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ABSTRACT
A major challenge in the field of metaheuristics is to find
ways to increase the size of problems that can be addressed
reliably. Scalability of probabilistic model building meth-
ods, capable to rendering difficult, large problems feasible
by identifying dependencies, have been previously explored
but investigations had mainly concerned problems where ef-
ficient solving is possible with the exploitation of low order
dependencies. This is due to the initial-supply population
sizing, where the number of samples is lower bounded by
the exponential of the order of dependencies covered by the
probabilistic model. With an exponentially growing pop-
ulation, the impact of the model building on the overall
complexity, can easily exceed the bound for the number of
evaluations.

In this paper we present a competent methodology, ca-
pable of efficiently detecting and combining large modules,
even in the case of unfavorable genetic linkage and no intra-
block fitness gradient to guide the search or deceptiveness.
This is achieved by investing the function evaluations in a
model based local-search with strong exploratory power and
restricting the model building to a relatively small number
of semi-converged samples.

Categories and Subject Descriptors
I.2.8 [Artificial Intelligence]: Problem Solving, Control
Methods and Search

General Terms
Algorithms, Design, Theory

Keywords
Model based local-search, adaptive neighborhood structure,
scalability, macro-mutation
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1. INTRODUCTION
A critical issue with complex real-world problems is the

scalability problem [19]. Accordingly, a major challenge in
the field of metaheuristics is to find ways to increase the size
of problems that can be addressed reliably.

The feasible sizes of problems strongly depend on their
particular structures that can be used to bias the search to-
wards high quality solutions. Without such properties to
be exploited, the search space requires a systematic explo-
ration. A problem property which can render large problems
feasible when identified is that of dependencies.

Estimation of Distribution Algorithms (EDAs), an ex-
tension of Evolutionary Algorithms (EAs), use probability
functions instead of a population of configurations, which
enables them to represent and learn the structure between
the search variables. If enough sampling is provided, EDAs
can detect dependencies spread over the entire length of the
genome and solve modular problems which are intractable
using fixed, problem independent operators and representa-
tions.

Albeit, scalability of EDAs have been previously investi-
gated [16, 1], investigations had mostly concerned boundedly-
difficult problems where efficient solving is possible with the
exploitation of low order dependencies. Typically, the ad-
dressed order of dependencies, which we denote by k, was
usually less or equal then 6.

This is due to the initial-supply population sizing [2],
where the number of samples in an EDA is lower bounded
by the exponential of the order of dependencies covered by
the probabilistic model, being Ω(2k) in the case of binary
encoding. With an exponential growth of the population,
the impact of the model building on the overall complexity
can easily exceed the bound for the number of evaluations.

The objective of this paper is to present a competent
methodology which can detect and combine larger mod-
ules with sizes up to 8-16, in the case of unfavorable ge-
netic linkage and no intra-block fitness gradient to guide the
search (neutrality) or even deceptiveness. This is achieved
by investing the function evaluations in a model based local-
search with strong exploratory power, instead of using huge
populations in order to supply the initial building-blocks.
The dependencies are detected from only a few (semi-) con-
verged states, using a novel Artificial Neural Network based
machine learning technique.

The method can discover m modules of order k char-
acterized by neutrality efficiently, by repeatedly investing
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c2 ·n2 function evaluations into the model based local-search,
where n is the size of the problem and c2 · n2 provides an
acceptable approximation to m2k, with c2 < k.

The following section analyzes with what costs can large
building-blocks be discovered at terms of model building
and population sizes or function evaluations in the case of
local-search. Suitable test suites are introduced in Section
3. In Section 4 the proposed method is detailed. Section 5
presents empirical results of the proposed method. Finally,
the paper is concluded in Section 6.

2. HOW MUCH IS THE FISH?
Modular, boundedly-difficult problems must have k small,

relative to the problem size n. In order to ease up the anal-
ysis of scalability as a function of module size, in this pa-
per we use the maximal value for k of

√
n. Accordingly,

the number of modules equals the order of the modules i.e.
n = km = k2, where m is the total number of building-
blocks on the lowest level.

2.1 Population Sizes and Model Building Cost
in PMBGAs

In Probabilistic Model Building Genetic Algorithms (PM-
BGAs), the first step towards reliable and accurate problem
solving is the tackling of the initial building-block supply.
One must provide the minimum population size required to
ensure the presence of at least one copy of all raw schemata.

In [4] the authors have developed facetwise models for
ensuring building-block supply in the initial population. For
binary alphabets, the predicted population size required to
ensure the presence of all competing building-blocks with a
tolerance of ε = 1/m is given by

N = 2k(k + log(m)) (1)

where k is the order of the modules, and m is the total
number of building-blocks.

Please note that this is the minimal population size, as-
suring the presence of one copy of each building-block with a
high probability. Actual population sizes needed to filter out
noise and guarantee a proper decision making between the
correct building-blocks and their competing schemata, are
much larger; a correct population size is further influenced
by a problem specific constant [5].

EDAs usually employ a search for a model that best fits
the population according to the maximum likelihood. If we
only check pairwise relation between variables and confront
them against the N samples in the population we have a
minimal complexity for model building of

T = Ω(n2N) (2)

Again, actual model building methods may be way more
costly, being for example O(l2ln2N + ln3) in the case of the
well known BOA [15], where l is the limit on the incoming
edges in the case of each node.

From Eq. 1 and Eq. 2 and by setting n = k2, results
a lower bound on model building complexity in PMBGAs
according to k of

T = Ω(k42k(k + log(k))) (3)

As k gets larger, the computational burden of the model
building implies millions and billions of operations at every
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Figure 1: The number of objective functions evalua-
tions for the minimal population N , for the expected
time of discovery of modules by RMHC E. The func-
tion 5n2 provides a relatively tight upper bound for
these functions up to k = 11.

single generation, having an impact on the overall complex-
ity that significantly exceeds the bound for the number of
objective function evaluations. Even a total number of ob-
jective function evaluations of the orders of millions is van-
ishingly smaller than the complexity of the model building
in a single generation.

2.2 Module Discovery by local-search
Another approach that can be applied and avoids the use

of populations, is the discovery of building-blocks with a
more systematic exploration of the search space by local-
search methods. Following the fitness gradient, local-search
method are able to quickly identify local optima.

What about the difficult cases when there is no intra-block
fitness gradient to guide the search? What is the expected
time to discover the modules by performing a random walk
on a landscape dominated by neutrality?

Mitchel et. al [13] presented results for the expected
time E(k, m) of a Random Mutation Hill-Climber (RMHC),
which mutates one randomly chosen locus at the time and
accepts states with equal or higher fitness, to discover m
neutral blocks of order k. A Markov-chain analysis yielded
an expected time to discover the first block E(k, 1), slightly
larger then 2k, converging towards 2k as k → ∞ [13]. The
first block can be discovered in E(k, 1), but the next ones will
take longer and longer times, because as new modules are
discovered, the probability of mutation to destroy already
formed blocks increases. Taking this into account, the ex-
pected value for E(k, m) derived in [13] is E(k, 1)m(log(m) + γ),
where γ is Euler’s constant.

Returning to the assumption that k = m and approximat-
ing E(k, 1) by 2k we get the following expected time for the
RMHC to discover the modules

E = 2kk(log(k) + γ) (4)

In practice, E can be significantly reduced around the
value m2k by using a smarter local-search that analyzes ma-
jor fitness variance, following the idea introduced in [9]. In
problems where modules are sharply defined, any decrease
in objective function value is due to the destruction of some
building-blocks. Systematically analyzing the fitness vari-
ance, one can build a preliminary model about the already
formed modules and bias the mutation in such way to pro-
tect the destruction of these blocks.
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What is interesting to note is that for k ≥ 4 E is smaller
then N , the lower bound of the population size from Eq. 1.
Thus, performing a local-search instead of using and evalu-
ating large populations is also beneficial in terms of objective
function evaluations. Figure 1 presents the scaling of E and
N in function of k.

For moderate sizes of k, which nevertheless are large enough
to provide real interest, the exponential growth of 2k can be
still tackled with reasonable computing effort. In Figure 1
the scaling of the polynomial 5n2 compared to E and N is
depicted. One can notice that for k ≤ 11, 5n2 provides a
relatively tight upper bound and thus a reasonable approx-
imation to E.

This observation facilitates the solving of problems with
larger modules efficiently in the following way:

1. Local-search is repeatedly employed for a bounded num-
ber of times, to find solutions of high fitnesses contain-
ing converged modules.

2. The samples from step (1), which are in small number
but already contain correctly converged modules, are
used to quickly build a model which express depen-
dencies.

3. The search is continued from step (1) with the local-
search operating according to the learnt model, thus
taking dependencies into account and always express-
ing learnt modules. In this way module combinations
are explored.

The model building from only a few samples is feasible
only if step (1) is successful in discovering the correct building-
blocks. While PMBGAs need huge populations in order to
provide the initial large modules by random sampling only
(no fitness function guidance employed – which gives high
tolerance to noise) and to decide between the correct mod-
ules and their most competing schemata, in the proposed
method all this is handled by the local-search. The num-
ber of samples must be just large enough to make possible
the demarcation of different modules. Hence, the quick and
correct model building from a restricted (but high quality)
samples is an achievable approach. Nevertheless, while much
quicker this approach is less tolerant to noise.

The RMHC is not able to escape local optima as it has
a restricted neighborhood structure, by mutating only one
allele at the time. In our proposed method we use a local-
search based on an operator that mutates several positions
at the time, namely the Macro-Mutation [11]. This operator
enables large jumps in the search space, thus it has a great
exploratory power and the potential to escape local optima.

The exact expected runtime for the macro-mutation al-
gorithm to discover neutral blocks is unknown, we use the
results from the RMHC analysis as an estimate. As we will
later see in Section 4.3.2 as noise filtering is used, in order to
succeed, it is enough if the local-search discovers the blocks
in most of the cases; complete convergence of all blocks every
time is not mandatory.

3. TEST FUNCTIONS

3.1 Extended Shuffled Royal Road Function
The first function may be regarded as an extension of the

“Royal Road” (RR) function introduced in [12]. RR func-
tions consist of a set of schemas (building-blocks) where each

block confers a fitness contribution at one isolated optimal
peak on an otherwise flat landscape; particular pairwise hier-
archical combinations of blocks are further rewarded. Never-
theless, RR does not exhibit local optima because the blocks
are separable, each block at the base level having only one
optimal setting [21].

In order to introduce module interdependence, we modify
the RR similarly with the hierarchical problems [20], by in-
troducing two context optimal setting for each module. The
main difference between our function and the ones presented
in [21] or [14], is that the proposed function is not hierar-
chically consistent [21]. Albeit, some blocks are certainly
hierarchically grouped, it is not mandatory to combine all
blocks at all hierarchical levels. The fully hierarchical pair-
wise combination and reward of modules, would require the
number of base modules to be a power of 2. As we want the
number of modules to equal the order of the blocks this is
not achievable.

A more formal definition of the Extended Shuffled Royal
Road (ESRR) function follows. The function involves an
even number of k blocks of order k, k ≥ 8, randomly scat-
tered along the input space. The set of indexes defined
by blocks bi i = 1, k are disjunct, not overlapping ones:
bi

⋂
bj = ∅ if i �= j. The fitness of the blocks are neutral,

providing a fitness improvement only at two isolated optimal
peaks on an otherwise flat landscape.

Let us denote by u(s) the unitary (the numbers of ones) of
a binary string s. Then, the fitness of a block b in a binary
string x is given by:

σ(x, b) =

{
1 , if u(x[b]) = 0 or u(x[b]) = length(b);
0 , otherwise.

(5)
where σ rewards uniform blocks of all 0’s or all 1’s.

The fitness of the entire function is given by the summa-
tion of the fitnesses provided by each module and of the
particular hierarchical combinations of blocks.

ESRRk(x) = r1

∑
1≤i≤k
i=i+1

σ(x, bi) + r2

∑
1≤i<k
i=i+2

σ(x, bi

⋃
bi+1) +

r3

∑
1≤i<k−2

i=i+4

σ(x, bi

⋃
bi+1

⋃
bi+2

⋃
bi+3) (6)

where r1 is the bonus for a correctly detected base module,
r2 rewards successful pairwise combination of blocks while r3

recompenses the formation of a valid quadruplet composite
module.

Note that for a number of base modules not divisible by
four, k �= 4l, there are blocks that are not rewarded at the
third hierarchical level, indifferent of their setting. For ex-
ample, for k = 10 the last two blocks are not taken into
account at this level, as there are no other blocks which
whom they could form a quadruplet composite module.

3.2 Hierarchical Massively Multimodal Decep-
tive Function

To test how the proposed method can handle deceptive-
ness and multimodality, we regard the extension of the bipo-
lar deceptive function proposed by Goldberg et al. [3].

The function proposed in [3] is defined on binary strings of
length 6 and is both deceptive and multimodal as it has two
global optima at strings formed by all 0’s or all 1’s and a local
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Figure 2: Construction of bipolar deceptive func-
tions of order k by placing a local optima to u = k

2
.

optima placed where the unitary of the block equals 3. There
are many points belonging to the deceptive attractor as there
are

(
6
3

)
ways to get half zeros half ones in a binary string

of length 6 and only two ways to render a global optima.
Concatenating just 6 of these functions will render more
then a hundred million of locally optimal points.

We consider the extension of the simply concatenated ver-
sion of bipolar deceptive functions in the following way: a
hierarchical consistent version of the problem is used, where
the modules combination (if all found) are also rewarded
according to a bipolar deceptive function. Furthermore, the
problem is shuffled by randomly reordering the bits, mix-
ing the bipolar deceptive blocks on all levels. Finding the
right module combination is very difficult, the fitness signal
on the second level being again average case misleading and
strongly multimodal.

The proposed Hierarchical Massively Multimodal Decep-
tive (HMMD) function involves an even number of k dis-
junct, randomly mixed blocks of order k. The fitness of these
base modules is given by a bipolar deceptive function. Let
again, u(s) denote the unitary of a binary string s. Then,
the bipolar deceptive function of order k, for the bits defined
by a block b in a binary string x, is given by:

bdfk(x, b) =

{
1, if u(x[b]) = 0 or u(x[b]) = k;

0.6 ·
(
1− || k

2 −u(x[b]||
k
2 −1

)
, otherwise.

(7)

In this paper we will extend our analysis to HMMD func-
tions with base modules of size eight also, as we are mainly
interested in the possibilities for the discovery of larger blocks.
Figure 2 depicts the bipolar deceptive functions of order 6
and 8.

HMMD is a hierarchically consistent problem, meaning
that “the nature of the problem is the same at all levels in
the hierarchy” [21]. In order to be able to evaluate modules
according to the same bipolar deceptive function criteria,
we need a transform function defining the “meaning” of each
block. The transform function creates from a module of
order k a symbol following the rule:

t(x, b) =

⎧⎨
⎩

1 , if u(x[b]) = k;
0 , if u(x[b]) = 0;
null , otherwise.

(8)

where null denotes non-solutions which are undesirable at
the next hierarchical level.

Using the above defined transform function to decode the
base modules into a string y of length k, the evaluation func-
tion rewarding combinations of modules at the second hier-
archical level is given by:

wrk(y) =

{
0 , if y contains null;
bdfk(y, {1 . . . k}) , otherwise.

(9)

This function is a wrapper around the bipolar deceptive eval-
uation, which does not award combinations of modules if
not every block is correctly identified, otherwise returning
the value given by bdfk.

Finally, the HMMD function with blocks of order k can
be defined as the summation of the fitnesses provided by
each module at the base level and of their combination at
the second level:

HMMDk(x) = r1

k∑
i

bdfk(x, bi) + r2 · wrk({t(b1) . . . t(bk)})
(10)

where r1, r2 controls the amount of reward at each level.
This function is highly multimodal. For example HMMD8,

where there are eight modules of length eight, each giving a
total of

(
8
4

)
+ 2 = 72 optima for a total of 728, from which

only two are global ones: strings formed by all 0’s or by all
1’s. The number of local optima is astronomical, being some-
where half between seven hundred trillion and three quarters
of one quadrillion! Finding the one of the two global optima,
from all these points where the search may potentially get
stuck, can be achieved only by a proper exploration (sam-
pling) of the search space combined with an exact problem
decomposition.

4. MODEL BASED MACRO-MUTATION
Previous theoretical studies had shown that when identi-

fied, the local-search according to the building-block struc-
ture is more efficient than selectorecombinative GAs, on de-
terministic additively-separable problems of bounded diffi-
culty [18]. Based on these findings, later developments pro-
posed competent selectomutative GAs [17] and methods that
combine both competent crossover and competent module-
wise mutation operators [10], that are able to solve hard
problems quickly, reliably, and accurately.

The mutation operator in these approaches use the prob-
abilistic model of linkage groups derived from populations.
Thus, in order to be able to discover large basic blocks, these
approaches also need big population sizes.

Our approach proposes a different approach. Starting
from a representation in concordance with the original prob-
lem, in a first phase, search experience is accumulated by re-
peated local-search working on the current representation.
In a second phase the search experience is used to learn
linkages and adapt the representation accordingly. After
this, the search enters again phase one, but with the local-
search operating on the newly derived representation. En-
abled with an adaptive neighborhood structure, the pro-
posed method is able to efficiently explore the combinative
neighborhood structure of the learnt modules, thus it can
discover further composite modules.

4.1 Module aware representation
Let us denote the current module knowledge at state s by

M(s) = (m1, m2, . . . , mn) (11)

where mi-s are the modules or building-blocks and n is the
number of detected modules.

Each module mi can have multiple configurations relating
to different context-optimal settings:

Vi = {v|v ∈ {0, 1}l} (12)
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where l is the length of mi. This allows the sustenance and
parallel processing of competing context-optimal schemata.

The current state s is formed by particular context-optimal
settings of the known modules:

s = (v(m1), v(m2), . . . , v(mn)) (13)

where n is the number of known modules and v(mi) ∈
[1, |Vi|] ∩ �∗ gives the index of a candidate configuration
of the building-block mi from the set Vi. For example, hav-
ing n = 3 the state s = (1, 2, 1) is translated as being formed
from the concatenation of the first context-optimal setting
of module one, the second context-optimal setting of the sec-
ond module and the first candidate configuration of the 3rd

module.
The representation is initialized in the case of binary prob-

lems, with each variable as a basic module mi. The initial
Vi context optimal settings for each basic module are {0, 1}.

After dependencies have been detected and new composite
modules have been formed, their configurations Vi are ob-
tained by taking all the different substrings from the mem-
ory, from the positions defined by the new module. For
example if a new module mi is formed on the positions
[1, 2, 3, 8], Vi = unique(mem(:, [1, 2, 3, 8])) where mem is the
memory containing nS samples, and “:” denotes a for-loop
iterator processing all samples from 1 to nS .

4.2 Macro-Mutation Hill-Climber
A method with great exploratory power, the Macro Mu-

tation Hill-Climber (MMHC) had been shown to be a very
powerful hill-climbing method, which can outperform GAs
even on problems where each building-block corresponds to
a deceptive trap function, provided that the problem has a
tight linkage [7].

In the mutation operator of the MMHC a randomly cho-
sen number of loci from the representation vector are set to
random alleles. If the fitness of the newly generated state
is greater or equal as the actual one, then the new state is
accepted [7].

In our method, when a (major) fitness improvement is
detected, bigger than a predefined threshold ζ, a systematic
search analyzes every setting of each module. By record-
ing the modules which imply the same fitness drop if their
setting are changed, a preliminary model about the already
formed building-blocks is obtained. This model is used to
bias the otherwise random and blind loci choice for muta-
tion: positions believed to be part of the same module are
mutated always together and initially rarely. Rather, the
search focuses on the subset of positions from the represen-
tation vector which are not yet classified as being part of a
module, macro-mutating them as described above. When all
positions are classified as part of blocks, the operator always
randomly chose a preliminary module and macro-mutate on
the positions that define this module.

Macro-mutation operates according to the model provided
by the modules M(s), randomly choosing their configuration
from V .

4.3 Learning the structure
When applying the local-search to problems of interest,

the method will discover some elementary modules, but due
to the non-linear interdependencies, it will ultimately con-
verge to a local optima with overwhelming probability. How-
ever, the variables of the converged solutions will be grouped

in a subspace which has lower dimensionality than the di-
mensionality of the data, due to the modularity of the prob-
lem. On longer term, multiple stored converged solution
may be used to infer the modular structure of the problem.

Feature extraction is applying a mapping of a multidi-
mensional space into a space of fewer dimensions. Artificial
Neural Networks (ANNs) are very well suited for this task
as they have been shown to have the capability to auto-
matically learn the hidden structure of an input space; they
have the ability to preprocess input patterns to produce sim-
pler patterns with fewer components [6]. Nevertheless, one
should note that other classical methods, like the ones based
on Bayesian networks, can also be used to detected the mod-
ular structure from the (semi-)converged states. The com-
putational burden of the classical model building techniques
would also be moderate, as exponential populations in the
block size are avoided, the number of samples being very
low.

4.3.1 Learning with Self Organizing Maps
In this paper we use a Self Organizing Map (SOM) to de-

tect dependent inputs. SOMs are trained using unsupervised
learning to produce a two dimensional, discretized represen-
tation of the input space of the training samples, called a
map [8].

The interesting feature of SOMs, exploited in this paper,
consist in the fact that the mapping is topology preserving
and similar inputs tend to have similar weights.

In our approach a lattice of 5 ∗ 5 neurons is used, that
are arranged in a rectangular grid with regular spacing. A
weight vector of dimension n where n = |s| (one input for
each known module) and a position in the map space is as-
sociated with each neuron. Also, the inputs are normalized
from the [1, |Vi|]∩�∗ interval to a [−a, b]∩�∗ interval, where
b = |Vi| − 1, a = b if n = 2k and a = b − 1 if n = 2i + 1
to induce a symmetric negative bias into the adjustment of
the weights. With only positive inputs, all weights would be
always pushed towards positive values, making the inference
of linkages by weight analysis impossible.

Dependencies are deduced form the internal representa-
tion of the SOM based on the heuristic that similar inputs
should produce similar patterns in their associated weights
i.e dependent inputs have roughly the same values for their
weights.

Accordingly, we use the following metric for detecting the
dependency between variables xi and xj :

d(xi, xj) =
r∑

l=1

||Wil| − |Wjl|| (14)

where r is the number of neurons on the rectangular lattice
and W represents the weights of the SOM. This relation
measures the closeness of different variables by taking into
account the weights related to them.

If d(xi, xj) ≤ ε, where ε is a predefined threshold, then we
consider xi and xj as being dependent; they will be merged
into the same module for the next phase of the search.

An important issue regards the number of samples needed
to correctly delimitate the modules. We can approximate
the probability that in nS samples, the settings of two un-
correlated variables always match up with 0.5nS for the bi-
nary case,. We use nS = 16 samples, so this probability is
less then 1e-4.
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Algorithm 1: Model Based Macro Mutation

Data: M, V, nS , z, c2, @stopping cond, ε1.
while not @stopping cond do

n← |M(s)|;
/* Phase I */
for i = 1, nS do

/* Generate a random state s according to

the current building-block knowledge

M(s) */

s← RandomState(M);
/* Apply macro-mutation according to the

current model for c2n
2 evals */

s←MBMM(s, [M, V ], c2n
2);

mem[i]← s;

/* Phase II */
T ← NormalizeDataRanges(mem);
F ← 0n×n;
for l = 1, z do

net← InitializeSOM();
/* Randomly select four samples */

S ← ChoseRandomSamples(T,4);
net← Train(net, S);
/* Detect possible modules via weight

analysis */

nm← GetLinkages(net.Weights, ε);
/* Update the frequency matrix */

F ← Update(F,nm);

/* Get modules from the frequency matrix */

b← GetBaseModules(F, ε1);
/* Merge overlapping modules */

b← unique({bi = bi

⋃
bj if bi

⋂
bj �= ∅; ∀i, j});

/* Collapse the search space and update the

building-block configuration according to

the detected modules */

[M, V ]← UpdateModuleKnowledge(b);

4.3.2 Noise Filtering
Problems may arise if the inputs are too noisy; the local-

search can not guarantee that modules will be expressed
100% in all cases. Accordingly, we must use an approach
which enables noise filtering.

We assume that the local-search enables the correct ex-
pression of the module settings with a reasonably high prob-
ability i.e. this probability p is larger then 0.75 in the case
of each module. Then the following strategy can be applied:
model building with SOM is employed to a small, randomly
chosen subset of the total number of samples. The cardinal-
ity of the subset used in our experiments was set to 4. The
higher is p, the slimmer is the probability that the subset
formed by four converged states will contain more then one
corrupted sample per block. Thus, if p is high, the SOM will
detect the dependent variables most of the time.

The SOM will also report false linkages more often, be-
cause the restricted number of four samples are not enough
to correctly delimitate the modules with high probability. To
alleviate this phenomena, we use the above described learn-
ing from randomly chosen subsets repeatedly z times (z = 32
in this paper). We record in a square frequency matrix F of
length |M(s)|, the total number of times the SOM reported
the ith and jth variable to belonging to the same module.
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Figure 3: Performance and scaling of the MBMM
on the proposed test suites.

F will essentially be a dependency structure matrix (DSM),
which is in turn an adjacency matrix representation of a
graph where each entry Fij represents the dependency be-
tween node i and node j [22]. The closer is Fij to z the
higher is the interaction between node i and node j.

To extract the information regarding module composition
from F , we could use any DSM clustering technique which
will find subsets of DSM elements so that nodes within a
cluster are maximally interacting, and clusters are minimally
interacting, like the one presented in [23].

However, if p is high a more efficient linkage detection-
filtering can be used. In each row i of F , the numbers related
to the truly dependent variables j will be much higher then
the rest of the entries. With a hardcoded threshold of εm ≥
0.75 · z the delimitation of true dependencies from those
induced by the noise can be done safely.

In the proposed method, using εm it is decided for each
row i from F , the set of dependent variables j denoted by
χi and a base module is formed from bi = {i}⋃

χi. If no
dependent variables are found in a row, χi = ∅.

These base modules may be overlapping in some cases or
even be subsets one of each other. Knowing that in the
test functions of interest the modules are non overlapping
ones, we use the circumstantial approach of merging to-
gether modules that contain at least one common element.
In this way we enable the formation of larger modules and
facilitate the faster decomposition of the search space.

The MBMM is summarized in Algorithm 1.

5. RESULTS
The performance of the proposed MBMM method was

tested on the ESRR function with even base module sizes
from 8 to 16 and on HMMD function of order 6 and 8.
On the ESRR function the parameters that reward certain
block configurations were set to r1 = 1, r2 = 2, r3 = 4. The
HMMD functions were used with r1 = 1 and r2 = 2. The
ζ threshold for fitness variance in the model based macro-
mutation was dynamically determined: using 100 trials, we
computed the average fitness improvement δ+ of the suc-
cessful mutations working on randomly generated states. A
major fitness improvement was regarded as one above this
value with more then 50%, thus ζ = 1.5 · δ+.

For test suites with block sizes up to 10, a total number
of 100 independent runs were averaged. For problems with
base module sizes of 12 the number of averaged runs was 30,
respectively 10 for block sizes of 14 and 16.

The number of function evaluations used by an epoch of
local-search was set to 5n2. The method showed a very good
behavior, with 100% success rate on every test suite and with
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a very accurate and prompt model building. The converged
solutions contained very little noise, showing that the biased
mutation is effective in discovering modules and preserving
them and thus the number of function evaluations required
by Eq. 4 for an epoch of local-search is an overestimate for
this case.

The performance and scalability of the method is depicted
in Fig. 3. As k grows, random sampling required to discover
blocks grows exponentially. Nevertheless, even for k as large
as 16, the proposed method, using objective function guid-
ance and biased search for module discovery, is able to find
and combine all blocks accurately, within the bounds of 6e6
objective function evaluations.

We repeated our experiments for the ESRR test suite, up
to block sizes of 14, using the simple, blind macro-mutation
strategy, without the fitness variance analysis and prelim-
inary model building. Here, whenever a new state is ac-
cepted, we only perform a simple greedy search upon this
state, in order to discover better solutions, if any, in the
close neighborhood of the new state.

The results are summarized in Table 1. The first column
contains the basic module sizes. The scaling of function
evaluations with regard to the block/problem size (remem-
ber that n = k2), invested by the local-search in a single run
in order to detect correct module settings, is presented in
the 2nd column. Column 3 contains the rate of success for
each test suite, while the average total number of function
evaluations until global optimum is reached, is reported in
the last column.

ESRR of size 8 and 10 is easily solved again in all cases,
allocating the 5n2 function evaluations to the local-search.
This is expected according to the scaling of E vs. 5n2 de-
picted in Figure 1.

Equation 4 predicts the expected runtime for finding neu-
tral blocks for module size 12, to be significantly bigger then
5n2 if we use only a blind mutation, which will destroy many
times the already formed correct modules. This hypothesis
held in our empirical findings also, as with 5n2 evaluations
for the local-search, the MBMM did not perform reliably.
Albeit it was able to converge to a global optima in some
cases, the model building was poor due to heavy noise, tak-
ing many iterations to achieve the result, sometimes more
then 10. To remediate this situation we doubled the value
of c2 from 5 to 10. This is still feasible as it respect our con-
dition that c2 ≤ k. With the new setting for c2 the method
performed much better, always finding one of the optima.

For the hardest case tested here, with k = 14, even whit c2

set to its maximum value of 14n2, is way less than required
according to the scaling of E. Nevertheless, the solving of
this particular test suite is also manageable, with blind mu-
tation and relatively reasonable computational effort. We

k LS - c2n
c1 Succ. Avg. nr. obj.

(c2 ≤ k) rate func. evals.

8 5n2 100% 3.442e5
10 5n2 100% 1.425e6
12 10n2 100% 7.547e6
14 5n2.39 100% 2.655e7

Table 1: Numerical results of the MBMM with the
blind version macro-mutation on the ESRR.

modify the Algorithm 1 in the following way: the limit of
c2n

2 in the local-search is changed from number of function
evaluations to epochs. This implies that c2n

2 mutations are
performed and whenever the newly obtained solution is bet-
ter or equal as the current one, a “free” greedy search is
also used (the function evaluation consumed by the greedy
search does not count, as we are running fixed number of
epochs). Theoretically, if all mutations would result in at
least equally fit solutions, the number of objective function
evaluations would be proportional with n3. Of course this
is not the case; as modules are discovered, many blind mu-
tations are detrimental ones, destroying the already formed
blocks.

Working with the modified version of the MBMM that
applies local-search for 5n2 epochs, the average number of
function evaluations consumed by a single run of the local-
search was less then 1.5e6. Solving 5nc1 − 1.5e6 = 0 yields
c1 ≈ 2.39. 5n2.39 is greater than the value of E for k =
14, thus as expected the MBMM is able to discover and
recombine the blocks of this problem successfully in all cases.

Due to the strong exploration performed by the biased
model based macro-mutation, neutrality of ESRR the mas-
sive multimodality and average case deceptiveness of the
HMMD function is overcame, as shown in the results. The
method correctly identified one of the global optima and
provided an exact model building in all runs. Even if the
search space is extremely hard, due to the random shuffling
and because of the astronomical number of aleatory placed
local optima, the MBMM is able to quickly solve this prob-
lem by building and exploiting an accurate problem decom-
position. When applying only blind macro-mutation, which
often destroys already formed blocks, leading to wasted func-
tion evaluations, large neutral blocks can be still reliably
detected by using in each local-search epoch a number of
function evaluations as required by Eq. 4.

Note that the parameters of the method were not hand
tuned. We worked with some initial estimates that turned
out to work fine, thus there may be room for improvements.
We especially suspect that reducing the number of samples
from the memory to 12 will still provide good results with
high probability, while the number of objective function eval-
uations used would drop by 25%. Furthermore, when using
biased macro-mutation to protect already formed modules,
for the problems under investigation we found that Eq. 4 is
an overestimate, a value close to m2k would be more appro-
priate.

6. CONCLUSIONS
As they use only random sampling to supply initial building-

blocks, classical PMBGAs are lower bounded in the popu-
lation size by the exponential of the order of dependencies
covered by the probabilistic model. For larger order of de-
pendencies, the cost of model building from the exponen-
tially growing populations, quickly exceeds feasible limits
and uprise beyond economical practicality.

The paper propose a new paradigm and method (Model
Based Macro-Mutation Hill-Climber), where initial building-
blocks supply is achieved by employing strong exploration
techniques, which nevertheless follow objective function guid-
ance whenever available. The macro-mutation based search
used, has the capability of sampling a wast portion of the
search space, howbeit greatly differs from random sampling
by being a hill-climber. It does a biased search by never
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accepting states with lower fitness. Furthermore, by analyz-
ing objective function variance it can filter out detrimental
mutations which destroy already formed blocks.

Investing the function evaluations into an exploratory local-
search can facilitate the discovery of large modules. The
method can also decide between the most fit module set-
tings and their most competing schemata. Thus, the total
number of samples needs to be just large enough, to make
the delimitation of different modules possible with suitable
machine learning techniques.

Empirical results confirm that the proposed method can
solve with great reliability, very hard problems with huge
neutral blocks or massively multimodal, deceptive problems
efficiently, by using c2n

2 function evaluations in each local-
search epoch, where c2 is restricted to be smaller or equal
to the base module sizes.

The macro-mutation based search can be hybridized with
other probabilistic methods, where it is used only as a pre-
processor to discover the elementary modules of a prob-
lem. Machine learning and further exploration would be
performed by the host method.
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