc-
tures over user-defined model restrictions based on prior
problem-specific knowledge is that the approach proposed
here is applicable automatically and the only parameter that
needs to be specified by the user is the threshold pmin.

4.3 Biasing Models Using Distance
The PCM-based approach presented above has one main

disadvantage, which restricts its utility in practice. Specif-
ically, it is only applicable when the structure of the un-
derlying problem does not change much between different
problem instances. While this assumption is clearly satis-
fied in 2D Ising spin glasses, it does not hold in other im-
portant classes of problems. Nonetheless, both in the finite-
dimensional Ising spin glasses as well as in other important

classes of challenging problems—for example in MAXSAT
and the minimum vertex cover—we may define a distance
metric between different decision variables in the problem
which should loosely correspond to the strength of the de-
pendence between these variables. For example, in 2D spin
glasses, we know that the shorter the shortest path between
two spins is, the less frequent the dependencies between
these spins are [11]; therefore, when studying models ob-
tained by hBOA, it should be beneficial to use the distance
metric based on the shortest distance between two spins
across the 2D lattice. In MAXSAT, the distance of two
Boolean variables may be defined as 1 for any two variables
located in the same clause and for any other pair of vari-
ables, we may recursively define the distance between these
two variables as the minimum distance between these vari-
ables passing through any other variable.

Given the distance metric , we can then process the given
probabilistic models with respect to the distance. The result
of such an analysis may be encoded by a vector Q that stores
the proportion Qd of dependencies at a specific distance d
or a shorter one when averaging over all available models.
More specifically, for any potential distance d, we first parse
all models and compute the overall number of dependencies
between variables at distance d or less; then, we compute
Qd by dividing the resulting count by the overall number of
dependencies discovered.

One way to process the resulting vector is to define a
threshold qmin, which defines the minimum value of Qd for
any distance d. That means that dependencies between vari-
ables at distance d for which Qd < qmin would be strictly
disallowed.

4.4 Why are Model Restrictions Beneficial?
There are two main benefits of restricting model structure

in hBOA and other multivariate EDAs. First of all, if we
restrict model structures by disallowing some dependencies,
the model building becomes significantly faster because the
model-building algorithm has to examine much fewer depen-
dencies. This can lead to substantial reduction in time com-
plexity of model building, as is supported by experimental
results in section 5. Second, if we restrict the probabilistic
models by disallowing edges which are indeed unnecessary,
then the search may become more effective.

The following section provides a thorough empirical anal-
ysis of the above two approaches to automatically restricting
model structure on 2D Ising spin glasses and MAXSAT.

5. EXPERIMENTS
This section covers the experiments using the two pro-

posed approaches to biasing hBOA model building on 2D
Ising spin glasses and MAXSAT. Since in MAXSAT, prob-
lem structure of different problem instances may vary sub-
stantially, for this class of problems we only consider the
approach based on the distance metric. First the parame-
ter settings and the experimental setup are discussed. The
results are then presented.

5.1 Parameter Settings
For all problem instances, bisection [25, 17] was used to

determine the minimum population size to ensure conver-
gence to the global optimum in 5 out of 5 independent runs,
with the results averaged over the 5 runs. The number of
generations was upper bounded according to preliminary ex-
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Figure 1: Execution time speedups and reduction

in the number of bits examined in model building

based on model restrictions

periments and hBOA scalability thoery [22] by n/4 where n
is the number of bits in the problem. Each run of hBOA is
terminated when the global optimum has been found (suc-
cess) or when the upper bound on the number of generations
has been reached without discovering the global optimum
(failure).

5.2 PCM Model Bias on 2D Spin Glass
While building a PCM is relatively straightforward, deter-

mining a threshold pmin for cutting off edges is not. To get a
better idea of how pmin influences the benefits of restricting
models with PCM, we considered a range of problem sizes
from 16 × 16 (256 spins) to 32 × 32 (1024 spins). For each
problem size, we used 100 random instances. In order to
not use the same problem instances to both learn PCM as
well as validate the resulting bias on model structure, we
used 10-fold crossvalidation. For each problem size, the 100
instances were divided into 10 equally sized subsets and in
each step of the crossvalidation, we used 9 of these 10 sub-
sets to learn PCM and tested the resulting bias on model
building on the remaining subset of instances. This was re-
peated 10 times, always leaving one subset of instances for
validation. In this manner, the validation was done on dif-
ferent instances than those used for learning PCM and each
subset of instances was used for validation.

Figure 1a shows the average execution-time speedup ob-
tained from the 10-fold crossvalidation for four different
problem sizes with varying threshold pmin. Note that the
execution time does not include only the time spent in model
building; it includes the overall time required for the entire
execution of hBOA. The threshold for cutting of model de-
pendencies was varied from pmin = 0 (no restrictions) to
some maximum value, where the maximum value was set in
order to ensure that no instances in the validation set be-
come infeasible within reasonable computational time. We
see that for all problem sizes, execution-time speedups of
about 4–4.5 were obtained, which is a substantial speedup.
It can be also be seen that the optimal value of pmin de-
creases with problem size. Nonetheless, even when the value
of pmin is twice as large as the optimal one, the speedups still
remain substantial. As problem size increases, the optimal
speedup stays nearly constant (in the range of 4–4.5).

It is clear that the execution-time speedups obtained are
caused by model building. But how are our restrictions af-
fecting model-building? To quantify the effects of model
building restrictions on the complexity of model building,
we record the number of bits that must be checked to update
model parameters during the entire model building proce-
dure as this is the primary factor affecting time complexity

Size Exec. speedup pmin % Total Dep.
256 (16 × 16) 3.89 2.0 6.4%
324 (18 × 18) 4.37 1.1 8.7%
400 (20 × 20) 4.34 2.0 7.0%
484 (22 × 22) 4.61 1.0 6.3%
576 (24 × 24) 4.63 1.3 4.6%
676 (26 × 26) 4.62 1.1 4.7%
784 (28 × 28) 4.45 0.9 5.4%
900 (30 × 30) 4.93 0.5 8.1%

1024 (32 × 32) 4.14 0.7 5.5%

Table 1: Optimal speedup and the corresponding

PCM threshold pmin as well as the percentage of

total possible dependencies that were considered for

the 2D Ising spin glass.

of model building in hBOA. If we restrict the number of po-
tential edges ending in any particular node, after adding an
edge into this node, the number of examined bits reduces
by the same factor. For Bayesian networks with local struc-
tures, limiting the model structure leads to a decrease in the
number of potential splits.

Figure 1b shows the average factor of decrease in the num-
ber of bits examined during the model building with re-
spect to the value of the PCM cutoff threshold pmin. As
we can see, model restrictions based on PCM dramatically
decrease the number of bits that must be examined. One
thing of note is that even after we reach the point of maxi-
mum execution-time speedup, the number of bits examined
further decreases with increasing pmin. This indicates that
after the optimal cutoff, other factors start to weigh more
heavily on the execution time and the model-building bias
becomes too restrictive.

Table 1 shows the best speedups obtained, the percent-
age of total possible dependencies considered by hBOA, and
the corresponding cutoff values for all problem sizes exam-
ined. The results show nearly the same maximum speedup
of about 4–4.5 for all problem sizes. The results also in-
dicate that as the problem size increases the cutoff values
must be slightly decreased to achieve optimal speedup. We
believe that the reason for this is that for larger problems,
the total number of dependencies increases, and to ensure
that a sufficient fraction of dependencies is considered, the
cutoff threshold must decrease. We also see that even as
the cutoff threshold increases, hBOA only needs to consider
a small percentage of the total dependencies. In fact this
percentage is remarkably similar for the different problem
sizes.

5.3 DistanceBased Bias on 2D Spin Glass
As was argued in section 4, restricting model structures

should lead to significant speedups (which was supported by
experiments using PCM-based model bias). Nonetheless, it
was also argued that restricting models based on PCM can
be expected to be ineffective if different problem instances
vary in structure substantially. That is why another ap-
proach was suggested which is based on imposing a distance
metric on the problem decision variables and restricting de-
pendencies of large distances using some threshold. This
section tests this approach on the 2D Ising spin glass with
the distance metric defined as the minimum number of cou-
plings one must pass to travel from one spin to another.
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Figure 2: Execution time speedups and reduction

in the number of bits examined in model build-

ing based on distance restrictions on 2D Ising spin

glasses

While it is clear that the probabilistic models discovered
by hBOA contain mostly dependencies at shorter distances,
setting an appropriate threshold for the maximum distance
of dependencies remains a challenge. If the distances are re-
stricted too severely, the bias on the model building may be
too strong to allow for sufficiently complex models; this was
supported also with results in ref. [11]. On the other hand,
if the distances are not restricted sufficiently, the benefits of
using this approach may be negligible.

To explore this tradeoff, we considered spin glass instances
of sizes 16 × 16 to 28 × 28, 100 random instances for each
problem size. Then, for each instance, we ran a series of
experiments with dependencies restricted by the maximum
distance, which was varied from 1 to half the maximum
achievable distance (for example, for 20×20 spin glasses, we
ran experiments only allowing dependencies between spins
of a maximum distance from 1 to 10). When the restrictions
on model structure were too strong, some of the instances
would not converge even for extremely large population sizes
(N = 512000); the results in these cases were omitted.

Figure 2a shows the execution-time speedup with model
complexity restricted by the maximum distance. The hor-
izontal axis is the ratio of the number of dependencies in
the original runs that matched that restriction compared to
the overall dependencies. The maximum distance allowed is
shown as a label for some selected points in the graph.

The results show that restricting models by maximum dis-
tance results in significant speedups of about 4.3–5.2; in
fact, the optimal speedups obtained are better than those
obtained with the PCM-based model bias. In agreement
with results in ref. [11], we also see that as the problem size
increases, dependencies at larger distance should be allowed
for maximum speedup. Nonetheless, the speedups obtained
seem to be again nearly independent of problem size, just
like for the results obtained with PCM.

Just as we did for the PCM-based approach, we also ex-
amined the effects of the distance-based model restriction
on the number of bits that had to be examined during the
entire model-building procedure. Figure 2b shows the factor
by which this quantity decreases with various thresholds on
the maximum distance. The results show a dramatic drop
in the number of bits that must be examined with small val-
ues of the maximum distance, by as much as a factor of 30.
They also show that this maximum decrease is maintained
as problem size increases.

Table 2 shows the best speedups, the corresponding maxi-
mum distance threshold, and the percentage of total possible

Size Exec. speedup qmin % Total Dep.
256 (16 × 16) 4.29 2 4.7%
400 (20 × 20) 4.93 3 6.0%
576 (24 × 24) 5.22 3 4.1%
784 (28 × 28) 4.91 5 7.6%

Table 2: Distance cutoff runs with their best

speedups by distance as well as the percentage of

total possible dependencies that were considered for

2D Ising spin glass

dependencies that were considered by hBOA for all problem
sizes. We can see that hBOA is only considering a small per-
centage of the possible dependencies for these cutoffs. We
can also clearly see that as problem size increases, the max-
imum speedup stays nearly the same, indicating that our
speedups will scale to larger problems.

A comparison of tables 1 and 2 reveals that while the
speedups in the two cases are similar, the speedups obtained
with the distance-based model restriction are slightly bet-
ter than with the PCM-based approach. We also see the
same pattern of hBOA considering approximately the same
percentage of total dependencies using each of the methods.

5.4 DistanceBased Bias on MAXSAT
In section 5.3 we saw that restricting model structure by

distance leads to significant speedups of hBOA on 2D Ising
spin glasses. Can this approach be applied to other prob-
lems? In this section we will attempt to answer this question
by looking at combined-graph coloring problems encoded as
instances of the MAXSAT problem.

To restrict models by distance in MAXSAT we first define
a distance metrix. The distance between any two Boolean
variables is defined as 1 for any two variables in the same
clause. For any other pair of variables their distance is re-
cursively defined as the minimum distance between these
variables passing through any other variable. If there is no
path between two propositions their distance is defined as
the number of propositions.

While this distance metric is relatively straightforward to
implement, setting an adequate threshold on distances to
maximize the speedups is not. We would certainly expect
that many dependencies would be between propositions that
share a clause but restricting hBOA to only consider de-
pendencies between propositions in the same clauses would
almost certainly be too severe of a restriction. Yet just as
with spin glasses, if we do not restrict model structure sub-
stantially then the gains will be negligible.

To examine this tradeoff, we looked at instances of
MAXSAT for graph coloring of combined graphs [7] with
p = 0, p = 2−4 and p = 2−8. For each value of p, we consid-
ered 100 random instances where all 100 instances were 5-
colorable, and contained 500 propositions and 3100 clauses.
Then, for each of these instances we ran experiments with
dependencies restricted by the maximum distance, which
was varied from 1 to the maximum distance found between
any two propositions (for example, for p = 2−4 we ran ex-
periments using a maximum distance from 1 to 9). For some
instances with p = 1 the maximum distance was 500, indi-
cating that there was no path between some pairs of propo-
sitions. On the tested problems, small distance restrictions
(restricting to only distance 1 or 2) were sometimes too re-
strictive and some instances would not be solved even with
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Figure 3: Execution-time speedup with model

restrictions based on the maximum distance on
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Figure 4: Factor by which the number of bits in

model building decreases with the model restrictions

based on maximum distance on MAXSAT for differ-

ent values of p.

extremely large population sizes (N = 512000); in these
cases the results were omitted.

Figure 3 shows the execution-time speedup of hBOA on
MAXSAT with model complexity restricted by the maxi-
mum distance. The horizontal axis stands for the ratio of
the number of dependencies with a specific distance bound
and the total number of dependencies in the original, unre-
stricted runs. The maximum distance allowed is shown as a
label for selected points in the graph.

The results show that the speedups obtained by restrict-
ing model structures by distance vary with the amount of
structure in the considered problem instances. For p = 1,
problem instances have very little structure and we see that
only one distance threshold led to a significant speedup (of
about 1.5). For p = 2−4 we see a maximum speedup of about
2.5 and for the most structured problems with p = 2−8 we
see a maximum speedup of about 2.2. We also see that as
the amount of structure increases that a wider variety of
distance thresholds lead to speedups. For p = 1 only one
threshold led to a substantial improvement. However, as p
decreases, we get a wider band of thresholds that lead to
noticeable improvements. We also see that as p increases
the number of dependencies at small distances increases
rapidly—for example, for p = 1 we see that over 98% depen-
dencies were of distance 4 or less, while for p = 2−8, only
72% dependencies were at distance 4 or less.

We also examined the effects of the MAXSAT distance-
based restrictions on the number of bits that had to be exam-
ined during the entire model-building procedure. Figure 4
shows the factor by which this quantity decreases with var-
ious thresholds on the maximum distance. As in the previ-
ous figure, the distance restrictions are labeled on the graph
with arrows. As in the execution time results, we see that
our gains are smaller for p = 1 but are much higher for the
other two values of p.

p Exec. speedup qmin % Total Dep.
p = 1 1.53 4 97.7%
p = 2−4 2.67 3 29.6%

p = 2−8 2.20 4 28.4%

Table 3: Distance cutoff runs with their best

speedups by distance as well as the percentage of

total possible dependencies that were considered for

MAXSAT

Table 3 shows the best speedups, the corresponding max-
imum distance threshold and the percentage of possible de-
pendencies that were considered by hBOA for all values of
p. While the results are less impressive than for the 2D Ising
spin glasses, speedups are obtained for all values of p exam-
ined, indicating that even for MAXSAT problems with some
structure, distance restrictions can improve the performance
of hBOA. In contrast to the results on 2D spin glasses, we
see that hBOA needs to consider a much larger proportion
of possible dependencies. In fact, in the p = 1 case, al-
most all dependencies were considered, and yet the results
still showed an almost 50% improvement in efficiency. In
the remaining two cases, the results were very similar, with
approximately 30% of all possible dependencies considered.

6. SUMMARY AND CONCLUSIONS
Besides providing the user with the global optimum or at

least its good approximation, EDAs also provide a series of
probabilistic models that hold a great deal of information
about the problem. If one wants to solve more problem in-
stances of similar type, using this readily available source
of problem-specific knowledge should allow the user to im-
prove performance of EDAs on future problem instances of
this type. This study takes the first step in exploiting this
information and shows that restricting model building in
hBOA based on the results from previous runs on similar
problems leads to substantial speedups. Two approaches to
restricting probabilistic models based on previous runs were
proposed and tested, yielding the speedup of about 4 to 5
on the 2D Ising spin glass and the speedup of about 1.5 to
2.5 on MAXSAT depending on the amount of structure in
the problem.

While this study considered only two specific classes of
problems—2D Ising spin glasses and MAXSAT—the pro-
posed approaches can be adapted to any problem where ei-
ther (1) problem structure does not vary significantly be-
tween different problem instances or (2) one can impose a
distance metric on problem variables so that variables lo-
cated at greater distances are less likely to be connected in
the probabilistic model. Some examples of such problems
classes include the 3D spin glass and various problems from
graph theory (such as the minimum vertex cover and graph
bipartitioning). The proposed approaches then provide a
principled way to control model bias based on previously
discovered probabilistic models without requiring the user
to manually design such a bias. The proposed techniques
can also be adapted to other EDAs based on multivariate
probabilistic models, such as ECGA.

While any efficiency enhancement technique is useful on
its own right, combining multiple efficiency enhancement
techniques often yields multiplicative speedups [8, 26]. For
example, sporadic model building or parallel model build-
ing can be used in combination with the techniques proposed
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in this paper, further improving hBOA performance. This
should allow the pracitioners to further increase the size of
problems feasible with EDAs and solve problems unsolvable
with the current methods.

There are three key areas for future research on this topic.
First of all, the proposed techniques should be tested in
other classes of important problems, such as the graph bi-
partitioning or the minimum vertex cover problems. Second,
the process of choosing appopriate thresholds to achieve
maximum speedups should be made more automatic so that
the user does not have to rely on the trial-and-error ap-
proach to setting these parameters. Finally, the proposed
approaches should be improved by exploring other tech-
niques to bias model building and extended to deal with
other problem types.
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